
COMPUTER-GENERATED MUSIC USING GRAMMATICAL EVOLUTION

Abdel Latif Abu Dalhoum (1), Manuel Alfonseca (2), Manuel Cebrián (2), Rafael Sánchez-Alfonso
(3) and Alfonso Ortega (2)

(1) University of Jordan, Computer Science Department, a.latif@ju.edu.jo
 (2) Escuela Politécnica Superior, Universidad Autónoma de Madrid SPAIN,

{Manuel.Alfonseca, Manuel.Cebrian, Alfonso.Ortega}@uam.es
 (3)

Universidad Autónoma de Madrid & Neoris, Rafael.Sanchez@neoris.com

KEYWORDS

Evolutionary Computation, Grammatical Evolution,
Genetic Algorithms, Computer Generated Music,
Coding and Information Theory, Clustering

ABSTRACT
1

This paper proposes a new musical notation with
Lindenmayer grammars, and describes the use of
grammar evolution for the automatic generation of
music expressed in this notation, with the normalized
compression distance as the fitness function. The
computer music generated tries to reproduce the style
of a selected pre-existent piece of music. In spite of the
simplicity of the algorithm, the procedure obtains
interesting results.

INTRODUCTION

The automatic generation of musical compositions is a
long standing, multi disciplinary area of interest and
research in computer science, with over thirty years
history at its back [1-7]. Our group is interested in the
simulation of complex systems by means of formal
models, their equivalence and their design, not only by
hand, but also by means of automatic processes, such
as evolutionary computation, genetic programming and
grammar evolution [8-9].

This paper extends Grammatical Evolution to the
generation of music similar to a given target or guide
piece, in such a way as to capture some of its stylistic

1 Acknowledgement: This work has been partially
sponsored by the Spanish Ministry of Science and
Technology (MCYT), project number TIC2002-01948.

properties. Two different generating procedures and
fitness functions have been tested and compared.

This paper is organized thus: the second section
provides a short introduction to musical concepts, with
an enumeration of different ways of representing
music, one of which is first presented here. The third
section provides an introduction to grammatical
evolution, and explains how it has been implemented to
generate music. The fourth explains the normalized
compression distance, which has been used to compute
the distance of the results of the genetic algorithm from
the target musical pieces. In the fifth section we
describe our experiments. Finally, the last section
presents our conclusions and possibilities for future
work.

MUSICAL REPRESENTATION

The three fundamental elements in music are melody,
rhythm and harmony. In the experiments performed in
this paper, we shall restrict ourselves to melody,
leaving the management of rhythm and harmony as
future objectives. In this way, we can forget about
different instruments (parts and voices) and focus on
monophonic music: a single performer executing, at
most, a single note on a piano at a given point in time.
Melody consists of a series of musical sounds (notes)
or silences (rests) with different lengths and stresses,
arranged in succession in a particular rhythmic pattern,
to form a recognizable unit.

In the English notation for Western music, the names
of the notes belong to the set {A, B, C, D, E, F, G}.
These letters represent musical pitches and correspond
to the white keys on the piano. The black keys on the
piano (the sharp or flat notes) are modifications of the
white key notes. From left to right, the key that follows
a white key is its sharp key, while the previous key is
its flat key. A black key is indicated by adding a
symbol to the white key name (as in A# or A+ to
represent A sharp, or in BЬ or B- to represent B flat).

The distance from a note to its flat or sharp notes is
called a “half step” and is the smallest unit of pitch
used in the piano, where any two adjacent keys are
separated by a half step, no matter their color. Two
consecutive half steps are called a whole step.
Instruments different from the piano may generate
additional notes; in fact, flat and sharp notes may not
coincide; also, in different musical traditions (such as
Arab or Hindu music) additional notes exist. In this
paper we shall restrict to the Western piano lay-up,
thus simplifying the problem to just 88 different notes
separated by half steps. By counting the number of half
steps between two notes, we can obtain the interval, or
difference in pitch between the two notes. Intervals
between two successive notes are called melodic
intervals, whereas those between two simultaneously
sounding notes are harmonic intervals. Since this work
focuses on monophonic music, only melodic intervals
will be considered.

