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Abstract— Recent large scale experiments have shown that
the Normalized Information Distance, an algorithmic informa-
tion measure, is among the best similarity metrics for melody
classification. This paper proposes the use of this distance as
a fitness function which may be used by genetic algorithms to
automatically generate music in a given pre-defined style. The
minimization of this distance of the generated music to a set of
musical guides makes it possible to obtain computer-generated
music which recalls the style of a certain human author. The
recombination operator plays an important role in this problem
and thus several variations are tested to fine tune the genetic
algorithm for this application. The superiority of the relative
pitch envelope over other music parameters, such as the lengths
of the notes, brought us to develop a simplified algorithm that
nevertheless obtains interesting results.

I. INTRODUCTION

The automatic generation of musical compositions is a
long standing, multi disciplinary area of interest and research
in computer science, with over thirty years of history at its
back.

Some of the current approaches try to simulate how the
musicians play [1] or improvise [2] on the fly, while others
are not concerned with execution time and mainly try to
generate some ‘good’ output. Many of them apply models
and procedures of theoretical computer science (cellular au-
tomata [3], parallel derivation grammars [1], or evolutionary
programming [4], [5], [6], [7]) to the generation of complex
compositions. The models are then assigned a musical mean-
ing. In some cases, the music may be automatically found
(composed) by means of genetic programming.

In a previous paper [8] we proposed the use of the well-
known Normalized Compression Distance [9], an algorithmic
information measure , as a fitness function which may be
used by genetic algorithms to automatically generate music
in a given pre-defined style. The superiority of the relative
pitch envelope over other musical parameters, such as the
lengths of the notes, has been confirmed in [10], bringing us
to develop a simplified algorithm that nevertheless obtains
interesting results.

In this paper we start on the results of the previous work
and refine them, trying to increase the efficiency of the pro-
cedures described in the above mentioned paper. This is done
by testing several variations of the recombination operator to
fine tune the genetic algorithm for this application, as it has
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been observed that this operator plays an important role in
this procedure.

This paper is organized thus: the second section pro-
vides a short introduction to musical concepts needed to
better understand the remainder, with a description of the
restrictions applied in our experiments and an enumeration
of different ways of representing music. The third section
introduces the Normalized Compression Distance, which has
been used to compute the distance from the results of the
genetic algorithm to the target musical pieces. The fourth
section describes the genetic algorithm we have used for
music generation. In the fifth and sixth sections we describe
our experiments, where we have compared the use of one or
two target guides, and six different recombination procedures
for the genetic algorithm. Finally, the last section presents our
conclusions and possibilities for future work.

II. MUSICAL REPRESENTATION: RESTRICTIONS

Melody, rhythm and harmony are considered the three fun-
damental elements in music. In the experiments performed in
this paper, we shall restrict ourselves to melody, leaving the
management of rhythm and harmony as future objectives. In
this way, we can forget about different instruments (parts and
voices) and focus on monophonic music: a single performer
executing, at most, a single note on a piano at a given point in
time. Melody consists of a series of musical sounds (notes) or
silences (rests) with different lengths and stresses, arranged
in succession in a particular rhythmic pattern, to form a
recognizable unit.

In the English notation for Western music the names of the
notes belong to the set {A, B, C, D, E, F, G}. These letters
represent musical pitches and correspond to the white keys
on the piano. The black keys on the piano are considered as
modifications of the white key notes, and are called sharp
or flat notes. From left to right, the key that follows a white
key is its sharp key, while the previous key is its flat key. To
indicate a modification, a symbol is added to the white key
name (as in A# or A+ to represent A sharp, or in Bb or B-,
which represent B flat). The distance from a note to its flat
or sharp notes is called a half step and is the smallest unit
of pitch used in the piano, where every pair of two adjacent
keys are separated by a half step, no matter their color. Two
consecutive half steps are called a whole step. Instruments
different from the piano may generate additional notes; in
fact, flat and sharp notes may not coincide; also, in different
musical traditions (such as Arab or Hindu music) additional
notes exist. However, in these experiments, we shall restrict
to the Western piano lay-up, thus simplifying the problem to
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just 88 different notes separated by half steps. An interval
may be defined as the number of half steps between two
notes.

