
Parallel Metropolis-Montecarlo simulation for Potts model using an adaptable
network topology based on dynamic graph partitioning

Carlos Castañeda-Marroquı́n, Carmen B. Navarrete, Alfonso Ortega, Manuel Alfonseca, Eloy Anguiano
Dpto. Ingenierı́a Informática. Escuela Politécnica Superior
Universidad Autónoma de Madrid. 28049 Madrid, Spain

{carlos.castanneda, carmen.navarrete, alfonso.ortega, manuel.alfonseca, eloy.anguiano}@uam.es

Carmen B. Navarrete, Eloy Anguiano
Centro de Referencia Linux (CRL, UAM–IBM)

Escuela Politécnica Superior Universidad Autónoma de Madrid.
28049 Madrid, Spain

Abstract

In the last years, the computers have increased their ca-
pacity of calculus and networks - for the interconnection
of these machines - have been improved until obtaining the
actual high rates of data transferring. The programs that
nowadays try to take advantage of these new technologies,
cannot be written using the traditional techniques of pro-
gramming, since most of the algorithms were designed for
being executed in only one processor, in a nonconcurrent
form, instead of being executed concurrently in a set of pro-
cessors, working and communicating through a network.
This work aims to present the ongoing development of a new
method to simulate the Ferromagnetic Potts model, taking
into account these new technologies.

1. Introduction and motivation

The use of clustering computing to solve computational
problems has been the focus of high-performance com-
puting community for more than two decades. The ad-
vances made in microprocessors and computer networks
have caused the appearance of clusters or networks of work-
stations (NOWs) to be an alternative to the more and more
expensive supercomputers. However, the demand of com-
puting power continues growing as long as most of the
available machines are underused. Due to this continu-
ous growth of the capabilities of networks, there have been
posed multiple optimisation problems associated with algo-
rithms for the design of networks and topologies. For gen-
eral optimisation of hosts in farms of computers, a method-
ology of dynamic resources allocation is needed [1, 2, 3].

Nowadays, this is one of the main reasons of the existence
of a special interest in searching new algorithms, which will
enable the replacement of traditional methods. The effi-
ciency and possibility of scaling in parallel to the architec-
tures of processors make the use of the traditional methods
inapplicable in many cases [4].

The main problem when designing a parallel or dis-
tributed algorithm resides in the communication and syn-
chronisation of processes for its concurrent execution in dif-
ferent processors. This is a very hard non-deterministic op-
timisation problem that not allways have the best solution.
In many cases, only an approximation can be calculated.

From the point of view of the heterogeneity of proces-
sors, a good parallel application for Heterogeneous Net-
work of Computers (HNoC) must distribute computations
unevenly, taking into account, at least, the speed of the pro-
cessors, the heterogeneous in terms of the network topology
and the resources needed by each processor. The efficiency
of the parallel application also depends on the accuracy of
stimation of the processors speed of the HNoCs, which is
difficult, because the processors may have different speeds
for different applications due to the differences in the set of
instructions, the number of instruction execution units, the
number of registers, the structure of the memory hierarchy
and so on [5].

From the point of view of the communications, one of
the main problems desining the implementation of networks
of communication is choosing a network topologies that
could verify certain characteristics of trustworthiness, as-
suming this as a measurement, that evaluates the probabil-
ity of success in the communication between pairs of pro-
cessors. This is a non-trivial factor in the quality of ser-
vices offered to all the computers. The evaluation of the ex-

2008 International Symposium on Parallel and Distributed Computing

978-0-7695-3472-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPDC.2008.51

89

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on June 25, 2009 at 04:15 from IEEE Xplore. Restrictions apply.

act parameters that determine the trustworthiness of a com-
munication network is also a NP-hard problem [6, 7]. For
this reason, an optimisation of the topology of the net is
needed. It must be assured that the temporary delay due to
the communication and synchronisation of the processes, is
less than the delay of processing the data by each processor.
Also, it is important to consider that when the problem is
largely partitioned, the spent time to transmit data between
computers and synchronise them, exceeds the time of com-
putation of that CPU.