Notes and rests have a length or time duration. There
are nine different standard lengths, each double than
the next. We will consider only the first seven: whole,
half, quarter, quaver, semi-quaver, quarter-quaver and
half quarter-quaver. Intermediate durations are
obtained by means of dots or periods. The complete
specification of notes and silences includes their
lengths.

A piece of music can be represented in several
different, but equivalent ways:

• With the traditional Western bi-dimensional
graphic notation on a pentagram.

• By means of certain coding systems which are
used to keep and reproduce music in a computer or
a recording system, with or without compression,
such as wave sampling, MIDI, MP3, etc.

• Through a set of character strings: notes are
represented by letters (A-G), silence by a P, sharp
and flat alterations by + and – signs, and the
lengths of notes by a number (0 representing a
whole note, 1 a half note, and so on). Adding a
period provides intermediate lengths. Additional
codes define the tempo, the octave and the
performance style (normal, legato or staccato).
Polyphonic music is represented with sets of
parallel strings.

• By means of sets of integer pairs. The first number
in the pair represents the pitch of the note in the

piano keyboard (1 to 88), with 0 representing a
silence. The second corresponds to the length of
the note, as a multiple of the minimum unit of
time. Polyphonic music may be represented by
means of parallel sets of integer pairs.

• In this paper we are offering a new way to
represent music by means of a character string,
similar to those used with turtle graphics [10]. the
alphabet used consists of four symbols: Σ = { F, f,
+, - }. A given note with a given length is
represented by a string of successive letters ‘F’ (as
many as the length of the note is a multiple of the
minimum length). The pitch of the note is
represented by the state of the turtle, which is
defined as the number of ‘+’ signs minus the
number of ‘-‘ signs previous to the first F in the
current note. If this number is positive, the current
note is located as many half steps above the initial
state note; if it is negative, the same number of
half steps below the initial note. The initial note
(which corresponds to the initial state of the turtle)
is assumed to be note C in octave 3 in the piano.
Strings with the letter ‘f’ represent silences with
the appropriate length (in this case the pitch
information is ignored). For example: the set of
two notes O3C3D3 would be translated as FF++FF
if we consider semiquavers to be the minimum
note length.

In our experiments, we represent melodies by the last
three notation systems. We have built functions which
translate music represented in one of those three
formats into any of the others and into the MIDI
format, for reproduction.

GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) [11-12] is a grammar
based, linear genome system, which has been applied
in the area of automatic programming to automatically
generate programs or expressions in a given language
that solve a particular problem. Chomsky serial
derivation grammars have been applied in most GE
applications. We have also used Lindenmayer parallel
derivation grammars [13]. The genotype is usually a
string of 8 bit binary numbers, treated as integer values
from 0 to 255. The phenotype is a running computer
program generated by a genotype-phenotype mapping
process. The mapping benefits from genetic code
degeneracy, i.e. different integers in the genotype
generate the same phenotype. The genotype-phenotype
mapping in Grammatical Evolution is deterministic:
each individual is always mapped to the same
phenotype.

In Grammatical Evolution, standard genetic algorithms
are applied to the different genotypes in a population,
using crossover and mutation operators. For each
domain, the proper fitness function must be designed to
be used by the genetic algorithm to perform selection.
This technique has been successfully applied to the
automatic programming of problems in many different
domains. We have used it to generate fractal curves
with a given dimension [13].

Our genetic algorithm generates music from an initial
population of 64 vectors of integers in the [0-255]
interval. The genotypes of individuals in the population
are translated into music by means of the following
Lindenmayer grammar:

F ::= F (0)
 | FF (1)
 | F+ (2)
 | F- (3)
 | +F (4)
 | -F (5)
 | F+F (6)
 | F-F (7)
 | + (8)
 | - (9)
 | FFFF (10)
 | FFFf (11)
f ::= f
+ ::= +
- ::= -

The translation is performed according to the following
algorithm:

1. The axiom (first word) of the Lindenmayer
grammar is the string ‘F’. Rules in the previous
grammar are numbered 0 to 11.

