
106 TRANSACTIONS Volume 17, No. 3

Received: Month Year; Revised: Month Year; Accepted: July 2000

TRANSACTIONS of The Society for Computer Simulation International
ISSN 0740-6797/00
Copyright © 2000 The Society for Computer Simulation International
Volume 17, Number 3, pp. ##-##

1. Introduction
The currently most successful hypermedia system is the World
Wide Web (WWW), which has many advantages over tradi-
tional hypertext applications. This has brought about the cur-
rent proliferation of educational courses on the WWW [1, 2],
which run from a simple transposition of lecture notes, to pages
including more sophisticated elements, such as animated graph-
ics, simulations and so forth. Students are also more and more
familiar with browsing the Web and playing computer games.
Such Web users, in order to use simulation, desire tools that
allow quick and easy experimentation [3].

The clear interest towards this field has created a need for
adequate tools to help in the elaboration of the courses, which
should make it possible to express all the possibilities offered
by WWW teaching [4, 5]. In the words of the Directorate-Gen-
eral XIII [6]: “From now on, there must be stress on helping to
develop authoring tools, easy to use by the teachers who wish
to include in their teaching methods multimedia elements (both
local and on the Web).”

Integration of simulation and Web services can be done in
several ways [7]:

• Thick server approach. In this case, the simulation programs
execute at the server, programmed in any language accessible
through the Common Gateway Interface (CGI). This ap-
proach centralizes the execution of the models, but increases

the traffic of data in the Web, which may generate perfor-
mance problems.

• Thick client approach [8]. The simulation tools (interpret-
ers, plug-ins, etc.) have to be preloaded or downloaded to
every client, and then execute there. This approach decreases
the data traffic at the cost of stringent client requirements. If
executable programs are downloaded, there is a danger of
client incompatibility and virus transmission.

• Pure navigator approach. The models are integrated with the
HTML pages making up the educational courses and ex-
ecuted as Java “applets.” Java has many interesting proper-
ties, such as “write-once, run-everywhere,” that provide cli-
ent independence. This approach means the initial loading
of the pages will be slower (the applets have to be down-
loaded), but the model execution may be fast.

• Distributed execution. The models execute simultaneously
in several machines that cooperate with each other. If Java is
used as the programming language, such programs may com-
municate by means of Remote Method Invocation (RMI)
[9], the Java analogue to the traditional and well-known
Remote Procedure Call (RPC) for distributed computing. In
the Java distributed object model, a remote object is one
whose methods can be invoked from another Java Virtual
Machine, potentially on another host.

Automatic Generation of Simulation-Based
Web Courses and Model Documentation

Manuel Alfonseca and Juan de Lara

Dept. Ingeniería Informática, Universidad Autónoma de Madrid, Ctra. De Colmenar, km. 15, 28049 Madrid,
Spain; E-Mail: {Manuel.Alfonseca}{Juan.Lara}@ii.uam.es

This paper presents the procedures and tools that we are using to generate fully automatic multimedia
Web courses based on simulations. These courses are composed of HTML pages with interactive simula-
tions that help the students understand the subject of the course. This is accomplished by means of an
object-oriented simulation language (OOCSMP) that allows us to include information about the appear-
ance of the HTML page where the simulation model is going to be included. The language incorporates
constructions to synchronize multimedia elements with the simulation execution, and to produce distrib-
uted simulations. The compiler for this language (C-OOL) generates Java applets for the simulation
problem, and can generate automatically the documentation for the models, in the form of HTML pages,
using information in the symbol table and special comments included in the model. One example of the
construction of a multimedia simulation page with the simulation of an ecosystem is presented, and its
extension to a distributed simulation environment is explained.

Keywords: Continuous simulation, course generation, Web-based simulation, distributed simulation,
multimedia-enriched simulation, automatic documentation, education, OOCSMP, HTML, Java, C-OOL

Acknowlegement
This paper was sponsored by the Spanish Interdepartmental
Commission of Science and Technology (CICYT), project number
TEL1999-0181.

M. Alfonseca, J. de Lara

Volume 17, No. 3 TRANSACTIONS 107

• Distributed modeling [10]. Models can be distributed across
the Web. They reside where they can best be cataloged, in-
dexed, maintained, etc. The model designer can browse dif-
ferent components and combine them to build a more com-
plex model. This approach simplifies collaborative model
definition and model reuse.

There are two main ways of reducing the effort needed to
build the models:

• Providing a library that contains pre-defined classes that may
be used by the user to build the model. In this case, the model
builder usually programs in a general purpose language, such
as Java [11–15].

• Using a special-purpose simulation language and a compiler
that translates the models into other languages, such as Java
and C++. This is our approach.

Parallel and distributed simulation (PADS) [16] has flour-
ished in the latter 1990s [17], having been included in the High
Level Architecture (HLA) [18], and in air traffic and transpor-
tation systems. Transparency as to machine assignment in het-
erogeneous environments is one of the essential properties of
distributed simulation applications. A proper synchronization
of components is also very important. The Java language is es-
pecially applicable to solving this problem.

We have been working for some time on the development of
advanced simulation tools that simplify the generation of edu-
cational courses on the WWW. The courses contain interactive
simulation programs that allow the users to explore the pro-
posed problem, to make changes, etc., promoting a more active
role of the student in the learning process and “learning by dis-
covery.” This follows the tendency of higher education to move
from a teacher-centered paradigm to a student-centered para-
digm [19]. Our work is motivated by the lack of tools directed
to integrating simulation models in courses for the Web. The
languages, tools and procedures that will be presented in this
paper are a first step towards an authoring tool for the construc-
tion of simulation-based Web courses.

The language we are using is an extension of the old CSMP
(Continuous System Modelling Program) language, sponsored
by IBM [20]. We call the new language OOCSMP [21], for its
main difference from CSMP is the addition of object-oriented
constructs which make much easier the simulation of complex
systems based on the mutual interaction of many similar agents
(which can be modeled as collections of objects). The language
can also solve systems of PDEs using finite difference and fi-
nite element methods, and has constructions to produce distrib-
uted simulations.