Notes and rests have a length (a duration in time). There
are seven different standard lengths (from 1, corresponding to
a whole or round note, to 1/64), each of which has duration
double than the next (whole, half, quarter, ...). Intermediate
durations can be obtained by means of dots or periods,
triplets and other constructs. The complete specification of
notes and silences includes their lengths.

A piece of music can be represented in several different,
but equivalent ways:

1) With the traditional Western bi-dimensional graphic
notation on a pentagram.

2) By a set of character strings: notes are represented by
letters (A-G), silence by a P, sharp and flat alterations
by + and - signs, and the lengths of notes by a number
(0 would represent a whole note, 1 a half note, and
so on). Adding a period provides intermediate lengths.
Additional codes define the tempo, the octave and
the performance style (normal, legato or staccato).
Polyphonic music is represented with sets of parallel
strings.

3) By numbering (1 to 88) the pitches of the notes in the
piano keyboard. Note 0 would represent a silence. The
length of a note can be represented by a multiple of
the minimum unit of time. A voice in a piece of music
would be a series of integer pairs representing notes
and lengths. Polyphonic music may be represented by
means of parallel sets of integer pairs.

4) Other coding systems are used to keep and reproduce
music in a computer or a recording system, with or
without compression, such as wave sampling, MIDI,
MP3, etc.

In our experiments, we represent melodies by the second
and third notation systems.

III. THE NORMALIZED COMPRESSION DISTANCE

The search for a universal distance has been, for a long
time, one of the main objectives of cluster theory. The
availability of such a distance would make it possible to
apply the same algorithms to widely different clustering
problems, such as the classification of music, texts, gene
sequences, and so forth.

A deep result from Algorithmic Information Theory is
that there exists such a universal similarity distance, which
summarizes all computable similarities: the Normalized In-
formation Distance (NID) [11]. It is universal in the sense
that, when when a small distance is measured by any means
between any two given objects, the NID is also small between
these objects. Thus, it is at least as good as any other
computable similarity distance. The NID is mathematically
defined as follows:

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)} (1)

where K(x|y) is the conditional Kolmogorov complexity of
string x given string y, whose value is the length of the
shortest program (for some universal machine) which, when
run on input string y outputs string x. K(x) is the degenerate
case K(x|λ), where λ is the empty string; see [12] for a
detailed exposition on the subject. Unfortunately it can be
proven that, due to the well-known halting problem, both
the conditional and the unconditional complexities happen
to be incomputable functions.

In [9] a computable estimate of the NID, the Normalized
Compression Distance (NCD), is presented:

NCD(x, y) =
max{C(xy) − C(x), C(yx) − C(y)}

max{C(x), C(y)} (2)

where xy is the concatenation of strings x and y, and C(x)
denotes the length of the text x compressed by some com-
pression algorithm which approximates K(x) from above.
Distances near 0 indicate similarity between objects, while
those near 1 reveal dissimilarity.

Li and Sleep have reported that this distance, together with
a nearest neighbor or a cladistic classifier, outperforms some
of the finest (more complex) algorithms for clustering music
by genre [10]. An earlier research has also reported success
of the same distance for clustering tasks [13]. These results
suggest that the NCD, although not achieving the universality
of its incomputable predecessor (the NID), works well at
extracting features shared between two musical pieces.

On the other hand, genetic algorithms need to define a
fitness function to compare different individuals, subject to
simulated evolution, and classify them according to their
degree of adaptation to the environment. In many cases,
fitness functions compute the distance from each individual
to a desired goal.

