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ABSTRACT

Cellular Automata (CA) are a type of complex system
based on simple and uniformly interconnected c&ley
provide an excellent method to perform complex
computations in a simple way. CA can be used ingena
processing, because of the simplicity of mappirigétal
image to a cellular automata and the ability of g@pg
different image processing operations in real tildeise
removal is considered to be an important applicatib
image processing; digital images can be corrupted b
different types of noise during the image acquisitbr
transmission. In this paper we propose a CA mola t
deals with two types of noise: salt and peppereyasd
uniform noise. Our results show that the proposedeh
removes more noise, compared with previous models.

1.INTRODUCTION
1.1 Noisein Digital images

Digital images may be corrupted by different typss
noise during their acquisition or transmission. quixel
values may be altered (become noisy pixels), wdtihers
remain unchanged. There are two common types sknoi
uniform noise and salt and pepper noise.

In uniform noise, the corrupted pixel may take amajue
from 0 to the maximum allowed value (we are assgmain
gray scaled image). In salt and pepper noise,¢h@pted

pixel may take just one of two different valuesad¥ or
white.

In order to remove unwanted noise and enhancerthge
quality, the median filter has been useitas et al., 1990;
Astola et al. 1997;Gonzalez and Woods, 2008The median
filter is a nonlinear effective filter used in neisemoval,
whose main disadvantage is that it blurs fine tetar
destroys edges while filtering out the noise. Tesprve
details while noise is reduced, many researchex® ha
proposed different ideakq et al., 1991;Chen et al.,
1999; Eng et al.,2000). With the median filter, the
intensities of the neighboring pixels are sorted an
median value is assigned to the center pixel.

1.2 Cdlular Automata (CA)

Cellular Automata (CA) are a decentralized compmutin
model that provides an excellent platform for perfing
complex computations with the help of just local
information. CA are made up of interconnected ¢celésh

of which contains an automaton, a simple machirne tab
perform simple computations. Each automaton haaste,s
which changes with time based on the states of its
neighboring cells (see figure 1) [9]. The CA model
transition rule determines the neighborhood refetiip
between the automata. Each automaton changesits st
(its value) at time (t) based on the state at ttevipus
time (t-1) of its neighbor cells (see figure 2)trbduced
by John Conway in 1970, the Game-of-Life (GOL)he t
most widely known example of CAWplfram, 2002;
Sarkar, 2000Gardner 1970) CA have many applications
for a wide variety of fields.



Figure 1.Common CA neighborhoods. MOORE (at tffi§ é&d

Where,d, =‘Xij -SM;; ‘ d, =‘Xij -CWM | and T

is a value between 0 and 255. Figure 3 shows Chabal
proposed filter, where Xij is the center pixel valWs is
the number of the neighbors (usually 9), Ri is itme
element in the sorted neighbors sequence, rankié<tpe
index of Xij in the sorted neighbors sequence, tral
threshold value T equals 15.

Von Neumann (to the right).

Figure 2. CA transition rule examples. The centgomaton
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state will be:
0 if the cell has <=2 neighbors at state 1
0 if the cell has >=4 neighbors at state 1
1 if the cell has 3 neighborstate 1

2.RELATED WORK
2.1 Uniform noise removal filter

In (Chang et al., 2008), the authors have propesedw
image-de-noising filter based on the standard nmedia
(SM) filter. In their method, a threshold and thanslard
median is used for noise detection and to change th
original pixel value to a new value closer or sanilo the
standard median. Inspired by the Tri-State Medi®iM)
(Chen et al. 1999), they have proved that their filter
improves the SM filter, the Center Weighted Medider
(CWM) (Ko et al., 1991), and the TSM filter. In CWM,
the value of the center pixel will be repeated save
times. The number of times to be repeated is cdlied
center weight. In the TSM filter:

X, if Tzd;
TSM; =CWM, if d,<T <d,;

SM, if T <d,

]

Figure 3. Chang et al. filter
2.2 Salt and paper noise CA de-noising model

In (Liu et al, 2008), the authors proposed a nalel
noising algorithm based on CA to filter images wstt-
pepper noise. Their CA local transition functiorbesed

on Moore neighborhood. They have evaluated their
approach by using the hamming distance to compare i
with the classical median filter, and showed tHsirt
algorithm has better de-noising effects, especiafhen

the noise density is bigger than 40%. Figure 4 shiwir
transition function.

3. THE PROPOSED CA MODEL

We introduce a novel CA model for noise removalr Ou
proposed model deals with both types of noise; @adt
pepper noise and uniform noise. We first detecttiipe

of noise by computing the histogram of the noispge.

If the most frequent values in the image histogram
black or white, we conclude that the image contail$
and pepper noise, otherwise it contains uniformseoi
The next step is removing the noise by using the CA
transition rules described in figure 5.