This language has been used to build a course on Newton’s
gravitation and the solar system [22], a course on ecosystems
[23], and a course on partial differential equations [24]. Capa-
bilities to handle multimedia elements and discrete events have
also been added to the language.

In this paper, we explain the methodology we have devel-
oped to:

• Generate the courses (from the design of the simulation
model, to the publishing on the Web).

• Integrate the multimedia elements in the simulation.

• Automatically generate the model documentation, in the form
of HTML pages.

• Produce distributed simulations.

The third and the fourth point, as well as the instructions to
describe the appearance of the HTML pages, are our new con-
tributions described in this paper.

The paper is organized as follows: Section 2 presents the
procedure that we follow to generate courses based on simula-
tion for the Web. An example of a page of a course on ecology
is shown. In Section 3, the compiler that generates the courses
is presented. Section 4 discusses the extensions added to the
language to produce distributed simulations, and describes an
ecosystem model that can be executed in a parallel manner. Fi-
nally, in Section 5, we present the conclusions and our future
work.

2. Automatic Generation of Courses
We have developed a procedure to generate generic Web courses
based on simulation. The procedure can be applied to any course
dealing with a scientific or technical subject. The course will
consist of HTML pages with simulation applets in them. The
procedures and tools allow us to program (in a high-level lan-
guage) and obtain both the HTML pages and the applets.

In a previous publication [25], this procedure was described
as partially automatic. It has been improved to achieve full au-
tomation, and to permit including multimedia elements in the
simulations. This procedure is shown in Figure 1.

Figure 1. Procedure to generate Web courses

September TRANSACTIONS 2000

108 TRANSACTIONS Volume 17, No. 3

The steps of the procedure will be explained in the following
sections. At the same time, the design of a course on ecology
and the construction of a course page will be shown in detail.

2.1 Step 1: Designing the Course on Paper

The first step is to design the course on paper. Depending on the
course, a single model may be used in one or more (sometimes
all) pages. The steps of the procedure can be applied to any
course that contains simulations. In our case, we want to design
a course on ecology; in another application, the models would
be different, but the steps to be followed remain the same.

The models will be based on the Volterra equations [26] gen-
eralized to make them applicable to multi-level multi-species
ecosystems. Other approaches to ecological simulations are
based on multi-agent simulations [27], multimodels [28], formal

grammars [29], cellular automata [30], etc. The course will con-
sist of seven pages:

• An introductory page, with a three-species ecosystem (one
primary producer, one prey and one predator), with the ap-
propriate parameters to bring the ecosystem out of equilib-
rium. This page will demonstrate the periodicity of this kind
of system.

• A three-species system in total equilibrium.

• A three-species system, originally in total equilibrium, which
is invaded after some time by a new predator. The invasion
takes the system out of total equilibrium, but it soon reaches
an oscillatory stability.

• The same system, this time invaded by a new prey. The
periodical stability attained after some time is different from
the preceding case.

INCLUDE “macros.csm”

* TITLE class Species

* BACKGROUND “ck040bg.gif”

* ABSTRACT This file contains the \ITALIC{Species} class, used to encapsulate

** all the behaviour of a \ITALIC{Species} in one ecosystem.

* AUTHOR Juan de Lara (\LINK{“www.ii.uam.es/~jlara” www.ii.uam.es/~jlara })

* EMAIL Juan.Lara@ii.uam.es

* DATE 2/11/99

* BAR [C,75]

CLASS Species

{

 * name : The Name of the Species.

 NAME name

 * icname : The icon that will be used in some graphical representations.

 ICON icname

* X0 : Initial population.

* M, N1, N2 (\N2) : Parameters for the Volterra equations.

* start : (\start) time when the species enters in the ecosystem.

* max : (\max) maximum population of the species.

* K : (\K) proportionality constant.

 DATA X0, M, N1, N2:=0, start:=0, max:=1000, K:=1

* Ill (\Ill), When (\When), Int (\Int) : Variables to cause epidemics.

 DATA Ill:=10, When:=1000, Int:=1000

 DYNAMIC * Begin main simulation loop

X:=STEP(start)*LIMIT(0,max,XT) * Limit the population at reasonable size

XT:=INTGRL(X0,XP) * Calculate actual population

XP:=K*X*(M-IMPULS(When,Int)*Ill) * Produce an epidemic, if appropriate

Xpdel1 :=0

Xpdel2 :=0

Teats :=0

Teats0 :=0

 ACTION Species S, Percent, Last

* Interaction between species of the same trophic chain

 Xpdel1 +=INSW(Percent, Percent*S.X*S.Teats0/S.Teats, 0)

 Xpdel2 +=INSW(Percent, 0, Percent*S.X*S.X/S.X0)

 Teats +=INSW(Percent, 0, 1)*S.X

 Teats0 +=INSW(Percent, 0, 1)*S.X0

 XP +=INSW(Percent, Last*K*N2*X*Xpdel1*X/X0, Last*K*N1*X*Xpdel2*Teats0/Teats)

}

Listing 1. Species class (file Species.csm)

M. Alfonseca, J. de Lara

Volume 17, No. 3 TRANSACTIONS 109

• A five-species system in equilibrium.

• A five-species system with a user interface that lets the stu-
dent modify the different parameters to perform experiments.
Some of these experiments are suggested by the text in the
page, but the student may perform many more.

• A simulation of an ecosystem with 15 different species that
interact to build complicated trophic chains and ecological
niches. This ecosystem is a simplification of the savanna
ecosystem.

Each page will provide explanations in the appropriate mo-
ment of the simulation. This will be done by including multi-
media elements synchronized with the simulation execution.