Assume we want to generate a composition that resembles
a Mozart symphony; in this situation, we can elaborate a
natural fitness measure: an individual (representing a com-
position) has a high fitness if it shares many features with
as many as possible of Mozart’s symphonies. We propose
to use a genetic algorithm (with musical compositions as
individuals of the population) which uses the NCD as the
fitness measure. This measure may compute these shared
features between the individuals and the target musical
guides which, in this example, would be the set of Mozart’s
symphonies.

It remains to choose the compressor used to estimate the
NCD. Li and Sleep compute it by counting the number
of blocks generated by executing the LZ78 compression
algorithm [14] on an input. In our initial experiments, we
used both the LZ78 and LZ77 algorithms, and found that
LZ77 performs better, which agrees with theoretical results
from Kosaraju and Manzini [15]. Therefore, LZ77 has been
used as our reference compressor in all the experimental
results presented in this paper.
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IV. THE GENETIC ALGORITHM USED TO GENERATE

MUSIC

Our genetic algorithm generates music coded as pairs of
integers, the third format described in section II, which is
specially fitted for our purpose. This notation can then be
transformed to a note string (the second representation) for
reproduction.

As we have previously stated (see sect. II), we also decided
to start with monophonic music, leaving harmony for a later
phase and working with melodies.

Finally, we made the decision, in this first stage of exper-
iments, to apply the genetic algorithm only to the relative
pitches of the notes in the melody (i.e. we only consider
the relative pitch envelope), ignoring the absolute pitches
and the note lengths. The reason is that our own studies
and others’ [10] suggest that a given piece of music remains
recognizable by a human being when the lengths of its notes
are replaced by random lengths, while the opposite does not
happen (the piece becomes completely unrecognizable if its
notes are replaced by a random set, while maintaining their
lengths).

The proposed genetic algorithm scheme is now described.
It includes a previous pre-process step, made of the following
parts:

• One or more (M ) musical pieces of the same
style/author are selected as targets or guides for music
generation. We define each of the guides as gi and the
guide set as G = {gi}M

i=1
.

• All the guides are coded as pairs of integers, as de-
scribed above. In our experiments, the set of guides
may include pieces of music of unequal (but not too
dissimilar) lengths.

• The individuals in the population are coded in the same
way as the guides.

• The fitness function for an individual x and a guide set
G is defined as

f(x) =

⎛
⎝ ∑

gi∈G

NCD(x, gi)

⎞
⎠

−1

(3)

By maximizing f(x) (minimizing the sum of the dis-
tances), we expect to maximize the number of features
shared by the evolving individuals with the guide set.

The remaining steps of the genetic algorithm are:

1) The program generates an initial random population
of 64 vectors of N pairs of integers, where N is the
length of the first piece of music in the guide set.
The first integer in each pair is in the [24,48] interval
and represents the note interval. The second is in the
[1,16] interval and represents its length as multiple of
the minimum unit of time. Each vector represents a
genotype.

2) The fitness of the genotypes is computed as in eq. 3,
where x is the relative pitch envelope, i.e. the set of
running differences between each note and the next,
while lengths are ignored.

3) The genotypes are ordered by their increasing distance
to the guide set, i.e. decreasing fitness.

4) If some predetermined fitness has been reached, the
genetic algorithm stops. The notes in the target geno-
type are paired with a function of the lengths of the
guide piece(s).

5) The 16 genotypes with lowest fitness are removed. The
16 genotypes with highest fitness are paired randomly.
Each pair generates a pair of children, a copy of
the parents modified by four genetic operators. The
children are added to the population to make again 64,
and their fitness is computed as in step 2.

6) Go to step 3.

We need to say some words about our coding choice.
The use of only two octaves for the notes (i.e. [24,48])
does not represent an important restriction (actually many
real melodies comply with it), while it reduces significantly
the size of the search space. The fact that absolute notes
are later converted to intervals has the consequence that a
piece of music becomes invariant under transposition, which
is proper, because human ear recognizes transposed pieces
as very similar.

