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ABSTRACT
1 

This paper proposes a new musical notation with 
Lindenmayer grammars, and describes the use of 
grammar evolution for the automatic generation of 
music expressed in this notation, with the normalized 
compression distance as the fitness function. The 
computer music generated tries to reproduce the style 
of a selected pre-existent piece of music. In spite of the 
simplicity of the algorithm, the procedure obtains 
interesting results. 

INTRODUCTION 

The automatic generation of musical compositions is a 
long standing, multi disciplinary area of interest and 
research in computer science, with over thirty years 
history at its back [1-7]. Our group is interested in the 
simulation of complex systems by means of formal 
models, their equivalence and their design, not only by 
hand, but also by means of automatic processes, such 
as evolutionary computation, genetic programming and 
grammar evolution [8-9]. 

This paper extends Grammatical Evolution to the 
generation of music similar to a given target or guide 
piece, in such a way as to capture some of its stylistic 
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properties. Two different generating procedures and 
fitness functions have been tested and compared. 

This paper is organized thus: the second section 
provides a short introduction to musical concepts, with 
an enumeration of different ways of representing 
music, one of which is first presented here. The third 
section provides an introduction to grammatical 
evolution, and explains how it has been implemented to 
generate music. The fourth explains the normalized 
compression distance, which has been used to compute 
the distance of the results of the genetic algorithm from 
the target musical pieces. In the fifth section we 
describe our experiments. Finally, the last section 
presents our conclusions and possibilities for future 
work. 

MUSICAL REPRESENTATION 

The three fundamental elements in music are melody, 
rhythm and harmony. In the experiments performed in 
this paper, we shall restrict ourselves to melody, 
leaving the management of rhythm and harmony as 
future objectives. In this way, we can forget about 
different instruments (parts and voices) and focus on 
monophonic music: a single performer executing, at 
most, a single note on a piano at a given point in time. 
Melody consists of a series of musical sounds (notes) 
or silences (rests) with different lengths and stresses, 
arranged in succession in a particular rhythmic pattern, 
to form a recognizable unit. 

In the English notation for Western music, the names 
of the notes belong to the set {A, B, C, D, E, F, G}. 
These letters represent musical pitches and correspond 
to the white keys on the piano. The black keys on the 
piano (the sharp or flat notes) are modifications of the 
white key notes. From left to right, the key that follows 
a white key is its sharp key, while the previous key is 
its flat key. A black key is indicated by adding a 
symbol to the white key name (as in A# or A+ to 
represent A sharp, or in BЬ or B- to represent B flat). 



The distance from a note to its flat or sharp notes is 
called a “half step” and is the smallest unit of pitch 
used in the piano, where any two adjacent keys are 
separated by a half step, no matter their color. Two 
consecutive half steps are called a whole step. 
Instruments different from the piano may generate 
additional notes; in fact, flat and sharp notes may not 
coincide; also, in different musical traditions (such as 
Arab or Hindu music) additional notes exist. In this 
paper we shall restrict to the Western piano lay-up, 
thus simplifying the problem to just 88 different notes 
separated by half steps. By counting the number of half 
steps between two notes, we can obtain the interval, or 
difference in pitch between the two notes. Intervals 
between two successive notes are called melodic 
intervals, whereas those between two simultaneously 
sounding notes are harmonic intervals. Since this work 
focuses on monophonic music, only melodic intervals 
will be considered. 

Notes and rests have a length or time duration. There 
are nine different standard lengths, each double than 
the next. We will consider only the first seven: whole, 
half, quarter, quaver, semi-quaver, quarter-quaver and 
half quarter-quaver. Intermediate durations are 
obtained by means of dots or periods. The complete 
specification of notes and silences includes their 
lengths. 

A piece of music can be represented in several 
different, but equivalent ways: 

• With the traditional Western bi-dimensional 
graphic notation on a pentagram. 

• By means of certain coding systems which are 
used to keep and reproduce music in a computer or 
a recording system, with or without compression, 
such as wave sampling, MIDI, MP3, etc. 