2.2 Step 2: Building the Necessary Models

In the second step, we build the models in our continuous simu-
lation language, OOCSMP. In our case, all the models will be
based on a single OOCSMP class, called Species that will en-
capsulate the behavior of a species in one ecosystem. Then, we
will declare one object for each species in the ecosystem. The
OOCSMP code for the Species class is shown in Listing 1.

In the listing, we have added some special comments (the
lines beginning with an asterisk) to help the compiler generate
the model documentation. To achieve this task, the compiler
also takes advantage of the information held in the symbol table
(the classes declared, the methods, parameters and types they
have; the objects and their types; the procedures declared, etc.).
The documentation consists of an HTML file for the main model,
plus an extra page for every class used in the model. Parameter
and object classes are linked to the corresponding class docu-
mentation page. We have added new entries in the compiler sym-
bol table to hold the name of the HTML file and the location
inside the file where each class documentation is located.

Several new special comments have also been included to
provide the compiler with extra information about the model
construction. They indicate the model author, the e-mail address
(a “mailto:” HTML tag is created), an abstract of the model be-
havior, the date when the model was programmed, its title, etc.
All the comments can be included in the OOCSMP main model
or inside the definition of a class. Additional comments control
the visual aspect of the documentation (bars, links, tables, im-
ages with associated explanations, etc.) HTML native code can
also be included inside the OOCSMP model, by means of the
HTML instruction.

We can tell the compiler how to translate some sentences to
HTML (or any other tagged language such as Tex), by means of
macros. For example, the following macro defines how to change
the background appearance:

TRANSLATE “BACKGROUND bckg”,

“<BODY BACKGROUND=bckg>”

The file “macros.csm” includes this and other macros to
make sections with associated targets, to include preformatted
text, etc.

It is also possible to format the text by means of special tags.
Those tags make it possible to do things such us:

• Change the text style, the size, the font; insert list items, tar-
gets, links, etc.

• Give access to the name of the author, the e-mail address
and the date (if specified before) by means of \AUTHOR ,
\EMAIL and \DATE.

• Access the initial values of the simulation variables (in List-
ing 1 this has been done for variables N2 , start , max , K ,
Ill , When and Int). If the variable is a vector or a matrix,
an HTML table is created to show its values.

• Compute simple expressions (not involving OOCSMP blocks,
just diadic and monadic operators). This is done by inserting
the expression between two “$” symbols.

• The compiler counts the number of tables, images and items
in a list, and those counters can be accessed by means of the
tags \TCOUNT , \ICOUNT and \ITEMCOUNT, which can take
part in any expression and are useful to make ordered lists,
and to reference images and tables automatically.

• Access other variables, such as the current date, the current
time, the name of the file, etc.

Compound formats can be created, by means of the STYLE
instruction. For instance:

STYLE “\LLINK{“, “\ITEM{ \LINK{“

creates a compound style called “\LLINK” that can be used to
create a list of links. The styles in a compound style can also be
compound.

2.3 Step 3: Adapting the Model to the Page

In this stage we have to design the simulation runs for every
page in the course. In our example, class Species will be used,
but each ecosystem will contain a different number of species
with different M , N1 and N2 coefficients, to simulate equilib-
rium and oscillating equilibrium situations. In the last page (the
one with the simulation of the simplified savanna ecosystem)
we will use realistic data [31] for the coefficients and the trophic
chains.

As an example for this stage, the construction of page three
(invasion of a predator) will be shown. In this page, we have
initially an ecosystem with three species in equilibrium (Lion ,
Gnu and LGrass), a second predator (Cheetah) will invade the
ecosystem at time = 50. We will create four Species objects,
and the values of the coefficients are tailored so that the system
is initially in total equilibrium (the derivatives of all the popula-
tions must be equal to zero). For the Cheetah object, the de-
fault value of variable start will be overridden with a value
of 50. The resulting model is shown in Listing 2.

2.4 Step 4: Validating the Model

At this point, we have to test the models. The compiler provides
a fast, easy-to-use standalone environment that simplifies test-
ing and allows the course-writer to experiment with many differ-
ent situations. Depending on compiler options, we can choose be-
tween generating C++ or Java code for the problem. For testing

September TRANSACTIONS 2000

110 TRANSACTIONS Volume 17, No. 3

purposes, we usually choose a simple print or a two-dimensional
plot of “interesting” model variables.

C++ is more suitable if the calculation cost of the simulation
is great. On the other hand, we use Java if the model is simple
but requires a complicated output visualization, since we pro-
vide more output forms when generating Java code. The Java
and the C++ code generated are different in some details: the
Java code is multithreaded and has to simulate the pointers; the
C++ code can take advantage of default parameters in construc-
tors and functions, but some optimizations related to memory
management in expressions involving vectors and matrices have
to be done by the compiler. An example of the generated Java
code is shown in Listing 3.

2.5 Step 5: Deciding Type and Position of the
Graphical Outputs

Several output forms can be included in a single simulation prob-
lem. If we choose to generate Java applets, the main panel of
the simulation will be embedded inside the HTML page of the
course. We can assign up to nine graphical outputs to this panel
(in a 3 × 3 grid), but more outputs can be added as separate
windows.

Several graphical outputs can be chosen by the course de-
signer, such as: animated two-dimensional plots, three-dimen-
sional plots, iconic plots, graphics to show the equations graphi-
cally, maps of isosurfaces, graphics to show the nodes of the
grid used to solve a partial differential equation, etc.

In our example, we selected two graphical outputs:

• An animated two-dimensional plot that will be used to show
the populations of all the species in the ecosystem.

• An iconic plot which shows a number of icons representing
each species in proportion to its population.

To complete this stage, we have to add to Listing 2 the in-
structions shown in Listing 4 (see next page).