2. As many elements from the remainder of the
genotype are taken (and removed) from the left of
the genotype as the number of F in the current
word. If there remain too few elements in the
genotype, the required number is completed
circularly.

3. The current word derives a new one in the
following way: each F in the word is replaced by
the right hand side of the rule whose number is
equal to the remainder of the corresponding
genotype integer obtained in the previous step
modulo 12.

4. If the genotype is now empty, the algorithm stops
and the last derived word is the output, a piece of
music represented by the notation we are proposing,
which has been described in the previous section.

5. If the derived word contains no ‘F’, the whole word
is replaced by the axiom.

6. Go to step 2.

Example: Let the genotype be the string of integers
112 125 203 14 87 136 224. The initial string
‘F’ contains one ‘F’. The first element in the genotype
is 112. Its remainder module 12 is 4. Rule 4 is applied,
generating the string ‘+F’. This is the end of the first
loop.

In the second loop, we start with genotype 125 203
14 87 136 224. The current string ‘+F’ contains
one ‘F’. The first element in the genotype is 125,
whose remainder module 12 is 1. Rule 1 is applied,
generating the string ‘+FF’. Here ends the second loop.

In the third loop, we start with genotype 203 14 87
136 224. The current string ‘+FF’ contains two ‘F’.
The first two elements in the genotype are 203 14,
whose remainders module 12 are 11 and 2. Rules 11
and 2 are applied (one to each ‘F’), generating the
string ‘+FFFfF+’.

In the fourth loop, we start with genotype 87 136
224. The current string ‘+FFFfF+’ contains four ‘F’.
The genotype has only three elements, therefore the
first one is added to the end circularly, giving 87 136
224 87, whose remainders module 12 are 3, 4, 8 and 3.
Rules 3, 4, 8 and 3 (one to each ‘F’), generating the
string ‘+F-+F+fF-+’. Since the genotype is now empty,
this string is the phenotype, which corresponds to notes
‘C+C+PD’, all with the same basic length.

We have used the following genetic algorithm to
generate music:

1. One musical piece is selected as the target or guide
for music generation.

2. The program generates a random population of 64
vectors of N integers, where N is the length of the
guide piece. Each vector represents a genotype.

3. The fitness of the genotypes is computed as the
distance to the guide set, measured by means of the
normalized compression distance (see below).

4. The genotypes are ordered by their increasing
distance to the guide set.

5. If the goal distance has been reached, the program
stops.

6. 30 pairs of parent genotypes are built. Genotypes
with better fitness have a higher probability of
being used. Each pair of parents gives rise to two
pairs of children, made of copies of the parents and
modified by four genetic operations. The 60
genotypes with least fitness are removed. (The 4
genotypes with the best fitness remain in the next
population). The 60 children are added to the
population to make again 64, and their fitness is
computed as in step 3.

7. Go to step 4.

The four genetic operations mentioned in the algorithm
are:

• Recombination (applied to 100% generated
genotypes). The genotypes of both parents are
combined using different procedures to generate
the genotypes of the progeny. Different
recombination procedures have been tested in this
set of experiments to find the best combination.

• Mutation (one mutation was applied to every
generated genotype, although this rate may be
modified in different experiments). It consists of
replacing a random element of the vector by a
random integer in the same interval.

• Fusion (applied to a certain percentage of the
generated genotypes, which in our experiments
was varied between 5 and 10). The genotype is
replaced by a catenation of itself with a piece
randomly broken from either itself or its brother’s
genotype.

• Elision (applied to a certain percentage of the
generated genotypes, in our experiments between
2 and 5). One integer in the vector (in a random
position) is eliminated.

The last two operations, together with some
recombination procedures, allow longer or shorter
genotypes to be obtained from the original N element
vectors.