• Through a set of character strings: notes are 
represented by letters (A-G), silence by a P, sharp 
and flat alterations by + and – signs, and the 
lengths of notes by a number (0 representing a 
whole note, 1 a half note, and so on). Adding a 
period provides intermediate lengths. Additional 
codes define the tempo, the octave and the 
performance style (normal, legato or staccato). 
Polyphonic music is represented with sets of 
parallel strings. 

• By means of sets of integer pairs. The first number 
in the pair represents the pitch of the note in the 

piano keyboard (1 to 88), with 0 representing a 
silence. The second corresponds to the length of 
the note, as a multiple of the minimum unit of 
time. Polyphonic music may be represented by 
means of parallel sets of integer pairs. 

• In this paper we are offering a new way to 
represent music by means of a character string, 
similar to those used with turtle graphics [10]. the 
alphabet used consists of four symbols: Σ = { F, f, 
+, - }. A given note with a given length is 
represented by a string of successive letters ‘F’ (as 
many as the length of the note is a multiple of the 
minimum length). The pitch of the note is 
represented by the state of the turtle, which is 
defined as the number of ‘+’ signs minus the 
number of ‘-‘ signs previous to the first F in the 
current note. If this number is positive, the current 
note is located as many half steps above the initial 
state note; if it is negative, the same number of 
half steps below the initial note. The initial note 
(which corresponds to the initial state of the turtle) 
is assumed to be note C in octave 3 in the piano. 
Strings with the letter ‘f’ represent silences with 
the appropriate length (in this case the pitch 
information is ignored). For example: the set of 
two notes O3C3D3 would be translated as FF++FF 
if we consider semiquavers to be the minimum 
note length. 

In our experiments, we represent melodies by the last 
three notation systems. We have built functions which 
translate music represented in one of those three 
formats into any of the others and into the MIDI 
format, for reproduction. 

GRAMMATICAL EVOLUTION 

Grammatical Evolution (GE) [11-12] is a grammar 
based, linear genome system, which has been applied 
in the area of automatic programming to automatically 
generate programs or expressions in a given language 
that solve a particular problem. Chomsky serial 
derivation grammars have been applied in most GE 
applications. We have also used Lindenmayer parallel 
derivation grammars [13]. The genotype is usually a 
string of 8 bit binary numbers, treated as integer values 
from 0 to 255. The phenotype is a running computer 
program generated by a genotype-phenotype mapping 
process. The mapping benefits from genetic code 
degeneracy, i.e. different integers in the genotype 
generate the same phenotype. The genotype-phenotype 
mapping in Grammatical Evolution is deterministic: 
each individual is always mapped to the same 
phenotype.  



In Grammatical Evolution, standard genetic algorithms 
are applied to the different genotypes in a population, 
using crossover and mutation operators. For each 
domain, the proper fitness function must be designed to 
be used by the genetic algorithm to perform selection. 
This technique has been successfully applied to the 
automatic programming of problems in many different 
domains. We have used it to generate fractal curves 
with a given dimension [13].  

Our genetic algorithm generates music from an initial 
population of 64 vectors of integers in the [0-255] 
interval. The genotypes of individuals in the population 
are translated into music by means of the following 
Lindenmayer grammar:  

F ::= F    (0) 
    | FF    (1) 
    | F+    (2) 
    | F-    (3) 
    | +F    (4) 
    | -F    (5) 
    | F+F    (6) 
    | F-F    (7) 
    | +    (8) 
    | -    (9) 
    | FFFF    (10) 
    | FFFf   (11) 
f ::= f 
+ ::= + 
- ::= - 

 
The translation is performed according to the following 
algorithm:  

1. The axiom (first word) of the Lindenmayer 
grammar is the string ‘F’. Rules in the previous 
grammar are numbered 0 to 11. 