The first parameter in each instruction defines the position
where the output is going to be placed (at the Center and at the

South of the main panel). The second parameter (Species.X)
means the X attribute of every object belonging to the class
Species. In our case, this would be equivalent to specifying
“Lion.X, Cheetah.X, Gnu.X, LGrass.X ,” but obviously
more general.

2.6 Step 6: Including Multimedia Elements

If we decide to include multimedia elements in the simulation,
in the next step we have to synchronize them with the simula-
tion execution. The general procedure designed to include mul-
timedia elements in a simulation is shown in Figure 2.

The conditions to change between a multimedia element and
another element are OOCSMP logic expressions. When one of
these conditions becomes true, the corresponding element is
launched. In this way, it is easy understand what is happening in
the simulation.

We will explain each step in the procedure shown in Fig-
ure2 with our example.

• In the first step we identify the appropriate multimedia ele-
ments, in our case, a text panel, explaining what happens in
the model (there will be three explanations: before the inva-
sion, when the predator breaks the equilibrium, and when
the oscillatory equilibrium is reached), and an image show-
ing the trophic chain at every moment (two different trophic
chains: before and after the predator invasion).

• In the second step we identify the conditions to change the
texts and the images. Three different intervals are needed:

• From the beginning of the simulation till the invasion of
the predator. This condition can be expressed in OOCSMP
as: START ((TIME>=0)&&(TIME<50))

• From the invasion of the predator to the setting of stability.
This can be set in OOCSMP as:

START ((TIME>=50)&&(Lion.XP<0)&&

Cheetah.XP<0)&&(Gnu.XP<0))

Listing 2. Model for the predator invasion page (file is africa1.csm)

TITLE Three species , invasion of predator

INCLUDE “Species.csm”

* Actual species

Species Cheetah(“Cheet”, “icons/wcat002.gif”, 4,-.028,.0014, .0 , 50)

Species Lion (“Lion”, “icons/lion002.gif”, 2,-.02, .001)

Species Gnu (“Gnu”, “icons/bovin008.gif”, 20,-.02, .0001, .016666666)

Species LGrass (“LGrass”,”icons/leafs015.gif”, 400, .01, 0, .0005)

DYNAMIC * Begin main simulation loop

Species.STEP() * Invoke main section on all Species

Cheetah.ACTION(Gnu, 1, 1) * Begin interactions ...

Lion.ACTION (Gnu, 1, 1) * ...between species

Gnu.ACTION (Lion, - .6, 0) * the methods are invoked...

Gnu.ACTION (Cheetah,- .4, 1) * following the trophic chain.

Gnu.ACTION (LGrass, 1, 1)

LGrass.ACTION (Gnu, - 1, 1)

TIMER delta:=0.01,FINTIM:=900,PRdelta:=.5,PLdelta:=5 * Declare control variables

METHOD ADAMS * Select the integration method

(continued on page 112)

M. Alfonseca, J. de Lara

Volume 17, No. 3 TRANSACTIONS 111

package <NAME>

import java.awt.*;

...

//import objects from our Java library

import csmp.plot.PlotData;

...

public class frm_<NAME> extends (Frame|Applet) implements Runnable [,...]

// other interfaces, depending on the graphical outputs selected...

{

// Declare arrays of simulated pointers to the variables beeing integrated,

// plot and printed ...

...

// Declare the model Data

...

// Declare the graphical objects

...

public void run() // launchs a thread for the calculus (not done in C++)

{ ... }

public void stop()// Stops the thread (not done in C++)

{ ... }

void <NAME>_s2() // Calculus to be done in the simulation loop, the same in C++

{ ... }

void initAllArrays()

{ ... } // initializes the arrays of simulated pointers...(not necessary in C++)

public void frm_<NAME>()

// constructor,adds graphical objects and initializes data, (not necessary in C++)

{ ... }

public void <NAME>_sim(...) // The simulation Loop, is almost the same for C++

{ // Initialize the selected graphical representations

...

for (;;){

<NAME>_s2();

// Print the selected variables

...

// Plot some variables (varies depending on the chosen graphical output)

...

// Perform integration, depending on the selected integration method...

...

}

}

public boolean handleEvent(Event e) // Handles user actions

{...}

private void updateArrays()

// Updates the array of pointers to the variables beeing integrated

{...}

private void updatePlots() // Updates the array of variables to be plotted

{...}

private void updatePrints() // Updates the array of variables to be printed

{...}

// Some other functions depending on the graphical outputs selected

}

Listing 3. A scheme of the Java-generated code

...

PLOT [C], Species.X, TIME

ICONICPLOT [S], Species.X

Listing 4. Adding the graphical outputs to the file africa1.csm

September TRANSACTIONS 2000

112 TRANSACTIONS Volume 17, No. 3

Where XP is the derivative of the population of the cor-
responding species. At the beginning of this interval, we
have to change the text and the image.

• After a state of oscillatory equilibrium is reached. This can
be expressed by means of the DEFAULT clause, which

launches the corresponding multimedia elements when no
other expression is true. At the beginning of this interval, we
have to change the text explanation.

The two multimedia elements will be located in the main
panel, to the right of the previous graphics (E and SE). Listing 5
shows the instructions that must be added to Listing 2 to in-
clude the multimedia elements.

2.7 Step 7: Adding Instructions for the HTML Generation

In the earlier versions of the system [25], links, images, etc.,
had to be manually added to the generated HTML pages. This
process can be now avoided, due to the fact that the simulation
language has been extended with instructions to control the ap-
pearance of the HTML page where the applet will be placed.
We have already described some for the automatic generation
of documentation, which can also be used in this step. Thus
there are two kinds of “HTML appearance” instructions: those
for the documentation (with the asterisk), and those for the course
page. In addition to those, there are other instructions to add
descriptive text, or to include previously compiled models, which
is useful when several simulations have to be placed in the same
page. In these instructions, the compiler translates appropriately
special symbols, such as accented vowels, and others.

