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ABSTRACT 
In a previous work [Ortega et al. 03], the authors have described the use of 
grammatical evolution to automatically generate L Systems (LS) representing 
fractal curves with a pre-determined fractal dimension. The experiments 
presented in this paper prove that the efficiency of this procedure is variable, 
with very different execution times for different executions with the same 
fractal dimension target. The paper shows that the probabilistic distribution of 
execution times belongs to a well-known family of random variables: heavy-
tailed distributions. This analysis explains the erratic performance of the 
algorithm and suggests the use of a technique that corrects this variability and 
improves the efficiency about one order of magnitude. 
Acknowledgements: This paper has been sponsored by  the Spanish Ministry of   
Science and Technology, project numbers TIC2001-0685-C02-01 and TIC 2002-
01948. 

INTRODUCTION 
Our procedure to generate fractal curves with a required dimension consists of 
three parts: a) representation of fractals by means of L Systems (LS); b) 
computation of the fractal dimension from the grammar; c) application of a 
grammar-evolution based genetic algorithm to get a grammar representing a 
fractal with the required dimension. 

LS provide a powerful tool to represent fractals in the class of recursive 
transformations. The iterator may be represented by means of production rules, 
while the initiator corresponds to the axiom. The fractal curve is generated by 
the sequence of words derived from the axiom, by means of a representation 
scheme: vector graphics or turtle graphics. In a previous work [Alfonseca and 
Ortega 01] we have described an algorithm that estimates the fractal dimension 
of a non-trivial set of these fractals from their equivalent LS by means of 
symbolic manipulation, without the need of graphical procedures.  

In [Ortega et al. 03] we applied Grammar Evolution (GE) [O’Neill and 
Ryan 2001] to obtain the LS equivalent to a fractal with the required dimension. 
The proposed procedure has a clear biological inspiration acting on three 
different levels: a genotype (a vector of integers) an intermediate level, 
equivalent to proteins (LS) and a phenotype (the fractal curve). See Figure 1. 
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Figure 1. Parallels between our GE approach and biological evolution. 
 
Finding by hand one fractal of a given dimension is easy. Our algorithm, 

however, generates an arbitrary number of different fractals with a required 
dimension, though with a widely varying efficiency [Ortega et al. 03]. 
Sometimes the objective is reached in the first generation.  For less standard 
dimensions, the number of generations required is usually large, sometimes 
extremely large. Moreover, the standard deviation of the number of generations 
required (in separate execution runs, starting with different random seeds) is 
very large (see Table 1). This means that the performance of our implementation 
is very variable and may be quite low.  

 
Table 1. Number of generations to reach the target in a set of GE tests. 

 
In the current work, we consider the random variable dimG  (the number of 

generations needed to generate a fractal with dimension dim). We show that 
dimG  belongs to a well-known class of moment-less distributions (they have 

infinite average and variance): the class of heavy-tailed (HT) distributions. This 
is the reason of the great deviation in execution times and of the loss in 
performance. First we present a few experimental evidences that gave rise to this 
study. Then we apply existing techniques, described in the statistical literature, 
to test our hypothesis that dimG is HT. Finally, we will modify our algorithm by 

Dimension Angle # tests # generations to reach target 
1.1 60  4 119 to 72122 
1.2 45  8 188 to 11173 
1.3 45  9 50 to 18627 

1.25 60 15 1 to 2422 
1.2618595... 60  4 1 to 2 

1.4 60 10 33 to 1912 
1.5 45 11 52 to 11138 
1.6 45  5 275 to 3944 
1.7 60  8 18 to 1221 
1.8 60 13 69 to 3659 
2 45  5 1 
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introducing re-starts in the executions, thus reducing significantly the variance 
and increasing the performance of the algorithm about one order of magnitude. 

HT DISTRIBUTIONS 
HT distribution have asymptotic tails of the Pareto-Lévy form: 
  
 { } 0,.~ >> − xxCxXP α     (1)  
 
where α is a constant (For HT distributions, 0 2α< < ). In our case, X is dimG  and x 
is a positive numeric value (a number of generations). In this way, { }dimP G x>  
is interpreted as the probability that the algorithm requires more than x 
generations to get its goal. The symbol C in the expression is a normalizing 
constant to make { }dim0 1P G< ≤ ∞ = . 

We can compare this polynomic decay of probability with that of a standard 
normal curve, which is exponential: 

 
{ } 2/2

2
1~ xe

x
xXP −>

π
 (2)  

 
Constant α  is called stability index, and determines the existence of the 

distribution moments, since it is possible to prove that: 
 

{ }sup 0 : bb E Xα = > < ∞  (3)  

 
This means that moments with exponent less than α  are finite, while those 

greater or equal to α  are infinite. The average is the moment with exponent 
one, thus if 1α ≤  the random variable X has no average (it is infinite) or higher 
order moments (such as variance). The variance is a function of the moment 
with exponent two, thus if 1 2α< <  random variable X does have an average, 
but not a variance. For a detailed treatment of the previous considerations, see 
[Samorodnitsky et al. 94, Zolotarev 86]. 

EXPERIMENTAL EVIDENCE 
In this section we show experimental evidence that distribution dimG  is HT. 
This implies that the probability of extremely large execution times is very large 
in comparison with what would happen with a standard distribution. 

First we observe the behavior of a few statistics for several values of dim. 
Then we show a Table that proves that the standard deviations of dimG  are 
greater than their averages (HT distributions have no standard deviation (nor 
average, in some cases), so when we mention these statistic measurements, they 
are assumed to refer to the sample ).  