The common communication network is usually hetero-
geneous. The speed and bandwidth of the network, between
different pairs of processors, may differ significantly. This
makes the problem of optimal distribution of computations
and communications across the HNoC much more diffi-
cult than across a dedicated cluster of workstations inter-
connected by an homogeneous high-performance network.
Other issue is that the common communication network can
use multiple network protocols for communication between
different pairs of processors. A good parallel application
should be able to use multiple network protocols between
different pairs of processors [8].

The main idea of this ongoing work, focuses on the sim-
ulation of the Potts Ferromagnetic model, by the allocation
of resources and tasks and the networks topology configu-
ration, by transferring the workload onto other computers
of the farm, to find a dynamic matching between the tasks
and the global resources of the NOWs, that optimises this
simulation completion time. This will be done assuming a
non-static and decentralised approach.

The Potts model [9] was described by Renfrey B. Potts in
1952 and it is a generalisation of the Ising [10] model. This
model is used to study the spins and behaviour of ferromag-
nets materials. It is based on a Montecarlo simulation that
minimise the energy functions related to a N-dimensional
computational grid. The Potts model has a great disadvan-
tage related to the computational efficiency. This is because
of the model is implemented using a Monte Carlo simula-
tion, with a standard Metropolis algorithm. The election of
this algorithm was choosen due to the hard computations
that are needed to obtain the N possibles configurations for
approach to the system behaviour.

In the following sections, we will introduce the defini-
tions and backgrounds needed to understand the ongoing
project. Then we will introduce the mathematical model
that this system follows in order to study the performance
and be able to explain the results that we have obtained. The
third section of this paper explains the Potts model simula-
tion implemented on this paper. At the end of the paper we
plan the proposal and comment the results obtained.

2. Definitions and background

The NOWs can be seen as a weighted directed graph
with costs in the vertices (resources costs) and in the edges
(communications between pair of nodes costs). The vertices
of the graph represent the nodes of the NOWs; the edges,
the physical communication between pair of nodes of the
farm. Discretely, one node is an instance of one processor,
that is, every processor is one node. When applying the
concept of the graph to a distributed and heterogeneous en-
vironment (HNoC), the costs associated with these weights
depend on various system characteristics, such as the pro-
cessing speed and the communication latency between net-
work nodes. Each node of the NOW, or of the HNoC, can
act as master or slave process: masters are entrust to send
the tasks to be done by the slaves nodes and to manage the
synchronism between the processes. Slaves play the role of
executing the tasks sent by the master process. In our case
of study, all nodes are equally master or slaves.

In order to build a computing environment for farms
of computers, it is also necessary to have an algorithm
that requires the ability to predict the performance and the
resource consumption of different cluster configurations.
This algorithm is called the Resource Management Sys-
tem (RMS). The problem is that, it is difficult to predict
the computing time by a node before it receives some ar-
bitrary load. Also, this will be even more difficult, if we
consider the variation of the topology of communication of
the farm. The basic tasks of the RMS is to accept requests
for resources made by the applications and allocate them
from the poll of resources. This is a slightly approximation
of a computer middleware.

As all nodes are equally master or slaves, we need one
special node, the supermaster, in where the RMS plays its
role. The RMS uses a predictive estimation based on a
mathematical function (heuristic function, Υ), in order to
map the tasks of the parallel application to the pool of re-
sources. This heuristic function will be the one needed to
define the graph partition and assigning the workload to
each node. These techniques for predicting the performance
of the dynamic system are nowadays based on queueing
techniques and/or on historical techniques [11]. Making
a comparison between layered queues and the historical
model, it is well known, that the layered queue requires
more CPU time to make the mean response time prediction,
whereas the historical predictions model are almost instan-
taneous. However, queuing techniques are easier to imple-
ment with a minimum level of performance than the his-
torical model. This is because designing a historical model
involves specifying and validating how predictions will be
made, whereas the queueing model can be solved automat-
ically. Both techniques can be combined to take advantages
of them [12].

90

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on June 25, 2009 at 04:15 from IEEE Xplore. Restrictions apply.