The second number, belonging to the [1,16] interval in
each pair, represents the length of the note and is currently
ignored (remember that these lengths are replaced by a
function of the lengths of the guide pieces). In this way,
however, the system is ready for the future objective of
automatically generating the lengths.

The four genetic operators mentioned in the algorithm are:

• Recombination (applied to all generated genotypes).
The genotypes of both parents are combined using
different procedures to generate the genotypes of the
progeny. Different recombination procedures have been
tested in this set of experiments to find the best strategy
(see sect. VI):

– Single point crossover, adjusted for variable
length genomes: given a pair of genotypes,
(x1, x2, . . . , xn) and (y1, y2, . . . , ym), a random
integer is generated in the interval [0, min(n,m)],
let it be i. The resulting recombined geno-
types are: (x1, x2, . . . , xi−1, yi, yi+1, . . . , ym) and
(y1, y2, . . . , yi−1, xi, xi+1, . . . , xn).

– Modified two-point crossover for variable
length genomes: given a pair of genotypes,
(x1, x2, . . . , xn) and (y1, y2, . . . , ym), two random
integers are generated in the interval [0, n] (let
us call them i, j, i < j) and another two in the
interval [0,m] (let us call them p, q, p < q).
The resulting recombined genotypes are:
(x1, x2, . . . , xi−1, yp, yp+1, . . . , yq−1, xj , xj+1, . . . , xn)

and
(y1, y2, . . . , yp−1, xi, xi+1, . . . , xj−1, yq, yq+1, . . . , ym).

– Recombination based on a four point crossover:
given a pair of genotypes, (x1, x2, . . . , xn) and
(y1, y2, . . . , ym), four random ordered integers are
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Fig. 1. A piece generated with Yankee Doodle as the only guide (NCD 0.43).

generated in the interval [0, n], [0,m] for each par-
ent genotype. Each genotype is then cut into the five
corresponding pieces, which are shuffled together
(one of them is reversed). Finally, the genotypes of
the progeny are obtained by concatenating five of
the pieces in the shuffled

– Recombination based on a three point crossover:
similar to the preceding one, but only three ran-
dom ordered integers are used to divide the parent
genotypes into four pieces, which are then joined,
shuffled, and used (four at a time) to generate the
genotypes of the progeny.

• Mutation (one mutation was applied to every generated
genotype, although this rate may be modified in dif-
ferent experiments). It consists of replacing a random
element of the individual genotype by a random integer
in the same interval.

• Fusion (applied to a certain percentage of the gener-
ated genotypes, which in our experiments was varied
between 5 and 10). The genotype is replaced by a
catenation of itself with a piece randomly broken from
either itself or its paired genotype.

• Elision (applied to a certain percentage of the generated
genotypes, in our experiments between 2 and 5). One
integer in the vector (in a random position) is elimi-
nated.

The last two operations, together with some recombination
procedures, allow longer or shorter genotypes to be obtained
from the original vectors.

V. TESTING DIFFERENT NUMBER OF GUIDE PIECES

In our first experiments, we selected the simplest recombi-
nation procedure (strategy 1 in sect. VI) and tested the effect
of varying the number of guide pieces and the functions
which generate the lengths of the notes in the best output
pieces.

First, we used Yankee Doodle as the guide a single piece
of music, described by the following string with the second
representation defined in sect. II:

M2T2O3L2C+4C+4D+4F4C+4F4D+4O2G+4O3C+4C+4D+4F4
C+3C4P4C+4C+4D+4F4F+4F4D+4C+4C4O2G+4A+4O3C4C+
3C+4P4O2A+4.O3C5.O2A+4G+4A+4O3C4C+4P4O2G+4.A+
5.G+4F+4F3G+4P4A+4.O3C5.O2A+4G+4A+4O3C4C+4O2A
+4G+4O3C+4C4D+4C+3C+3

The corresponding WAV formatted file, Yankee.wav, to-
gether with all the musical pieces mentioned in this paper,
can be found at:

www.eps.uam.es/˜mcebrian/music
After applying the genetic algorithm, the succession of

notes obtained was completed by adding length information
in the following way: each note was assigned the length of
the note in the same position in the guide piece (the guide
piece was shortened or circularly extended, if needed, to
make it the same length as the generated piece, which could
be shorter or longer).