THE NORMALIZED COMPRESSION

DISTANCE

The fitness function we have used for the genetic
algorithm computes the distance between two pieces of
music by expressing both as note-length pair sequences
(the third notation in the previous discussion),
converting the sequence of notes to a sequence of
intervals (this is done by subtracting each note from the
next) and computing the distance between both
sequences of intervals by means of the normalized
compression distance [14-16], an approximation of the
universal distance between any two objects defined as
a function of the Kolmogorov complexities of the
objects, which can be computed by means of standard
compressors. The expression we have used to compute
the normalized compression distance is the following:

() () () ()
() ()}yC,xmax{C

}yC,xmin{CxyC
=yx,d

−ˆ

Where C(x) is the length obtained by compressing
object x with compressor C, and xy is the
concatenation of x and y. This metric has been
reported to outperform some of the finest algorithms
for clustering music by genre [17]. This suggests that
the normalized compression distance works well to
extract features shared between two musical pieces.
The compressor used to compute the distance between
the musical objects (the two sequences of intervals)
was the LZ77 algorithm [18-19].

We decided to apply the fitness function only to the
relative pitches of the notes in the melody (this is done
by working on intervals rather than absolute notes),
ignoring the absolute pitches and the note lengths,
because our own studies and other’s [17] suggest that a
given piece of music remains recognizable when the
lengths of its notes are replaced by random lengths,
while the opposite doesn’t happen (the piece becomes
completely unrecognizable if its notes are replaced by a
random set, while maintaining their lengths).

EXPERIMENTS

In our experiments, we first used as the guide Yankee
Doodle, represented by the following string:

M2T2O3L2C+4C+4D+4F4C+4F4D+4O2G+4O3C+4
C+4D+4F4C+3C4P4C+4C+4D+4F4F+4F4D+4C+4C4
O2G+4A+4O3C4C+3C+4P4O2A+4.O3C5.O2A+4G+
4A+4O3C4C+4P4O2G+4.A+5.G+4F+4F3G+4P4A+4.
O3C5.O2A+4G+4A+4O3C4C+4O2A+4G+4O3C+4C4
D+4C+3C+3

After applying the genetic algorithm, the succession of
notes obtained was completed by adding length
information in the following way: each note was
assigned the length of the note in the same position in
the guide piece (the guide piece was shortened or
circularly extended, if needed, to make it the same
length as the generated piece, which could be shorter or
longer). The number of generations needed to reach a
given distance to the guide depends on the guide length
and the random seed used in each experiment, and
follows an approximate Poisson curve [20]. In
successive executions of the algorithm with different
random seeds, we obtained different melodies at
different distances from the guide. For instance, the
distance to the guide of the following generated piece
is 0.58 (figure 1 shows the beginning in typical musical
notation):

T1O3M2C+4O3D4O3D3O3D4O3C+4P4O3E3.O3F+4
P4O3E4P4O3D4O3C+4O3C3O3C+3O2M1B3.P4O2
M2B4O3C+2O2A3O2G+3O2M1A2P4O2M2A4O2A+
2O2A3.O2G4O2F+4O2G3P3O2F4O2F+4O2F+4P3.O
2D+4O2F1P4O2F4O2F3O2E4P4O2F4P4O2E4P4O2F
4O2D4O2C4O2M1C+3.P4O2M2C2O2C+4O2D4O2D
+4O2D+3.O2M1E3.P4O2M2F4O2F3O2G2O2A4O2A
+3O2A4O2A+4O2B4P4P4O2B4O3C4

Figure 1: Beginning of music generated from Yankee
Doodle.

In another experiment, we used the seventh prelude by
Chopin as the guide piece, getting the following result
at a distance of 0.67 from the guide (see also the
beginning in figure 2):

T0O3M2C4O2M1A+3.P4O2M2A+4O2B4P4O2A+4O
2M1B3.P4O2M2A+4O2B4O3E4O3E4O3M1E2P4O3
M2E4O3F4P4O3F4O3F4O3F4O3M0D1P3O3M2D+4
O3E4O3C+4O3M1C+3.P4O3M2C+4O3D4P4O3C+4
O3M1D3.P4O2M2B3O3C4O3D+4P4O3D+4O3M0C+
3.P3O3M2C4O3C+4O3C4O3C4O3C+4P3O2A4O2A+
2O2A2O2A3O2A4O2M1A+3.P4O3M2D4O3F4O3D+
4O3M1D+3.P4O3M2D+3O3E4P4O3D+4

Figure 2: Beginning of music generated from Chopin’s
seventh prelude.