The layered queueing performance model defines an ap-
plication’s queueing network. The solution strategy, in this
case, involves dividing the problem into tasks depending on
the resources and corresponding them to the tiers of servers
in the system model, generating an initial topology solution
and then iterating with the historical method, solving and
redimensioning the queues in each step of the algorithm,
until the solution converge to an optimal distribution of re-
sources, tasks and communications delays.

For the queue model it is necessary to define a queue
structure for each node of the HNoC, which will be shared
by all the incoming requests (figure 1). The nodes can be
both clients (request information) and servers (process the
information). The queue can be managed by a FCFS (First-
Come, First-Servered), LCFS (Last-Come, First-Servered)
or SIRO (Service In Random Order) policy

Figure 1. Example of an HNOC with 4 nodes.
Each server has its own queue for receiv-
ing the incoming requests from the rests of
nodes of the farm.

The different queue models are defined by 6 factors,
in shortband notation, called Kendall’s Notation [13], as
A/B/C/X/Y/Z, where:

• A: the arrival process distribution. Distribution of
probability assumed between arrivals.

• B: the service time distribution. Distribution of proba-
bility that gives the distribution of time of the service
of a customer.

• C: the number of servers.

• X: maximum number of customers allowed in the sys-
tem, including those being active. When this number
is at the maximum value, arrivals are turned away.

• Y: the population size (number of processes).

• Z: the discipline of the queue. Priority order of jobs in
the queue.

Thus, solving the problem of the optimisation of the
global resources of the HNoC, can be approached by solv-
ing the problem of finding the minimum path of the asso-
ciated graph [14], taking into account the communication
delays and the execution time per task of each processor.

3. Mathematical model

The HNoC system can be modelled as a weighted di-
rected graph Gs, denoted by Gs(P,L, τ, δ), referred as the
SystemGraph; P denotes a finite set of processors that
represents the nodes or vertices of the graph Gs; L is a fi-
nite set of links that represents the communication links be-
tween pair of processors: the edges of the graph Gs; Each
vertex pi ∈ P is characterised by a set of system parame-
ters (memory, frequency, operating system...), based on its
available resources of the HNoC. Due to this, each proces-
sor has a processing weight τ(pi) that denotes the process-
ing cost per unit of computation. Each link between two
processors pi and pj , denoted by li,j ∈ L, has a link weight
δi,j that means the communication latency between those
two nodes per transfer unit. If two nodes (pi, pj) ∈ P are
not connected to each other, then li,j = ∞. We assume that
all nodes of the graph are connected to at least one node of
the HNoC (connected graph) but we not enforce constraints
on the network topology, as this is not completely defined
and can vary between two steps of the simulation of the
problem, that is being executed in the HNoC. It is neces-
sary to define a neighbourhood function which will return
the set of nodes that are linked with any node of the HNoC,

∀pi ∈ P : neig(pi) = {pk} | li,k 6= ∞

So, we must define another function path(pi, pj), defined
as

∀pi, pj ∈ P : path(pi, pj) = {pk}∗

were p∗k is a sorted set of nodes were each node either
pk ∈ neig(pi) or pk ∈ neig(pj) or pn

k ∈ neig(pn−1
k). It

is necessary to define a latencies matrix CL containing the
network latencies between any two processors, ∀pi,∀pj ∈
P,CLi,j = lat(pi, pj), which will depend also on the phys-
ical and data link network layer. For two adjacent nodes pi,
pj , ∈ P , CLi,j = lat(pi, pj) = δi,j but if pi and pj ∈ P are
not adjacent in the HNoC, the latency will be defined as the
sum of the links weights on the shortest path between them,

CLi,j
= lat(pi, pj) =

∑
(δpk

| pk ∈ min(path(pi, pj)))

(figure 2). The matrix CL could be symmetric or not,
since all communications could be different, also in a du-
plex communication, because of the directed property of the
graph.

The graph of minimum paths for a specific node of the
graph Gs, denoted by Gm

a(P,L, τ, δ), will be defined as

91

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on June 25, 2009 at 04:15 from IEEE Xplore. Restrictions apply.