In successive executions of the algorithm, we obtained
different melodies at different distances from the guide. It
was observed that a lower distance made the generated music
more recognizable to the ear, as related to the guide piece For
instance, the distance to the guide of the following generated
piece. (see also figure 1, where the same music appears in
standard musical notation), named Yankee NEW.wav is 0.43:

T5O3D+2O2G+2O3C+2C+2D+2F2F+2F2E2C2D2E2O2F1D2E
2D2C2D2E2F+2G2G2A2B2O3C2O2B2O3D2E1O2F2D+2F2.G
3.G+2F2D+2G+2F+2E2F+2.F3.C+2C2D+1C+2C+2A+2.O3
C3.C+2O2G+2A+2G+2F+2O3D+2B2O3D+2C+2

The number of generations needed to reach a given
distance to the guide depends on the guide length and
the random seed used in each experiment, and follows an
approximate Poisson curve, as shown in figure 2, which
represents the result of one experiment.

In our second experiment, we used two guide pieces
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Fig. 3. Beginning of a piece generated with two songs by Cole Porter as guides (NCD 0.67 from Begin the beguine and 0.72 from My heart belongs to
daddy).

Fig. 2. Number of generations needed to reach a given distance to the
target (only one guide).

simultaneously: Begin the beguine (Begin.wav), and My heart
belongs to daddy (Heart.wav), both by Cole Porter.

The following represents one of the results we obtained
(figure 3 shows the first notes in standard musical notation),
which we named as Porter NEW.wav, which happens to be
at a distance of 0.67 from the first guide piece, and 0.72
from the second, while the NCD between both guide pieces
is 0.81, i.e. the generated piece was nearer to both guides
than they are among themselves:

T5O3C+3.D3.O2A3.O3F+1.F+3.D+3.O2G+3.O3C+1O2G+
3.C+3.D+3.D3.F1D+3.C+3.C3.C3.C+3.D+1O3C3.D3.F
3.D1F3.E3.O2G+3.O3D+2C2O2A+1O3C3.O2A+3.A+3.A+
1A+1G+3.E1.F+3.O4C3.O3F3.G1.F+3.C+3.D+3.E1G+3
.E3.E3.O2C3.D+1C+3.D+3.O3C3.C3.G+3.C+1D+2E2F+
3.E1.O2B3.O3G+3.O2C3.C+3.C+1C+3.F3.G3.G1F1D+3
.O3C1C3.O2A3.D3.A+3.O3C1D3.O2F+3.F+3.D3.G3.F1
O3D3.E2D+2E1.D+3.G+3.O2D+3.D+1G3.A3.G+3.O3C3.
O2A1A3.E3.F+3.G3.B3.G1D+3.D+3.F3.A+3.B1O3D+3.
C+3.F+3.F+1.E3.D+3.D+3.C2O2B1O3D+3.C3.O2B2O3E
2O2A1A2G+3.G+3.E2.F+3.F3.D+2F1D3.D+3.O3F2D+3.
F+3.D1O2A2G+3.O3C+3.G+2F2C+2O2A2F1O3F+3.B2.O2
F+3.E3.G3.F+1E3.E3.D+3.C+3.O3C+1.O+2G+1C+3.C+
1D+3.F3.A+2G+2G+3.F+1D+2E3D0D+2F3.D+3O3G3.D2B
2O2D+2O3C3C3C3.C2O2B0A3.A3A3.B2.O3C3.F+1G3.A+
3.G+3F+3A3.F1.C2O2G+3.G+3.O3G+0A+3.B3.B0B3.O2
E3A+3B3.O3D3.D3.O2A+1O3D+3F+3F0F+3.D+3F3G3.G3
.G3.G+2A+3O4C3O3A3A+2G+0O2F+3G+3F+3.F3.F+3.O3

G+2F+3A3A+3G+3.F+1D+3.C+3.C3.O2A+3.A+0A+3.O3C
3.O2A+3.O3C3.C+0D3.C3.O2C3.