Our proposed CA model checks the noise type and
response correctly for each type. If the noise tygpe



uniform noise, we exclude the maximum and minimum
values from the neighbors then compute the medimeo
remaining values, after that assign it to the aurre
automaton state. If the noise type is salt and geppe
check if the current state has black or white celbich
means it may corrupted by noise, then we compute th
median of the neighbors that don't have black oitevh
values and assign this median for the current aatom
state, if all the neighbors has black and whiteigalwe
take the average of them and assign the averageeto
current automaton state.

Liu et al CA transition rule

1. Check value of current cell Xi, j
And values of its neighbor.
2.ifX ;< max (neighbors) and
ij > min(neighbors) then

3. X j; staythe same.

4. elseif max(neighbors)= min(neighbors)or
neighbors have only two states
(max(neighbors),min(neighbors))

then
5. if min(neighbors) # 0 then
6. X ij =min(neighbors)
7. elseif max(neighbors) % 255 then
8. X ij =max(neighbors)
9. else X ij Staythe same
10.else

11. m = mean(neighbors except
Max(neighbors) and min(neighbors))

12. if abs(X ij —m)<threshold
13. X ij stay the same

14. else

15. X ij =m

16. end

17.end

18. end

19. end

20. end

Figure 4. Liu et al CA transition function
4. EXPERIMENTSAND RESULTS

We have implemented CA simulators for our proposed
idea, for Liu et al. procedure, and for Chang effilér,
using the well known MATLAB 7.6.0 software (Matlab,
web reference). We have used two standard imagesrin
experiments, namely Lena and Boats, as well asofne
our own images (Jan), which has more details agésd
and hence makes a good test example. In this paper,
however, for space reasons, we only show the Lena
results.

We have compared our model with both models in
(Chang et al., 2008) and (Liu et al, 2008). We hased

the same measurements that they used, namely Mean
Squared Error (MSE) and Hamming Distance (HD)slt i
well-known that when these measures are small, the
technique is considered to be better. They arenedéfas:

2.2 (@ —by)? >.>.(a 0b?)
MSE:izljzl i=1j=1

: HD =
m*n m*n

where a is the original image and b is the regylitmage.
Both images are the same size (m x n).

1. Check value of current cell X i
and values of its neighbor.

2. if uniform noise

3. mx=max(neighbors);

4. mn=min(neighbors);

5. ifX ij ==mxorX ; ==mn
/ltake the median value of the
neighbors
6. y=SM ij
7. end
8. else // salt and peppers noise
9. |if (X i ==O)or ( X ij ::255)
10. if there are neighbors
that are not 0 nor 255
X ij = The median of step 10;

11. else
11. X ij =mean(Neighbors);

end
12. end
13.end;

Figure 5. The proposed CA transition function

We should notice that MSE is more accurate than HD,
because it computes the degree of difference betiee
two images, while HD gives only the number of diffiet
pixels in the two images. According to its purpose
compare our model with (Chang et al., 2008) in s&oh
uniform noise and with (Liu et al, 2008) in termissalt
and pepper noise. For each image we have addedediff
percentages of noise with ratios equal to 5%, 1PS8p,
50%, 75%, 90% and 95% of the image size.

For each ratio we have produced two noisy imagas: o
with "salt and pepper" noise, and one with "unifrm
noise. We have run the simulation for each imagdive
iterations and recorded the results (the correatebe
and the two error measurements, MSE and HD).

The results, illustrated in figures 6-9 and tatlle®, show
that our model is better than the previous modeteims



of the two measurements factors, namely, MSE and HD

Table 1: Sample of the results (Salt & Pepper foise

The time complexity is constant, O(1), because haf t : : Generation 1 : :

i i i . | . Method| &% noise 25% noige 50% noise 75% noise | 95% noise
parallelization that CA provide which is considerasl a HD | MSE | HD |MSE| HD |MSE| HD | MSE| HD | MSE
main advantage of CA in term of performance. Weuho Liu et all444.38[18.767 | 6803 [49.24 [ 1164.35[121.9] 1710 | 880.6 [ 2301 | 5917