Figure 2. Example of a System Graph GS . The
characteristics of the graph are: nodes P =
{A,B, C, D}, links L = {ca, ab, ad, bd, dc}, pro-
cessing weights τ = {2, 5, 4, 1} communica-
tion latencies δ = {1, 0, 7, 1, 2} and neig(A) =
{B,D}, path(C,D) = {C,A, B, D}U{C,A, D},
but pathmin(C,D) = {C,A, B, D}

The CL matrix for this example is:

CL =

A B C D

A 0 0 3 7
B 4 0 3 1
C 1 1 0 2
D 3 3 2 0

the graph that contain the minimal paths from the node a ∈
P to any node of the graph (figure 3).

Figure 3. Obtained graphs Gm
a for each node

of the graph of the figure 2.

The application can also be modeled as a weighted di-
rected graph Ga, denoted by Ga(T,D, ω, λ), referred as
the ApplicationGraph; T denotes a set of vertices of the
graph that represents the tasks to be done; D represents a
finite set of edges of the graph where {(ti, tj) | ti, tj ∈ T};
Each vertex has a computation weight ω(ti),∀ti ∈ T that
represents the amount of computations required by the task
ti to accomplish one step of the algorithm. Each edge has a
value λi,j that represent de amount of data to be sent from
vi to vj .

Thus, the execution time Γ of a task ti ∈ T on a pro-
cessor pj ∈ P , assuming the worst case in which there is
no-overlapping between computation and communication,
is defined as:

Γ(ti, pj) = ω(ti)×τ(pj)+
∑

tl∈neig(pk)

∑
pk∈P
k 6=j

λ(ti, tl)×δ(pj , pk)

where ω(ti)× τ(pj) represents the amount of computation
required by the task ti per processing cost per unit of com-
putation.

Given a system graph GS(P,L, τ, δ) and an application
graph Ga(T,D, ω, λ), the objective is to map characteris-
tics Γ : (T,D) 7→ (P,L) for minimising the function Γ,
based on the application requirements and the system con-
straints such as the topology of the system graph.

From the point of view of the queue prediction tech-
nique, we can assume that the HNoC can be modelled by
a M/G/1/∞/∞/SIRO model, where the arrival process
distribution is a Markovian process [15], the service time is
a general distribution referring to independent arrivals to the

92

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on June 25, 2009 at 04:15 from IEEE Xplore. Restrictions apply.

system and there is only one server for that queue [16]. We
must allow any server to pop an item from the queue in an
arbitrary order, according to a certain priority value. This
characteristic forces the SIRO parameter of the queue. We
will maintain only a queue per each server, but, from the
point of view of the whole system, the queues will be mod-
elled as a M/G/c/∞/∞/SIRO, where c is the number
of nodes of the HNoC. The length of the queue (maximum
number of jobs in the queue) L, will depend on the arrival
rate λ, and on the service rate µ and will be calculated by
the expression:

L =
λ2E[S2]
2(1− ρ)

+ ρ

where ρ = λ
µ and E[S2] is the second moment of the ex-

pected value of the service rate random distribution S.
The historical modelling technique involves sampling

performance metrics (response times, resources availability,
communication delays...) and will associate these measure-
ments with variables representing the workload being pro-
cessed and the machines architecture. The historical func-
tion, in most cases, cannot be solved mathematically and it
is necessary to solve it, by using an optimisation method as
a simplex or tableau algorithm [17].

4. Potts Model

The Potts model consists of spins that are placed on a
lattice; the lattice is usually taken to be a two-dimensional
rectangular Euclidean lattice, but is often generalised to
other dimensions or other lattices. The Hamiltonian func-
tion is defined as follows:

H = J
∑

(i,j)neighbors

1− δ(σ(i′), σ(j′)) (1)

where J is a positive constant, δ is the Kronecker delta
(δ(x, y) = 0 if x 6= y and 1 if x = y) and (i, j), (i′, j′)
denotes the first neighbourhood area.