To obtain the preceding piece, we completed the succes-
sion of notes generated by the genetic algorithm with the
required length information, in the following way: each note
was assigned the average lengths of the two notes in the
same position in the two guide pieces (the guide pieces were
shortened or circularly extended to make them the same
length as the generated piece). This approach happens to
provide a more esthetically appealing result than the one
obtained when the length of only one of the guide pieces
is used.

In our third experiment, Chopin’s prelude number 4
(Chopin4.wav) and prelude number 7 (Chopin7.wav)
were used as simultaneous guides. The result
(Chopin47 NEW.wav, see also the first notes in figure
4) came to be at distances of 0.61 and 0.74 from the two
guide pieces, which are separated from one another by a
distance of 0.96. The length of the notes was generated in
the same way as in the preceding experiment. Compared
with this, the piece obtained using as guides two works by
Cole Porter has a distinctly lighter sound.

T5O3G+2.O2A+2O3G1.O2A+1O3G0O3F+1.O3C0O2B2.O3D
+1.O3F+1O2F+0O2F+1.O2G0O2F+2.O2F1.O2E2.O2E2O2
E0O2B1.O3C2O3D+3.O3D+2.O3D+2.O3D1O3C+2.O2A+1.
O2A2O2G+0O2G+2O2A1O3C2.O3E2O3G3.O2B2.O3D2.O3C
1O4C2.O4C2O2C3O2D0O2F1O2D+0O2A1O3F+1.O3G2O3E2
.O2F+2O2B1.O2B2O2B3.O2D+4O2G+2O2F1O2G+1O2F2O2
F+2O2A+3.O2A+2.O2A+2.O2C+1O2A+2.O2A+2O2A3.O2A
+2.O3C+2.O3F1O2B2O2B2O3C+2.O2B2.O3B0O3B1O2B2.
O3F+1.O3G2O3B2O2B0O3C+1.O2B0O3C+2.

We performed another two experiments which the reader
can also find online. One of them generates a piece
(Chopin7 NEW.dat, see figure 5) at a 0.39 distance from its
guide, Chopins’s seventh prelude. The lengths were generated
as in the first experiment:

T5O4C1O3E2.C+3A+1A+1A+0O2A+1O3C+2.O2B3O3B1B1B
0D+1D+2.E3G+1O4C1O3E0C+1D2.F3F1F1O2B0C+1A+2.B
3G+1G+1G+0O3G+1G+2.G+3O2B1O3E1E0E1O2B2.O3F+3D
+1E1A0A1A2.

Finally, in the last experiment, two pieces by Mozart
were used as simultaneous guides: a few bars of the first
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Fig. 4. Beginning of a piece generated with two Chopin preludes as guides (NCD 0.61 from prelude number 4 and 0.74 from prelude number 7).

Fig. 5. A piece generated using Chopin’s seventh prelude as the only guide (NCD 0.39).

movement in symphony 40 (Mozart40.wav), and a part of the
second movement in sonata KV545 (KV545.wav). The result
(Mozart NEW.wav), which sounds like a mixture of both
sources to the ear in some parts, happens to be at distances
of 0.65 and 0.58 from the two guide pieces, which on the
other hand differ from one another by a distance of 0.90:

T5O4G+0F+3B3.A+3A3G+2.G+3B1F1G+1.F3.D+3D+3D3.
C3O3A+3O4F2.G+3F1C+1F+2.D+3.F+2E2D2C+2O3F2.F+
3.G+1O4C1O3A3.F3.O4F3.G3F3F3.G3E3G3.B3O3E3G3.
F2.G+3G4G+2A2O4G2G+2G1G+3.F3.G+3.O5C3O4A+3G+3
.A+3.A+2.G+3.G3.G3.E3D+3O3F+3F3F+3.G3.G+3.A3.
A3.G3F+3F+3.D+3.D3.O4D3.C+2C+3E2O3A+2O4C+3C2O
3B2G1B1O4D3.C3.O3G3.O4D+3G3D3.D+3D3D+3.D3E3F3
.G3.F3.E3F3G1O3D+3E3D+3.D+3B3B3.A+3.O4F3.G2.G
+3A+3.G3

The length of the notes was generated in the same way as
in the second experiment.