Advantage can also be taken of the OOCSMP INCLUDE in-
struction, which provides reusing of HTML sections common
to several pages, such as indexes to other course pages, foot-
notes, headings, etc.

Listing 6 shows the OOCSMP code necessary to obtain the

Figure 2. Procedure to integrate the
multimedia elements with the simulation

Listing 5. Adding the multimedia elements to the file africa1.csm

IMAGEPANEL [E], START ((TIME>0)&&TIME<50)), “inicio.gif”,

DEFAULT, “inv.gif”

TEXTPANEL [SE], START ((TIME>0)&&TIME<50)), “inicio.txt”,

START ((TIME>=50)&&(Lion.XP<0)&&(Cheetah.XP<0)&&(Gnu.XP<0)),

”inv.txt”,

DEFAULT, “equilib.txt”

* Third page of the course on ecology

* AUTHOR Juan de Lara

* EMAIL Juan.Lara@ii.uam.es

* DATE 21/12/99

TITLE The introduction of a predator breaks the equilibrium

DESCRIPTION Let’s see how the introduction of a new predator (at TIME = 50)

DESCRIPTION affects our system in equilibrium.

IMAGE [C], “../images/africa1.JPG”, “Example’s trophic chain”

DESCRIPTION As you can see, the introduction of a new predator causes a

DESCRIPTION decrease on the population of the herbivores.

DESCRIPTION Because of this decrease, an increase on the population of the

DESCRIPTION plants takes place.\n

MODEL [670;630], [C], “africa1.csm”, “/thesis/courses”

INCLUDE “ecoindex.csm”

INCLUDE “footnote.csm”

Listing 6. Instructions to generate the HTML page

M. Alfonseca, J. de Lara

Volume 17, No. 3 TRANSACTIONS 113

third page of the course. This page is shown in Figure 3.
The file ecoindex.csm contains an index, common to all

the pages in the ecology course. The footnote.csm file con-
tains a footnote common to all the courses we have generated.

This course, with the others we have generated with our lan-
guage, can be found on the Internet at:

http://www.ii.uam.es/~jlara/investigacion

3. The Compiler
The compiler we are using to generate the courses is called
C-OOL (a Compiler for the OOCSMP Language), and its work-
ing scheme is shown in Figure 4.

The compiler can generate code for three different object
languages: Java (applets or programs), plain C++, or C++ that
uses the Amulet [32] library. In every case, it is possible to gen-
erate documentation for the models, in the form of HTML pages.

Other systems, such as AME [33] or OOPM [10] also gener-
ate C or C++ code from the simulation models; but in general,
there is a lack of systems that can integrate executable models
with educational courses for the Web.

MGEN (Mesh GENerator) is a graphical tool programmed
in Java that can be used to generate OOCSMP code for the do-
mains, meshes and conditions that will be used to solve a sys-
tem of partial differential equations. The user can also make use
of the standard components in the OOCSMP library, which in-
cludes electronic components, mechanical components, and
components to solve typical partial differential equations.

A user interface is generated automatically, and can be con-
figured by means of compiler options. This is useful if we want
to restrict the possibilities of interaction of the user with the
simulation. The interface allows the student to experiment with
the problem, and to answer “what if...?” questions, in a Visual
Interactive Simulation paradigm [27]. The interface is much
more complete, and the OOCSMP programmer has more out-
put forms available when generating Java code.

4. From Standalone Applications to Distributed
Applications

Traditionally, the term parallel simulation has been applied to
discrete event simulation (PDES) [34]. When it was applied to

Figure 3. The generated course page

September TRANSACTIONS 2000

114 TRANSACTIONS Volume 17, No. 3

continuous simulation, the parallelization efforts have been cen-
tered on the algorithms for the solution of systems of equations,
as well as matrix operations [35]. In our environment (the Web),
this approach is not useful, because it usually implies a fine
grain parallelism (for example, in the resolution of elliptic prob-
lems with iterative methods, each processor is associated with
one or a few matrix elements). The Web environment can have
a very high latency; therefore, we have to increase the granular-
ity, to minimize communications and maximize computation.
On the other hand, the Internet offers us some advantages, such as:

• It is an existing infrastructure.

• It has common and well established communication proto-
cols and mechanisms.

• It is highly scalable.

These advantages are converting the Internet into an inter-
esting framework to solve more interesting and complex prob-
lems [36, 37].

Distribution has been incorporated into OOCSMP using the
rmi Java packages [9] at object level. It is possible to specify in
which machine each object must be created, or if the object must
be replicated in every computer. Each machine taking part in
the simulation has a label, used to specify it independently of its
actual address. In this way, it is easy to change the distribution
scheme by changing the machines assigned to each label. A
simple OOCSMP model is compiled for every machine taking
part in the simulation, with the appropriate compiler options.

Different output visualization forms can be used in each
machine, which makes it possible to visualize (and change) lo-
cal or remote objects. The distribution scheme allows us to use
different integration methods in each machine.

Synchronization points (semaphores) are added automatically
by the compiler, assuring the serialization of the distributed code.
Another synchronization point is added at the end of each simula-
tion step. This guarantees the same simulation time in all the ma-
chines. There is also the possibility of not generating semaphores.

This scheme of distribution is appropriate when we can iden-
tify clusters of objects that interact only between themselves. In
the ecological example, distribution would not be a good solu-
tion, because all the objects interact. Suppose, however, that we
want to simulate several separate ecosystems at the same time.
The species in these ecosystems do not interact, but migration
is possible. The proper solution to this problem is distribution,
as we can assign each ecosystem to a different machine.

Two types of migration have been implemented: seasonal
and due to overpopulation. The migration target is selected be-
tween all the ecosystems in the simulation (the target ecosys-
tem can be in another machine); the migrating species will choose
the ecosystem with fewer individuals of the same species, to
minimize competition.