2. As many elements from the remainder of the 
genotype are taken (and removed) from the left of 
the genotype as the number of F in the current 
word. If there remain too few elements in the 
genotype, the required number is completed 
circularly.  

3. The current word derives a new one in the 
following way: each F in the word is replaced by 
the right hand side of the rule whose number is 
equal to the remainder of the corresponding 
genotype integer obtained in the previous step 
modulo 12. 

4. If the genotype is now empty, the algorithm stops 
and the last derived word is the output, a piece of 
music represented by the notation we are proposing, 
which has been described in the previous section.  

5. If the derived word contains no ‘F’, the whole word 
is replaced by the axiom.  

6. Go to step 2. 
 

Example: Let the genotype be the string of integers 
112 125 203 14 87 136 224. The initial string 
‘F’ contains one ‘F’. The first element in the genotype 
is 112. Its remainder module 12 is 4. Rule 4 is applied, 
generating the string ‘+F’. This is the end of the first 
loop. 

In the second loop, we start with genotype 125 203 
14 87 136 224. The current string ‘+F’ contains 
one ‘F’. The first element in the genotype is 125, 
whose remainder module 12 is 1. Rule 1 is applied, 
generating the string ‘+FF’. Here ends the second loop. 

In the third loop, we start with genotype 203 14 87 
136 224. The current string ‘+FF’ contains two ‘F’. 
The first two elements in the genotype are 203 14, 
whose remainders module 12 are 11 and 2. Rules 11 
and 2 are applied (one to each ‘F’), generating the 
string ‘+FFFfF+’.  

In the fourth loop, we start with genotype 87 136 
224. The current string ‘+FFFfF+’ contains four ‘F’. 
The genotype has only three elements, therefore the 
first one is added to the end circularly, giving 87 136 
224 87, whose remainders module 12 are 3, 4, 8 and 3. 
Rules 3, 4, 8 and 3 (one to each ‘F’), generating the 
string ‘+F-+F+fF-+’. Since the genotype is now empty, 
this string is the phenotype, which corresponds to notes 
‘C+C+PD’, all with the same basic length. 

We have used the following genetic algorithm to 
generate music: 

1. One musical piece is selected as the target or guide 
for music generation. 

2. The program generates a random population of 64 
vectors of N integers, where N is the length of the 
guide piece. Each vector represents a genotype. 

3. The fitness of the genotypes is computed as the 
distance to the guide set, measured by means of the 
normalized compression distance (see below).  

4. The genotypes are ordered by their increasing 
distance to the guide set.  

5. If the goal distance has been reached, the program 
stops. 

6. 30 pairs of parent genotypes are built. Genotypes 
with better fitness have a higher probability of 
being used. Each pair of parents gives rise to two 
pairs of children, made of copies of the parents and 
modified by four genetic operations. The 60 
genotypes with least fitness are removed. (The 4 
genotypes with the best fitness remain in the next 
population). The 60 children are added to the 
population to make again 64, and their fitness is 
computed as in step 3.  

7. Go to step 4.  
 



The four genetic operations mentioned in the algorithm 
are:  

• Recombination (applied to 100% generated 
genotypes). The genotypes of both parents are 
combined using different procedures to generate 
the genotypes of the progeny. Different 
recombination procedures have been tested in this 
set of experiments to find the best combination. 

• Mutation (one mutation was applied to every 
generated genotype, although this rate may be 
modified in different experiments). It consists of 
replacing a random element of the vector by a 
random integer in the same interval.  

• Fusion (applied to a certain percentage of the 
generated genotypes, which in our experiments 
was varied between 5 and 10). The genotype is 
replaced by a catenation of itself with a piece 
randomly broken from either itself or its brother’s 
genotype.  

• Elision (applied to a certain percentage of the 
generated genotypes, in our experiments between 
2 and 5). One integer in the vector (in a random 
position) is eliminated.  

The last two operations, together with some 
recombination procedures, allow longer or shorter 
genotypes to be obtained from the original N element 
vectors. 