The probability function is defined as:

P = e
− ∆H

KBT (2)

where KB is the Boltzman constant, T is a certain tem-
perature value. The new state of the spin is accepted when
(see expression 1) ∆H > 0 with probability P or 1 if
∆H 6 0

Evolution of the model proceeds using the Metropolis
Montecarlo [18] simulation as follows:

1. Select randomly a lattice spin

2. Choose randomly a neighboring spin of the current site

3. If the neighboring spin is equal to the spin of the cur-
rent site, go to step 1

4. Change the current site spin for the spin of its neigh-
boring site, according to the probability P as in expres-
sion 2

5. Return to step 1

The lattice is represented as a torus and it is continually
updated: for each lattice point, a different spin state is pro-
posed, and the new overall energy calculated. It depends on
the neighbour’s interactions and the overall temperature. If
the new energy is smaller than the old one, the new state
is accepted. If not, there is still a certain chance that will
be accepted, leading to random spin flips representing the
overall temperature.

Figure 4. Possible domain decomposition
and explanation of the situation in which one
processor must send a signal to another one,
to update the current grid position.

The critical part of the algorithm, from the point of view
of the parallelisation, resides in the step 2. Not allways the
domain and data decomposition assure us, that the needed
variables for the calculus are at the processor that is calcu-
lating a certain expression (see figure 4).

The Potts model using the conventional Monte Carlo
method has two drawbacks: The critical slowing down and
the generation of random numbers. These drawbacks are
the two computer time-consuming factors. Our work de-
scribes an alternative parallel Metropolis - Monte Carlo so-
lution, using a C and an MPI library, which is more efficient
than the traditional method. There are several publications
about parallel implementations of this model such us the
one described in [19]. Our goal is to parallelise the Potts
model to be executed it in a parallel environment, created
by a heterogeneous cluster, using the MPI library [20]. The
aim is to increase the speed-up and the efficiency to reduce
these drawbacks across of a correct domain and data decom-
position, assuring us that, on the one hand the needed val-
ues for the ”spin-flip” attempt calculus are accessible by the
processor that is calculating the possible spin-flip attempt
and not have problem with a wait queue, and, on the other
hand always after of a Monte Carlos Step (MCS) the do-
main decomposition is correct.

93

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on June 25, 2009 at 04:15 from IEEE Xplore. Restrictions apply.

5. Proposal

Until this moment, we have considered only a static net-
work topology, that depends on the domain decomposition,
defined before the execution of the algorithm or application
in the HNoC; in those problems were it is not trivial to make
a definition of a domain decomposition, it would be usefull
to have a dynamic topology of communications. This dy-
namic topology will vary around the distribution of the data
and the different latencies of the network and this will de-
pend on the different connections between the nodes.

The model proposed for the reconfiguration of nodes of
an HNoC will be based on a sufficiently ample language of
communications. Using this language any node will be able
to know in real time, which information contains any other
node of the system (data middleware), without having to
communicate first with the master node of that system. This
language will also allow the nodes to modify their roles of
master/slave depending on what value or data structure is
needed and on what node has asked for it (figure 5).

Figure 5. Example of the reconfiguration of
an HNOC applied to a distributed database.
At least 3 nodes have changed its mas-
ter/slave role, to adapt the HNoC network
topology to the data distribution. This has
been made in order to minimise the global de-
lay for the execution of the query in the sys-
tem.

The HNoC will be represented as a directed dynamic
graph (as in figure 2) in which the different connections will
have weights of edges (cost of moving directly from one
vertex to another one) equals to the different delays from
network and those due to the overload of the processors
of the nodes. The vertex of the graph will represent each
processors available at the HNoC. The information of each
node of the graph will contain the effective load of the pro-
cessor, considering this as the availability to execute other
processes. Also the node will contain as well, a statistic
value proportional to the execution time of the processes in

previous steps of the algorithm. Therefore, the edges of the
graph will represent the connections between the available
processors, according to a certain instant of the algorithm.
These connections are statistically weighted according to
the network delays and the time of transmission of the data
through the net that depends, as well, on the network pro-
tocol, and the physical layer used for this communication.
These two values will be important for the calculation of the
optimised values of the historical function.