The information associated with a generic species (food pref-
erence coefficients, type of migration it performs...), was en-
capsulated on a class called MSpecies. We have developed an-
other class (Population) to represent the behavior of a
particular species on a particular ecosystem (containing the ini-
tial and actual number of individuals, a reference to the generic
species it belongs to,...). Each ecosystem has been modeled as a
collection of species. Except for migration, each population in-
teracts only with other species in the same ecosystem.

Using these classes, we have simulated a set of three eco-
systems. One of them is in equilibrium, and has three species
(Lions, Gnus and Grass). The others are not in equilibrium and
have four species (Lions, Gnus, Zebras and Grass). We can ob-
serve an invasion of the Zebras into the first ecosystem, break-
ing the equilibrium.

All the species in the same ecosystem are created in the same
machine, and the classes with information about a generic spe-
cies have been replicated in all the machines. The distributed
model is not much faster than the single processor model, due
to the fact that network time dominates computation time in
this particular example, but as we increase the number of spe-
cies in each ecosystem and the number of ecosystems, the per-
formance of the parallel version increases.

Figure 4. Our C-OOL compiler.

M. Alfonseca, J. de Lara

Volume 17, No. 3 TRANSACTIONS 115

Listing 7 shows the OOCSMP code for this simulation.
The file machines.csm contains the ip address of machines

with labels m1, m2 and m3. For testing purposes, different labels
can point to equal addresses.

The species in each ecosystem invoke method migrate,
which selects the appropriate migration scheme for the current

species. If the migration condition holds, migration takes place.
This is taken as a discrete event (handled by the FCNSW and
INSW instructions), and the integrators are reset, as if we had an
“initial” condition, because an abrupt modification in variable
XP takes place, and this variable is being integrated. FCNSW and

Listing 7. OOCSMP code for the distributed ecosystems simulation

INCLUDE “machines.csm”

* Type of migration constants

DATA EXCESS:=0, SEASON:=1

CLASS MSpecies * Keeps generic information about a species

{

 NAME name * Name of the Species

 ICON spIcon * Icon associated for the output form

 DATA CANMIGRATE, TYPE * Indicate if it can miggrate, and the migration type

 DATA Percent[4], Last[4] * Vectors that indicate the preferences(trophic chains)

 DATA M, N1, N2:=0 * Coefficients of the Volterra equations

}

CLASS Population * Simulates the behaviour of a population of species

{

 NAME popName * Name of the population

 DATA X0, orden * Initial population, order in the trophic chain

 MSpecie Sp * Pointer to the class that it belongs to

 DYNAMIC * Beginning of the main simulation loop for this class

 XT:=INTGRL(X0,XP) * Calculate actual population

 XP:=X*Sp.M * Calculate population increment, with M coefficient.

 X :=INSW(XT,0,XT) * Prevent a population to be negative.

 XPdel1 :=0 * Initializes endogen variables, they will be used...

 XPdel2 :=0 * ...in the ACTION method, that implements species...

 TEats :=0 * ... interaction.

 TEats0 :=0

 DECX num * DECX: method that is called in migrations

 X-=num * Reduce the population in “num”

 XP-=num*Sp.M * Calculate the new increment to apply.

 MIGRATE1 Population Ecos[] * Migration due to overpopulation

 EXCESO := Sp.CANMIGRATE*(2*X0-X) * Calculate the excess of individuals

 EMIGRAN:= INSW(EXCESO,EXCESO,0) * Flag to indicate migration

 POSMIN := POSITION (MIN (Ecos.X), Ecos.X) * Position of the ecosystem with less

* individuals of the same type.

 X+=EMIGRAN * Reduce population (EMIGRAN <= 0)

 XP+=EMIGRAN*Sp.M * Reduce population increment

 INSW (EMIGRAN,Ecos[POSMIN].DECX(EMIGRAN),) * Increment the other population.

 MIGRATE2 Population Ecosys[] * Seasonal Migration

 PMIN := POSITION (MIN (Ecosys.X), Ecosys.X) * Position of the ecosystem with

* less individuals of the same type

 DSEASON := TIME%50 * Calculate if it is migration time

 FCNSW (DSEASON,,INSW(Sp.CANMIGRATE,,Ecosys[PMIN].DECX(-X)),) * If so, discrete...

* event, if the species can migrate

(Listing 7 continued on next page)

(continued on page 118)

September TRANSACTIONS 2000

116 TRANSACTIONS Volume 17, No. 3

* increase target population.

 X-=X*FCNSW(DSEASON,0,Sp.CANMIGRATE,0) * Reduce population to zero.

 XP-=XP*FCNSW(DSEASON,0,Sp.CANMIGRATE,0) * Update increment

 MIGRATE Population Others[], Population Places[] * Migration

 FCNSW (Sp.TYPE, , MIGRATE1(Others), MIGRATE2(Places)) * Invoke the appropriate

* method, depending on the

* migration type.

ACTION Population S * Interaction between species

 XPdel1 +=FCNSW(Sp.Percent[S.orden]*S.TEats, * See [23] for details.

 Sp.Percent[S.orden]*S.X*S.TEats0/S.TEats, 0, 0)

 XPdel2 +=FCNSW(Sp.Percent[S.orden]*S.X0, 0, 0, Sp.Percent[S.orden]*S.X*S.X/S.X0)

 TEats +=FCNSW(Sp.Percent[S.orden], 0, 0, 1)*S.X

 TEats0 +=FCNSW(Sp.Percent[S.orden], 0, 0, 1)*S.X0

 XP +=FCNSW(Sp.Percent[S.orden]*X0, Sp.Last[S.orden]*Sp.N2*X*XPdel1*X/X0, 0,

Sp.Last[S.orden]*Sp.N1*X*XPdel2*TEats0/TEats)

}

* Implement the preferences of each species (trophic chain)

DATA PercLi[4], PercLi[] := 0 0.7 0.3 0 * Lions eat gnus(70%) and Zebras(30%)