THE NORMALIZED COMPRESSION 

DISTANCE 

The fitness function we have used for the genetic 
algorithm computes the distance between two pieces of 
music by expressing both as note-length pair sequences  
(the third notation in the previous discussion), 
converting the sequence of notes to a sequence of 
intervals (this is done by subtracting each note from the 
next) and computing the distance between both 
sequences of intervals by means of the normalized 
compression distance [14-16], an approximation of the 
universal distance between any two objects defined as 
a function of the Kolmogorov complexities of the 
objects, which can be computed by means of standard 
compressors. The expression we have used to compute 
the normalized compression distance is the following: 
 

( ) ( ) ( ) ( )
( ) ( )}yC,xmax{C
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=yx,d

−ˆ  

 
Where C(x) is the length obtained by compressing 
object x with compressor C, and xy is the 
concatenation of x and y. This metric has been 
reported to outperform some of the finest algorithms 
for clustering music by genre [17]. This suggests that 
the normalized compression distance works well to 
extract features shared between two musical pieces. 
The compressor used to compute the distance between 
the musical objects (the two sequences of intervals) 
was the LZ77 algorithm [18-19]. 

We decided to apply the fitness function only to the 
relative pitches of the notes in the melody (this is done 
by working on intervals rather than absolute notes), 
ignoring the absolute pitches and the note lengths, 
because our own studies and other’s [17] suggest that a 
given piece of music remains recognizable when the 
lengths of its notes are replaced by random lengths, 
while the opposite doesn’t happen (the piece becomes 
completely unrecognizable if its notes are replaced by a 
random set, while maintaining their lengths). 

EXPERIMENTS  

In our experiments, we first used as the guide Yankee 
Doodle, represented by the following string: 

M2T2O3L2C+4C+4D+4F4C+4F4D+4O2G+4O3C+4
C+4D+4F4C+3C4P4C+4C+4D+4F4F+4F4D+4C+4C4
O2G+4A+4O3C4C+3C+4P4O2A+4.O3C5.O2A+4G+
4A+4O3C4C+4P4O2G+4.A+5.G+4F+4F3G+4P4A+4.
O3C5.O2A+4G+4A+4O3C4C+4O2A+4G+4O3C+4C4
D+4C+3C+3 
 
After applying the genetic algorithm, the succession of 
notes obtained was completed by adding length 
information in the following way: each note was 
assigned the length of the note in the same position in 
the guide piece (the guide piece was shortened or 
circularly extended, if needed, to make it the same 
length as the generated piece, which could be shorter or 
longer). The number of generations needed to reach a 
given distance to the guide depends on the guide length 
and the random seed used in each experiment, and 
follows an approximate Poisson curve [20]. In 
successive executions of the algorithm with different 
random seeds, we obtained different melodies at 
different distances from the guide. For instance, the 
distance to the guide of the following generated piece 
is 0.58 (figure 1 shows the beginning in typical musical 
notation): 



T1O3M2C+4O3D4O3D3O3D4O3C+4P4O3E3.O3F+4
P4O3E4P4O3D4O3C+4O3C3O3C+3O2M1B3.P4O2
M2B4O3C+2O2A3O2G+3O2M1A2P4O2M2A4O2A+
2O2A3.O2G4O2F+4O2G3P3O2F4O2F+4O2F+4P3.O
2D+4O2F1P4O2F4O2F3O2E4P4O2F4P4O2E4P4O2F
4O2D4O2C4O2M1C+3.P4O2M2C2O2C+4O2D4O2D
+4O2D+3.O2M1E3.P4O2M2F4O2F3O2G2O2A4O2A
+3O2A4O2A+4O2B4P4P4O2B4O3C4 
 

 
 
Figure 1: Beginning of music generated from Yankee 
Doodle. 
 