In addition to the nodes that are included in the HNoC,
a super master node will exist. This node will be the one
which will administer the minimum graphs, that represents
the path used by each node to communicate with the other
ones (as in figure 3). The super master node will main-
tain the resulting graph of all the existing communications
between any two nodes of the HNoC and also the execu-
tion times of each processor. With this information, and
according to a statistical and heuristic function Υ, this node
will generate an optimal graph, probably different, for each
node of the HNoC. These graphs will be calculated based on
the communications that each node needs to make with any
other one, its workbalance, the value τ(pi), some historical
values, ..., and they will be calculated according to some al-
gorithm of minimum path for graphs (figure 6). Knowing
that all the weights of the vertices and of the edges of the
graph are allways positive values, we could use algorithms
based on Dijkstra [21] or Bellman-Ford [22].

In order to be able to reconfigure the HNoC, the lan-
guage of communications will include control dataframes
and data dataframes. The data dataframes will contain the
data needed for the execution of the algorithm in the HNoC,
whereas the control dataframes will be those with informa-
tion about the execution times and commands, and will be
sent for knowing which nodes have what information and
what hierarchy exists between the different nodes of the
HNoC. This will be possible by developing a monitoring
layer that will advise the supermaster node on each event
that occurs in any node of the HNoC.

The control dataframes will also allow to any node, to
join or exit the farm of computers dynamically, sending a
specific command to the supermaster node, to be included
on, or to be deleted from the grouping. When a com-
puter join the group, the supermaster will calculate again
the graph of minimum paths for each node of the farm, in
order to put in context the new node with the rest of com-
puters. This calculus will be done with the new parameters
of the system. When a node leaves the grouping, it will
advise the supermaster node and the unregistration process
will cause again a reorganisation of the nodes of the HNoC.

The main advantage of this system is to avoid the de-
sign of an HNOC by the administrator of the cluster. This
person, without this system, must design the architecture
and the HNOC topology in function of the accesses that are

94

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on June 25, 2009 at 04:15 from IEEE Xplore. Restrictions apply.

Figure 6. HNoC formed by 5 processors, 4
nodes and 1 supermaster node. The su-
pernode contains a complete-graph with all
the possibles communication between each
two nodes and the statistical value for the
delays and effective load of each proces-
sor. The other nodes are dedicated to real-
ize the calculus assigned by the supermas-
ter node. Each of these nodes can play the
roll of a master, a slave or even a mixed solu-
tion. In this example we have also to consider
that all nodes contains the same information
data. The supermaster node will calculate the
minimum graphs for each processor and will
communicate it to them. With these graphs,
the other nodes know to which one must it
send the information data. Each processor
can resend the information to another node
as a proxy.

needed depending on the problem to study. Also, this model
will be usefull to eliminate the need of distributing the re-
sources among the different nodes, in function of the pool
of availables resources.

6. Results

Because of the development status of the application,
currently there are not performance and efficiency results
of the use of this reconfiguration technique.

Four simulations have been performed: one simulation
for the non-parallel applications and three more to study
the best domain decomposition, in order to optimise the
communications between pairs of processes, to increase the
speed up of the execution of the problem. In these simula-
tions we have decided to use a domain decomposition based
on horizontal or vertical stripes or based on a square de-
composition, also taking into account the processor speed
of each node of the cluster. These initial domain decom-
positions are needed to get higher performance values as
possible, in order to study the behaviour of the problem, de-
pending on the initial input values and the initial distribution
of nodes and data. The goal of our algorithm is the way we
solve the possible situation in which one node needs some
information in order to update the current grid position that
is in another node of the cluster due to the domain and data
decomposition.

The results obtained with this simulation are physically
equivalent to the ones obtained with the standard Metropolis
Montecarlo algorithm (non-parallelised simulation). This
assure us that the initial partition has nothing to do with the
Potts model and the Ferromagnetic properties. The ongoing
work will consist on applying these concepts of reconfig-
uration, to simulate the cell growth using a Cellular Potts
Model (CPM [23]) and using a dynamic domain decompo-
sition based on the cell dimensions.