DATA LastLi[4], LastLi[] := 0 0 1 0 * Flags vector, with the last position

DATA PercGn[4], PercGn[] := -1 0 0 1 * Gnus eaten by Lions(100%), eat Grass(100%)

DATA LastGn[4], LastGn[] := 1 0 0 1 * Flags vector, with the last position

DATA PercZb[4], PercZb[] := -1 0 0 1 * Zebras eaten by Lions(100%),eat Grass(100%)

DATA LastZb[4], LastZb[] := 1 0 0 1 * Flags vector, with the last position

DATA PercLG[4], PercLG[] := 0 -0.5 -0.5 0 * Grass eaten by Gnus(50%)and Zebras (50%)

DATA LastLG[4], LastLG[] := 0 0 1 0 * Flags vector, with the last position

* Declare the species of the ecosystems

MSpecies Lion(“Lion”,”lion002.gif”,1,EXCESS, PercLi, LastLi,-.0195, .0013982857142857)

MSpecies Gnu (“Gnu”, “bovin008.gif”, 1,SEASON, PercGn, LastGn, -.02, .0002, .03)

MSpecies Zebra(“Zebra”,”zebra003.gif”, 1,EXCESS, PercZb, LastZb, -.01, .0000625, .0075)

MSpecies LGrass(“LGrass”,”leafs015.gif”, 0,EXCESS, PercLG, LastLG, .01, .0 , 0.001)

* Declare each population of each ecosystem.

* The first ecosystem will be placed in machine m1, The population of Zebras has 0

* individuals initially

Population Li1 (“Lion1”, 2, 0, Lion) MACHINE m1

Population Gn1 (“Gnu1”, 20, 1, Gnu) MACHINE m1

Population Zb1 (“Zebra1”, 0, 2, Zebra) MACHINE m1

Population LG1 (“LGrass1”,400,3, LGrass) MACHINE m1

* The Second ecosystem will be placed in machine m2.

Population Li2 (“Lion2”, 2, 0, Lion) MACHINE m2

Population Gn2 (“Gnu2”, 22, 1, Gnu) MACHINE m2

Population Zb2 (“Zebra2”, 20, 2, Zebra) MACHINE m2

Population LG2 (“LGrass2”,300,3, LGrass) MACHINE m2

Listing 7. OOCSMP code for the distributed ecosystems simulation (continued from previous page)

(Listing 7 continued on next page)

M. Alfonseca, J. de Lara

Volume 17, No. 3 TRANSACTIONS 117

* The Second ecosystem will be placed in machine m3.

Population Li3 (“Lion3”, 5, 0, Lion) MACHINE m3

Population Gn3 (“Gnu3”, 3, 1, Gnu) MACHINE m3

Population Zb3 (“Zebra3”, 34, 2, Zebra) MACHINE m3

Population LG3 (“LGrass3”,720,3, LGrass) MACHINE m3

Population Ecosystem1 := Li1, Gn1, Zb1, LG1 * Declare the collection of objects

Population Ecosystem2 := Li2, Gn2, Zb2, LG2 * of each ecosystem.

Population Ecosystem3 := Li3, Gn3, Zb3, LG3

Population Lions := Li1, Li2, Li3 * 3 aditional collections with all

Population Gnus := Gn1, Gn2, Gn3 * the species of the same type.

Population Zebras:= Zb1, Zb2, Zb3

DYNAMIC * Main simulation loop

 NOSORT * Don’t allow the compiler to reorder equations

 Lions.MIGRATE(Lions,Lions) * Perform migration of Lions...

 Gnus.MIGRATE(Gnus,Gnus) * Perform migration of Gnus...

 Zebras.MIGRATE(Zebras,Zebras) * Perform migration of Zebras

 Ecosystem1.STEP() * Main section of Ecosystem1’s populations

 Ecosystem1.ACTION(Ecosystem1) * Interaction of Ecosystem1’s populations

 Ecosystem2.STEP() * Main section of Ecosystem2’s populations

 Ecosystem2.ACTION(Ecosystem2) * Interaction of Ecosystem2’s populations

 Ecosystem3.STEP() * Main section of Ecosystem3’s populations

 Ecosystem3.ACTION(Ecosystem3) * Main section of Ecosystem3’s populations

* Choose output forms, the population of each species will be plotted in the machine

* where the objects have been placed.

PLOT [C], [MACHINE=m1], Ecosystem1.X, TIME * Ecosystem1 is plotted in m1

PLOT [S], [MACHINE=m2], Ecosystem2.X, TIME * Ecosystem2 is plotted in m2

PLOT [N], [MACHINE=m3], Ecosystem3.X, TIME * Ecosystem3 is plotted in m3

* Choose the control variables and the integration method

TIMER delta:=0.01,FINTIM:=320,PRdelta:=.5,PLdelta:=5

METHOD ADAMS

Listing 7. Continued from previous page

September TRANSACTIONS 2000

118 TRANSACTIONS Volume 17, No. 3

INSW can be used as mathematical blocks (returning a value),
or as “event handlers” (when they appear as an instruction), simi-
lar to the constructions IF...THEN and IF...THEN...ELSE
of traditional programming languages. In OOCSMP, “abrupt
changes” of variables being integrated are treated in the same
way when those variables appear in discontinuous blocks, such
as STEP, PULSE, IMPULS, etc.

Basically, methods migrat1 (migration due to overpopula-
tion) and migrat2 (seasonal migration) test for the migration
condition to take place. If so (discrete event), the population of
the actual species is decreased (in the first case, by the excess of
individuals; in the second case, all the individuals migrate) and
the number of individuals in the species of the target ecosystem
is increased. Methods STEP and ACTION are very similar to those
in the previous Species class described above.

Objects of the MSpecies class are replicated (the compiler
replicates the objects in all the machines if we don’t specify a
machine label). Population objects belonging to the same eco-
system have been assigned to the same collection of objects,
and to the same machine.