In another experiment, we used the seventh prelude by 
Chopin as the guide piece, getting the following result 
at a distance of 0.67 from the guide (see also the 
beginning in figure 2): 

T0O3M2C4O2M1A+3.P4O2M2A+4O2B4P4O2A+4O
2M1B3.P4O2M2A+4O2B4O3E4O3E4O3M1E2P4O3
M2E4O3F4P4O3F4O3F4O3F4O3M0D1P3O3M2D+4
O3E4O3C+4O3M1C+3.P4O3M2C+4O3D4P4O3C+4
O3M1D3.P4O2M2B3O3C4O3D+4P4O3D+4O3M0C+
3.P3O3M2C4O3C+4O3C4O3C4O3C+4P3O2A4O2A+
2O2A2O2A3O2A4O2M1A+3.P4O3M2D4O3F4O3D+
4O3M1D+3.P4O3M2D+3O3E4P4O3D+4  

 

Figure 2: Beginning of music generated from Chopin’s 
seventh prelude. 
 
It can be noticed that our first generated music has a 
lighter sound to the ear than the second, which may be 
a consequence of the different guide pieces used in 
both cases. 

In our third experiment we changed the fitness function 
to work directly at the level of the music represented 
by the turtle strings. The normalized compression 
distance was also used to compute the distance of the 
two character strings (the guide piece and each member 
of the population). In this case, both the pitches and the 
lengths of the notes were evolved at the same time. The 
following shows one result we obtained using Chopin’s 
seventh prelude as the guide piece (see also the 
beginning in figure 3): 

T1O2M2D+4O2F2.O2F+4O2G+3O2G+3P4O2G+4P4
O2A2O2A+4O2A4O2A+4O2A4O2A+4P4O3F4O3D+
3O3E4O3F3O3A+4O3A3O3G+4O3A3O3B3O3A+4O
3B4O3B4O3A+4O3G+4O3G+4O3F+3O3G4O3M1G3
.P4O3M2G2O3F+4P4O3G2.O3F+4O3G4O3F+4O3F4
O3F+4O3F+2O3G+4O3G4P4O3G+4O3A3O3G+4O3
A3O3A+4O3A4O3A+3O3A+4O3M1B3.P4O3M2B3P
4O3B4O3A+4O3A2O3G+4P4O3B4O3B4O3A+4O3G
+4O3G+4O3A3O3G+4P4O3A4O3A2O4C2P4O3M1B
3.P4P3O3M2B4O4C4O3B4O4C4P4P4O4C+4O4D4O
4E4O4M1D+2P4O4M2D+4P4P4O4F+2O4G4O4F4O
4E4O4D+3P4P4O4G+4O4G4O4E4O4F4O4F+4O4G4
O4G4O4F+4P4O4G4O4F+4O4G3.O4A3O4A4O4G+4
O4A3O4G+4O4A4P4O4M1F+3.P4P3O4M2G1.O4G+
3O4E3O4C+4O3A3O3M1G+3.P4O3M2F4O3F3O3E3
O3E3O3G4O3G4O3F+4O3M1G2.P4O3G1O3M2G+4
O3A3O3G+4P4O3A4O3G+4O3A4O3A3.O3G4P4O3
F4O3F+4O3M1F2P4O3M2F+1O3F+3O3F4P4O3F2O
3D4 

 

Figure 3: Beginning of another piece of music 
generated from Chopin’s seventh prelude. 

CONCLUSIONS AND FUTURE WORK 

We have defined a new musical notation which can be 
used to automatically generate music by means of 
grammatical evolution and a genetic algorithm, 
minimizing its distance from a given guide piece. In 
the first set of experiments, just the pitches of the notes 
were evolved, in another set of experiments both 
pitches and lengths evolved at the same time. Some of 
the pieces thus generated seem to capture some of the 
characteristics of the guide piece (such as sounding 
lighter or classical-like).  

In the future we intend to combine our results with 
those of other authors [18-19] to use as the target for 
the genetic algorithm more than one piece of music by 
the same author, thus trying to capture the style in a 
more general way. We also intend to test different 
fitness functions and the effect of different 
recombination procedures. 
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