References

[1] R. Canal, J.M.l Parcerisa, and A. Gonzalez. Dynamic
cluster assignment mechanisms. In HPCA, pages 133–
, 2000.

[2] R. Bhargava and L. John. Improving dynamic cluster
assignment for clustered trace cache processors. Tech-
nical report, 2003.

[3] K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dy-
namic function placement in active storage clusters.
Technical report, 1999.

[4] A. Lastovetsky. Scientific programming for hetero-
geneus systems - bridging the gap between algorithms

95

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on June 25, 2009 at 04:15 from IEEE Xplore. Restrictions apply.

and applications. In PARELEC’06 IEEE Proceedings,
pages 3–8, 2006.

[5] A. Lastovetsky and R Reddy. HeteroMPI: Towards a
message-passing library for heterogeneous networks
of computers. Journal of Parallel and Distributed
Computing, 2005.

[6] M.O. Ball. Computing network reliability. 1979.

[7] J.S. Provan and M.O. Ball. The complexity of count-
ing cuts and of computing the probability that a graph
is connected. SIAM Journal on Computing, (12):777
– 788, 1983.

[8] J.Dongarra and A. Lastovetsky. An overview of het-
erogeneous high performance and grid computing.
American Scientific Publishers, 2006.

[9] Renfrey B. Potts. Some generalized order-disorder
transformations. volume 48, pages 106–109. Proceed-
ings of the Cambridge Philosophical Society, 1952.

[10] E.Ising. Beitrag zur theorie des ferromagnetismus. J
Physics, 31, 1925.

[11] David A. Bacigalupo, Stephen A. Jarvis, Ligang He,
Daniel P. Spooner, and Graham R. Nudd. Compar-
ing layered queuing and historical performance mod-
els of a distributed enterprise application. In IASTED
International Conference on Parallel and Distributed
Computing and Networks, pages 608–613, 2005.

[12] David A. Bacigalupo, Stephen A. Jarvis, Ligang He,
D. Spooner, D. Pelych, and Graham R. Nudd. A com-
parative evaluation of two techniques for predicting
the performance of dynamic enterprise systems. In
PARCO, pages 163–170, 2005.

[13] L. Kleinrock. Queuing Systems: Theory. Wiley, 1975.

[14] Bassel R. Arafeh, Khaled Day, and Abderezak
Touzene. A paradigm for allocating parallel applica-
tion tasks to heterogeneous computing resources on
the grid. In PARCO, pages 41–48, 2005.

[15] B. Song, C. Ernemann, and R. Yahyapour. Paral-
lel computer workload modeling with markov chains.
In Proceedings of the 10th Job Scheduling Strategies
for Parallel Processing (JSSPP), volume 3277, pages
47–62. Lecture Notes in Computer Science, Springer-
Verlag, 2004.

[16] D. Gross and C.M. Harris. Fundamentals on Queuing
Theory. Wiley, 1998.

[17] J. A. Nelder and R. Mead. A simplex method for func-
tion minimization. The Computer Journal, 7(4):308–
313, January 1965.

[18] M. Rosenbluth A. Teller E. Teller N. Metropolis,
A. Rosenbluth. Equation of state calculations by fast
computing machines. J. Chem. Phys, 21(13):1087–
1092, 1953.

[19] Eunice E. Santos and Gayathri Muthukrishnan. Effi-
cient simulation based on sweep selection for 2-d and
3-d ising spin models on hierarchical clusters. ipdps,
14:229b, 2004.

[20] Message Passing Interface Forum. MPI: A message-
passing interface standard. Technical Report UT-CS-
94-230, 1994.

[21] Edsger. W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik, 1:269–
271, 1959.

[22] Richard Bellman. On a routing problem. Quarterly of
Applied Mathematics, 16(1):87 – 90, 1958.

[23] J.A. Glazier F. Graner. Simulation of biological cell
sorting using a 2-dimensional extended potts model.
Phys. Rev Lett, 69(13):2013–2016, 1992.

96

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on June 25, 2009 at 04:15 from IEEE Xplore. Restrictions apply.