Table 2. Summary of averages and standard deviations for several target 
dimensions, computed with a sample of 1000 experiments.  

 1.3 1.5 1.8 
Mean 1919 1560 2815 

standard deviation 1898 1660 1866 
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This algorithmic phenomenon is atypical, and evidences that execution time 
depends strongly on the random seed. This behavior is typical of HT 
distributions. We have mentioned that HT distributions usually have no 
variance, (it is infinite). A way to test this is by checking its convergence speed. 

Figure 2 shows the convergence of the variance of the sample for several 
values of dim. We observe that the sample variance has a strong fluctuation in 
all dimensions and does not converge when the size of the sample is increased, 
or at least it converges much more slowly than a normal distribution. This 
increases our suspicion that our data have an infinite variance.  

 
 

 
 
 
 
 
 
 
 
 
Figure 2. Variance for dim, showing its slow speed of convergence. 

 
To complete our visual evidence, Figure 3 shows the cumulative 

probabilities for several values of dim. Looking also at Table 2, we observe that 
the probability that an execution takes longer than five times its standard 
deviation is over 10%, which implies that executions much longer than the 
average have a probability far higher than what would be expected for standard 
distributions. 

 

 
 
 
 

 
Figure 3. Empirical cumulative density function for several dimensions on 
samples with size 1000. After 5000 generations the execution was stopped. 

ESTIMATION OF THE INDEX OF STABILITY 
Once convinced experimentally that dimG  is a HT distribution, we estimate its 
stability index α  using Hall’s method [Hall 1982], a maximum likelihood 
estimator. Let ,1 ,2 ,n n n nX X X≤ ≤ ≤…  be the ordered values (numbers of 
generations) in n experiments. Let r n<  be a truncation value used to take into 
account only the extreme observations. We get the following estimator: 
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Hall also determined the optimal value of r, but it is a function of unknown 
parameters of the distribution, therefore in practice values in the range 
[ ]/ 4, / 3n n  are used. Table 3 shows our estimations of the stability indexes for 
the extreme values of the recommended interval and helps to give strength to 
our hypothesis: even testing the extreme values in the range, we still obtain 
values of α <2 in every case, which is consistent with the definition. Almost all 
these values are less than 1, which means that dimG  neither has a finite average. 

 
Table 3. Estimation using Hall’s method of the stability index 
of the distribution. The sample size used was 1000. 

 n/3 n/4 
1.3 0.626 0.511 
1.5 0.917 0.800 
1.8 1.078 0.854 

EXPLOITING HT BEHAVIOUR  
In HT distributions, events very far from the average have non-negligible 
probability and therefore should be taken into account. Since dimG  is HT, 
extremely long executions could happen. Even more important: the fact that 
execution has taken up to now a high number of generations (with respect to the 
average) gives no assurance that the end is near, however much we wait.  

Looking at Figure 3, we can also reach the conclusion that the probability of 
executions below the average is great (over 50%). From both these two ideas we 
can deduce that we shouldn’t be too patient with long executions, as there is a 
high probability of finding a short execution if we try again.  This is done by 
choosing a threshold U in the number of generations; once it has been crossed, 
the algorithm is re-started. The new execution is different from the previous 
one, as it will use a different sequence of random numbers. 

The optimal value for U can be determined if the distribution is known in 
analytical form, but in our case we only have experimental data and we have 
determined it empirically. To do this, we have repeated the experiments with 
different threshold values. 

 
 
 
 
 
 
 

 
 
 
 
 
Figure 4. Cumulated density functions for several values of the threshold, with 
1.5 fractal dimension goal. The HT nature disappears for low values of U. 
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In Figure 4 one can see that, for U = 5000, over 10% executions have not 
finished after 5000 generations. For U = 10, however, 90% executions are ended 
in less than 1000 generations. If we compute the stability index α  for U = 10, 
we find it in the interval [2.01, 2.35], always greater than two, which proves 
empirically that the random variable dimG  is no longer HT. 

Analyzing the 1.3 fractal dimension experiment, we find that the average 
number of generations for U = 5 is 228, while the average without re-starts (i.e. 
with a re-start threshold of 5000) is 1919, which means an improvement of 
about one order of magnitude in the execution time. We also saw that all the 
executions end before 1200 generations, which entails a big variance 
improvement (213 versus 1898 when measuring standard deviations). 

CONCLUSIONS AND FUTURE RESEARCH 
This paper presents a technique based on a probabilistic analysis to increase 

the performance and reduce the variance of an algorithm based on GE. The 
technique described transforms a HT random variable into another with standard 
distribution, by introducing filters that eliminate the heavy events (executions) 
and only allow the lighter ones. This technique may be used in different fields, 
whenever a similar probabilistic behavior of the execution time is detected.  

At this point we are interested in finding the formal base that explains the 
HT properties of the random variable representing the execution time. We want 
to find if this behavior is something typical of the combinatorial problems 
explored by GE. [Mandelbrot 60] suggests that a HT behavior indicates that the 
search space is self-similar, independently of the search algorithm.  

We intend to test whether the fact that our variable is HT depends on the 
topology of the search space for the problem under analysis, or is a consequence 
of its having been explored with GE. More work is needed for this: we must find 
problems solved by means of grammatical evolution that may be solved with 
other techniques, and study their execution time. In this way, we would add 
some formalism to this new branch in the family of genetic algorithms. 
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