. Dur cA[220.36]21.749]1089.3] 91.68 [ 1990.25 [ 178.6 ] 2544 [B47 5] 3018 | 5428
also note that the best measurement is the human ey Genaration 2
especially when there is a clear difference betwisen Method 5% noise 26% noise 0% noise 75% noise | 95% noise
S HO [ MSE| HD [mMSE| HD [MSE| HD [MSE [ HD [MSE
resulting images. Livetal 802 [26.401[1042.3[57.61] 1485.4 [109.9] 1949 [196.4 | 2302 | 2847
Our cA[551 42 20.505] 1341.8] 79.95 [ 1989.48 | 163.6| 2462 [246.2] 3112 | 2597
Generation 3
3000 Method 5% noise 25% noise E0% noise 75% noise | 95% noise
HO [ mMSE| HD [mSE| HD [MSE| HD [MSE [ HD [MSE
Liu et al 1073.4| 30647 [ 1296.1 | 62 .44 [ 1662.21 [ 113.2| 2015 [185.8 | 2445 [ 1114
2500 —— Our cA[B78.44( 26 071]1636.4| 78.34 [ 1989.48 | 163.6| 2451 | 239 | 2601 [ 1038
/ Generation 4
o Method 5% noise 25% noise a50% noise 75% noise | 95% noise
£ / HO [ mMsE| HD [msSE| HD [MSE| HD [MSE [ HD [MSE
o 2000 / Liu et al] 1268 [34.143[ 1467 5] 65.4 [1662.21[115.2 | 2096 [186.4 | 2446 [ 503.1
o _ ourcA[1103.8]27 784 1842.7]79.31 [ 198048 | 163.8 | 2451 | 230 | 2601 | 522
g / / —— Liuetal HD Generation 5
.2'1500 m- Liet Wethod 5% noise 25% noise 0% noise 75% noise | 95% noise
£ / al, MSE HD [ MSE| HD [MSE| HD [MSE| HD [MSE| HD [MSE
2 — - OurCAHD Liu et all 1415.3| 37.08 [1501.9] 625 [1880.14 | 117 | 2161 [187.2] 2405 [ 3667
/ e ourcA[1245.5]30.253] 1986 [81.82[1989.48 [ 163.8] 2461 | 239 [ 2579|4270
1000 SITMSE
/ : Table 2: Sample of the results (Uniform noise)
Generation 1
500 — Mathod 5% haoise 25% noise 50% noise 758% noise | 95% nhaise
—& HO [MSE| HD [msE| HD [mseE| HD [msE| HD [MSE
/ g Chang et al|275.29]98.066 | 854.67 | 477.7 | 1602.47 | 1050 | 2381 | 1539 [ 2968 | 2897
___d__‘_‘f__:-i ---- Dur CA 452,22 |27 667 | 756.52 | 277.4 [ 1312.68 | 898.9 | 1920 | 1767 | 2440 | 2563
0 T T T T Generation 2
5% 25% 50% 75% 95% Method 5% noise 25% noise 50% noise 75% noise | 95% noise
Noise Ratios HO [MSE | HD [MSE| HD [MSE| HD [MSE| HD [MSE
Chang et al[300.51(99.151|901.64| 462 |1697.08|983.2 | 2559 | 1692 | 3245 [ 2430
Dur CA |785.96[21.653| 1002 [102.5[1457.19 | 4635 2017 | 1184 [ 2527 [ 1962
Figure 6. Comparison between our model and Lid. e(3alt : ___ Generation 3 : :
. Method 5% noise 26% noise 50% noise 75% noise | 95% noise
and pepper noise) HD | MSE | HD |[MSE| HD [MSE| HD [MSE| HD | MSE
Chang et al[311.23]99.808|525.37 | 470.5 | 1746.37 | 974.7 | 2672 | 1660 | 3398 | 2374
Our CA | 1017.6]21.653[1239.3|67.12 [ 1635.57 | 289.3 | 2131 [897.5 | 2606 | 1652
3500 Generation 4
Method 5% noise 26% noise 80% noige 75% noise | 95% noise
2000 HO [MSE | HD [MSE| HD [MSE| HD [MSE| HD [MSE
Chang et al|315.34(99.896| 937.2 |471.9[1774.83 |975.6 | 2738 | 1650 | 3484 | 2348
Our CA | 1164.3[23.681[ 1397 2| 60.94 | 17736 |218.5] 2232 | 752.2 [ 2675 | 1488
2500 Generation 5
° tethod 5% noise 26% noise 0% noise 76% noise | 95% noise
2 / ,f," HO [MSE| HD [msSE| HD [mseE| HD [msE| HD [MSE
5 5000 P o Changet Chang et al[316.95]100.31|941.93 | 472.7 [ 1789.56 | 977.4 | 2777 | 1646 | 3537 | 2334
g 2 7 al HD Dur CA [ 1262.4[26.129[1494.3|51.06 [ 1863.93 | 188.1] 2300 |670.9 [ 2727 [ 1304
» 7z /7 ---#-- Changet
g / ). al, MSE
g 1500 y I,’ 5 - e - OUrCA, HD
4
g //‘ . Y —— our 5.CONCLUSION AND FUTURE WORK
= 1000 Z ‘ ,.f' 7 CRMEE ) .
/ e , In this paper we have introduced a novel CA model f
500 s image noise removal. Our model deals successfully w
Cd Pl /7 i i i
/’,/ o both "salt and pepper" noise and "uniform" noisee W
0 e T have shown that our model is better than Chang mode
5% %% 50% 7%  95% and almost as good as Liu model. Our CA model has
Noise Ratios successfully removed the two types of noise inedéfit

Figure 7. Comparison between our model and Chaalj e
(Uniform noise)

ratios. As a future work, we will enhance the cotre
proposed model in terms of performance and accuracy
besides generalizing it to deal with more noisesyp




Figure 8. Another Sample of the results.
a. Original Lena image.
b. Lena image with 75% of salt and pepper noise.
c. Lena image with 25% of uniform noise.
d. Result of applying our CA model on b.
e. Result of applying our CA model on c.
f. Result of applying Liu et al filter on b.
g. Result of applying Chang et al filter on c.
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