It can be noticed that our first generated music has a
lighter sound to the ear than the second, which may be
a consequence of the different guide pieces used in
both cases.

In our third experiment we changed the fitness function
to work directly at the level of the music represented
by the turtle strings. The normalized compression
distance was also used to compute the distance of the
two character strings (the guide piece and each member
of the population). In this case, both the pitches and the
lengths of the notes were evolved at the same time. The
following shows one result we obtained using Chopin’s
seventh prelude as the guide piece (see also the
beginning in figure 3):

T1O2M2D+4O2F2.O2F+4O2G+3O2G+3P4O2G+4P4
O2A2O2A+4O2A4O2A+4O2A4O2A+4P4O3F4O3D+
3O3E4O3F3O3A+4O3A3O3G+4O3A3O3B3O3A+4O
3B4O3B4O3A+4O3G+4O3G+4O3F+3O3G4O3M1G3
.P4O3M2G2O3F+4P4O3G2.O3F+4O3G4O3F+4O3F4
O3F+4O3F+2O3G+4O3G4P4O3G+4O3A3O3G+4O3
A3O3A+4O3A4O3A+3O3A+4O3M1B3.P4O3M2B3P
4O3B4O3A+4O3A2O3G+4P4O3B4O3B4O3A+4O3G
+4O3G+4O3A3O3G+4P4O3A4O3A2O4C2P4O3M1B
3.P4P3O3M2B4O4C4O3B4O4C4P4P4O4C+4O4D4O
4E4O4M1D+2P4O4M2D+4P4P4O4F+2O4G4O4F4O
4E4O4D+3P4P4O4G+4O4G4O4E4O4F4O4F+4O4G4
O4G4O4F+4P4O4G4O4F+4O4G3.O4A3O4A4O4G+4
O4A3O4G+4O4A4P4O4M1F+3.P4P3O4M2G1.O4G+
3O4E3O4C+4O3A3O3M1G+3.P4O3M2F4O3F3O3E3
O3E3O3G4O3G4O3F+4O3M1G2.P4O3G1O3M2G+4
O3A3O3G+4P4O3A4O3G+4O3A4O3A3.O3G4P4O3
F4O3F+4O3M1F2P4O3M2F+1O3F+3O3F4P4O3F2O
3D4

Figure 3: Beginning of another piece of music
generated from Chopin’s seventh prelude.

CONCLUSIONS AND FUTURE WORK

We have defined a new musical notation which can be
used to automatically generate music by means of
grammatical evolution and a genetic algorithm,
minimizing its distance from a given guide piece. In
the first set of experiments, just the pitches of the notes
were evolved, in another set of experiments both
pitches and lengths evolved at the same time. Some of
the pieces thus generated seem to capture some of the
characteristics of the guide piece (such as sounding
lighter or classical-like).

In the future we intend to combine our results with
those of other authors [18-19] to use as the target for
the genetic algorithm more than one piece of music by
the same author, thus trying to capture the style in a
more general way. We also intend to test different
fitness functions and the effect of different
recombination procedures.