VI. TESTING DIFFERENT RECOMBINATION PROCEDURES

We have evidence that the recombination operator plays a
key role in our approach, both in the quality of the generated
musical pieces and in the time the algorithm takes to generate
it.

In order to fine tune the genetic algorithm for this appli-
cation, we devote a section to discuss several variations we
have tested experimentally. We analyzed four strategies that
use respectively the four types of recombination described
in section III: strategy 1 (single point crossover, adjusted for
variable length genomes) is the base case (the simplest re-
combination strategy) which was used in all the experiments
described in the preceding section, strategy 2 (modified two-
point crossover for variable length genomes), strategy 3,
(recombination based on a four point crossover) and strategy
4 (recombination based on a three point crossover)

The one-point crossing-over strategy 1 has the property
that the lengths of the parent genomes are invariant under
recombination in the progeny. Since mutation also keeps the
length of the genome, only fusion and elision change it.
In fact, we did notice that, in our preceding experiments,
fusion almost never leads to a fitter genome, while elision
sometimes does, which means that the version of our genetic
algorithm described in the previous section, which starts with
a genome length copied from one of the target pieces of
music, leads to genome lengths usually reduced by a little
from their initial value.
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TABLE I

A COMPARISON OF THE PERFORMANCE OF DIFFERENT RECOMBINATION STRATEGIES FOR A TYPICAL MUSIC GENERATION EXPERIMENT. NP STANDS

FOR ‘NOT PERFORMED.’

number of strategy strategy strategy strategy mixed
generations 1 2 3 4 strategy 1

1 0.930 0.930 0.930 0.930 0.930
100 0.782 (-0.148) 0.766 (-0.164) 0.807 (-0.123) 0.791 (-0.139) 0.766 (-0.164)
200 0.734 (-0.048) 0.710 (-0.056) 0.756 (-0.051) 0.744 (-0.047) 0.697 (-0.069)
300 0.714 (-0.020) 0.692 (-0.018) 0.740 (-0.016) 0.712 (-0.032) 0.676 (-0.021)
400 0.702 (-0.012) 0.692 (-0.000) 0.722 (-0.018) 0.704 (-0.008) 0.659 (-0.017)
500 0.690 (-0.012) 0.689 (-0.003) 0.722 (-0.000) 0.704 (-0.000) 0.648 (-0.011)
600 0.681 (-0.009) 0.683 (-0.006) 0.716 (-0.006) 0.704 (-0.000) 0.643 (-0.005)
1000 0.663 (-0.018) 0.682 (-0.001) NP NP NP
1500 0.658 (-0.005) 0.666 (-0.016) NP NP NP
2000 0.656 (-0.002) 0.658 (-0.008) NP NP NP
2500 0.644 (-0.012) 0.652 (-0.006) NP NP NP

Fig. 6. Two different experiments with a comparison of three recombination strategies. ‘Mixed strategy’ refers to the mixed strategy 1.

Strategies 2, 3 and 4, however, all lead to progeny genomes
with lengths usually quite different from those of their par-
ents (even when both parent genomes had the same length),
which provides the population with a larger genome length
diversity than strategy 1.

After performing several experiments we noticed that, at
the beginning of the evolution, the second recombination
strategy converges more quickly towards the target, but after
a certain number of generations (usually between 150 and
200), the first and fourth strategies behave better, while
beyond about 500 generations after the beginning of the
process the first strategy is clearly the best. Above 1000
generations, the first two strategies tend to converge, i.e. to
obtain similar distances to the goal after the same number of
generations.