REFERENCES

[1] J. McCormack (1996). Grammar-based music
composition. Complex International, Vol 3.
[2] J. Biles (1994). GenJam: A Genetic Algorithm for
Generating Jazz Solos, Proceedings of the 1994

International Computer Music Conference, ICMA, pp.
131-137, San Francisco, 1994.
[3] E. Bilotta, P. Pantano, V. Talarico (2000). Synthetic
Harmonies: an approach to musical semiosis by means
of cellular automata, Leonardo, MIT Press, vol. 35:2,
pp. 153-159, April 2002.
[4] D. Lidov, J. Gabura (1973). A melody writing
algorithm using a formal language model, Computer
Studies in the Humanities Vol. 4:3-4, pp. 138-148,
1973.
[5] P. Laine, M. Kuuskankare (1994). Genetic
Algorithms in Musical Style oriented Generation,
Proceedings of the First IEEE Conference on

Evolutionary Computation, pp 858-862, Orlando,
Florida, vol. 2, 1994.
[6] D. Horowitz (1994). Generating Rhythms with
Genetic Algorithms, Proceedings of the ICMC 1994,
pp. 142-143, International Computer Music
Association, Århus, 1994.
[7] B. Jacob (1995). Composing with Genetic
Algorithms, Proceedings of the 1995 International
Computer Music Conference, pp. 452-455, ICMC,
Banff Canada, 1995.
[8] Alfonseca, M., Ortega, A., Suárez, A. (2003).
Cellular automata and probabilistic L systems: An
example in Ecology, in Grammars and Automata for
String Processing: from Mathematics and Computer

Science to Biology, and Back, ed. C. Martin-Vide & V.
Mitrana, Taylor & Francis, pp. 111-120. ISBN:
0415298857.
[9] Ortega, A., Abu Dalhoum, A., Alfonseca, M.
(2003). Grammatical evolution to design fractal curves
with a given dimension, IBM Journal of Research and

Development, Vol. 47:4, p. 483-493, Jul. 2003.
[10] Papert, S.: "Mindstorms: Children, Computers,
and Powerful Ideas", Basic Books, New York, 1980.
[11] M. O'Neill and C. Ryan: Grammatical Evolution,
IEEE Transactions on Evolutionary Computation, 5,
Np.4, 349-358 (2001).
[12] M. O'Neill and C. Ryan: Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary

Language, Kluwer Academic Publishers, 2003, Book
Series: Genetic Programming: Volume 4, ISBN 1-
4020-7444-1.
[13] A.Ortega, A.Abu Dalhoum, M.Alfonseca:
Grammatical evolution to design fractal curves with a

given dimension, IBM Journal of Res. and Dev., Vol.
47:4, p. 483-493, Jul. 2003.
 [14] M. Li, X. Chen, X. Li, B. Ma and P. Vitányi
(2003). The similarity metric, Proc. 14th ACM-SIAM

Symposium on Discrete Algorithms, pp. 863-872.

[15] P. and M. Li (1993). An Introduction to
Kolmogorov Complexity and its Applications,
Springer-Verlag.
[16] R. Cilibrasi and P. Vitanyi (2005). Clustering by
Compression, IEEE Trans. Information Theory, Vol.51
No.4, pp. 1523-1545.
[17] M. Li and R. Sleep (2004). Melody Classification
using a Similarity Metric based on Kolmogorov
Complexity, Sound and Music Computing.
[18] J. Ziv and A. Lempel (1997). A universal
algorithm for sequential data compression, IEEE

Transactions on Information Theory, Vol.23:3, pp.
337-343.
[19] S. R. Kosaraju and G. Manzini (1997). Some
entropic bounds for Lempel-Ziv algorithms, Data

Compression Conference, pp. 446.
[20] M. Alfonseca, M. Cebrián, A. Ortega. A simple
genetic algorithm for music generation by means of

algorithmic information theory. IEEE Congress on
Evolutionary Computation (CEC’2007), Singapore,
Sep.25-28, 2007. Published in the Proceedings, pp.
3025-3042, ISBN 1-4244-1340-0, IEEE Press.

SUMMARY OF AUTHOR BIOGRAPHICAL

DATA

Abdel Latif Abu Dalhoum is a doctor in computer
science and teaches at the university of Jordan,
Manuel Alfonseca is a doctor in electronics
engineering and computer scientist, and full
professor at the Universidad Autónoma of
Madrid, Manuel Cebrián is a doctor in computer
science, Rafael Sánchez-Alfonso is a Ph. D.
student and Alfonso Ortega is a professor at the
Universidad Autónoma of Madrid.