This brought us to add two new strategies to the testbed,
which are simple combinations of the four described above:

Mixed strategy 1: In the first 150 to 200 generations,

the algorithm uses the second strategy (the two point
recombination procedure with four different crossing-over
points between both parents). During all the remaining
generations, the first strategy is used instead (i.e. the one
point recombination procedure with a single crossing-over
point for both parents).

Mixed strategy 2: In the first 200 generations, the program
uses the second strategy; between generations 200 and 500
it switches to the fourth strategy, and above 500 generations
it uses the first strategy.

The data in table I correspond to a typical experiment
in which two Mozart’s pieces were used as the guide set:
Symphony 40 and KV545. The results of the combined
strategies are much better than those of any of the four
strategies applied separately. It can be observed that the
mixed strategy 1 reaches, in just 600 generations, target
distances similar to those attained by the first two strategies
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after 2500 generations.
Tabulated values for mixed strategy 2 are not shown in

table I because they are quite similar to the performance
of mixed strategy 1. In case of strategy 3 and 4, no data
are shown for more than 600 generations; the reason is that
they are clearly outperformed by strategy 1 and 2 in all
executions before that point, and no further improvement was
experimentally observed.

Figure 6 shows a graphical representation of two exper-
imental results with three strategies on the same guide set.
Summarizing, the improvement of the mixed strategies is
quite impressive. On the other hand, the two mixed strategies
attain comparable results.

In our analysis of the reasons for this behavior, we come
to the conclusion that, with the first strategy, the population
has a small genetic variability where favorable mutations
have a great probability of appearing. On the other hand,
the second strategy generates a large genetic variability, both
with respect to genome lengths and contents, where favorable
mutations are harder to come by. This means that, on the
long range, the first strategy should work better than the
second, which on the other hand, gets faster results during
the first part of the process by evolving simultaneously in
many directions and testing widely different genomes at the
same time. Thus, the mixed strategies make the best use of
both recombination procedures, which is the reason for their
outstanding performance success.

The number of experiments performed was not large (tens,
rather than hundreds), but the results obtained are consistent
and show a small variability, which makes it unlikely that
they may be a statistical fluke.

VII. CONCLUSIONS AND FUTURE WORK

We have found that that the Normalized Compression
Distance is a promising fitness function for genetic algo-
rithms used in automatic music generation. Some of the
pieces of music thus generated recall the style of well-known
authors, in spite of the fact that the fitness function only takes
into account the relative pitch envelope. Qualitative response
by human audiences confirms that the results described in
this paper are superior to those obtained previously with a
different fitness function [16].

Several recombination operators have been tested to fine
tune the genetic algorithm for this application, finding that
mixed strategies which promote diversity in the first gen-
erations and then change to a more exploitative strategy
give the best results. This scheme of initial exploration
and posterior exploitation is analogue to the idea behind
Simulated Annealing [17].

In the future we intend to combine our results with those of
other authors [10], [13] and use as the target for the genetic
algorithm, not one or two pieces of music by a given author,
but a cluster of pieces by the same author, thus trying to
capture the style in a more general way.

Our current experiments focus the search on melodies
which can be considered an average of the target pieces. In

a future work, we intend to add a component to the system
that allows and encourages outliers as well.

Although we have introduced the information about note
duration in the genetic process, it has been ignored so far. We
intend to experiment with different strategies (such as setting
all the notes to the same length). Furthermore, as the NCD
can easily deal with integers representing note lengths, we
intend to let the note length information evolve together with
the melody. We shall also experiment with richer systems of
music representation, such as MIDI.

This paper serves as a proof-of-concept. As future re-
search, we plan to provide a comparison with state-of-the-art
music composition techniques based on machine learning, to
reveal both the strengths and the weaknesses of our proposal.
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