Finally, a two-dimensional plot of the local objects will show
the graphical output.

To execute this model, it has to be compiled three times,
once for each machine (m1, m2 and m3). The Java classes
MSpecies and Population generated by the compiler remain
the same for each machine, but the main file changes.

5. Conclusions and Future Work
We have presented several procedures and tools that simplify
the generation of Web courses based on simulation. These tools
automatically document the simulation models. The OOCSMP
instructions to design the HTML pages of the course simplify the
task of constructing the course. Portions of the page can be re-
used in different pages, or even in different courses.

Synchronization of the simulation execution with the pre-
sentation of multimedia elements can also be accomplished. The
multimedia elements give the student a better understanding of
what is happening at every moment. The information is given at
the precise instant and in a more rich way than in static HTML
explanations.

We have also detailed some techniques to generate distrib-
uted simulations. Our simulation scheme has the advantage of
permitting the passing of models from single machine models
to distributed models in a natural way, with minimum changes
in the model. The simulation designer does not have to worry
about the low-level implementation of distribution by the sys-
tem, or about the synchronization points, as happens when pro-
gramming with libraries in general purpose languages.

With our distribution scheme, a single model is needed. The
distribution scheme can be easily changed. Each machine can
use a different integration method. Manipulation and change of
remote objects can also be achieved.

As future work, we have several working lines:

• With respect to the language:

• A possible improvement of the instructions to generate
HTML code would be the possibility of defining frames.

Frames would be useful to present course indexes, head-
ings and footnotes.

• More multimedia elements can be added to the language,
such as animations, virtual reality, etc.

• The discrete event handling of our language can be im-
proved by creating an event queue, event types, event
handlers, etc. These extensions are also directed to en-
able agent-oriented simulation [38, 39, 40] in OOCSMP.

• With respect to the distribution scheme: we pretend to mi-
grate from rmi to Corba [9] as the supporting package for
distribution. In this way, we would be able to mix Java and
C++ objects generated by C-OOL in the same problem.

• With respect to the compiler: we are considering the possi-
bility of generating Modelica [41] code.

• With respect to the environment: we are also thinking of
building a graphical environment to construct the courses.
This tool would cover all the stages of the procedures pre-
sented in this paper and would turn OOCSMP and C-OOL
into an authoring tool for simulation courses. Ideally the tool
would also provide facilities for collaborative programming
across the Internet, covering in this way another aspect of
the term “Web-based simulation” [10, 28].

6. References
[1] Thomson Publishing. Internet Distance Education with Visual C++.

http://www.thomson.com/microsoft/visual-c/teacher.h, 1997.

[2] The Globewide Network Academy. http://gnacademy.org, 1997.

[3] Page, E.H., Buss, A., Fishwick, P.A., Healy, K., Nance, R.E. and
Paul, R.J. “Web-Based Simulation: Revolution or Evolution?”
to appear in ACM Transactions on Modeling and Computer
Simulation, 1999.

[4] Aviation Industry CBT Committee on Computer Managed In-
struction. Computer Managed Instruction Guidelines and Rec-
ommendations, AGR 006, Version 1.1, AICC. http://
www.aicc.org/agr006.htm, 1997.

[5] Schutte. “Virtual Teaching in Higher Education: The New Intel-
lectual Superhighway or Just Another Traffic Jam?”
http://www.csum.edu/sociology/virexp.htm, 1997.

[6] Directorate-General XIII. Educational Multimedia: First Elements
of Reflection. Task Force on Multimedia Educational Software,
1996.

[7] Fishwick, P.A. “Web-based Simulation: Some Personal Obser-
vations.” Proceedings of the 1996 Winter Simulation Confer-
ence, Coronado, CA, pp 772-779, 1996.

[8] Schmid, C. “A Remote Laboratory Using Virtual Reality on the
Web.” Special issue of SIMULATION, Web-Based Simulation,
Vol. 73, No. 1, July 1999, pp 13-21, 1999.

[9] Berg, D.J., Fritzinger, S. Advanced Techniques for Java Devel-
opers, Wiley Computer Publishing, 1998.

[10] Cubert, R.M., Fishwick, P.A. “OOPM: An Object-Oriented
Multimodeling and Simulation Application Framework.” SIMU-
LATION, Vol. 70, No. 6, pp 379-395, June 1998.

[11] Healy, K.J., Kilgore, R.A. “Silk: A Java-Based Process Simula-
tion Language.” Proceedings of the 1997 Winter Simulation
Conference, Atlanta, pp 475-482, 1997.

[12] Page, E.H. and Moose, Jr., R.L., Griffin, S.P. “Web-based Simu-
lation in SimJava using Remote Method Invocation.” In Pro-

M. Alfonseca, J. de Lara

Volume 17, No. 3 TRANSACTIONS 119

ceedings of the 1997 Winter Simulation Conference, Atlanta,
pp.468-474, 1997.

[13] Howell, F. and McNab, R. “A Discrete Event Simulation Library
for Java.” Proceedings of the First International Conference
on Web-based Modeling and Simulation, P. Fishwick, D. Hill
and R. Smith (Eds), SCS, San Diego, 1998.

[14] Page, E.H. and Griffin, S.P. “Transparent Distributed Web-Based
Simulation using Simjava.” Proceedings of the First Interna-
tional Conference on Web-based Modeling and Simulation, P.
Fishwick, D. Hill and R. Smith (Eds), SCS, San Diego, 1998.

[15] Perumalla, K.S. and Fujimoto, R.M., “Interactive Parallel Simu-
lations with the Jane Framework.” To appear in Special Issue
of Future Generation Computer Systems, Elsevier Science, 2000.

[16] Fujimoto, R.M. Parallel and Distributed Simulation Systems,
Wiley Interscience, 1999.

[17] Page, E.H., Nicol, D.M., Balci, O., Fujimoto, R.M., Fishwick,
P.A., L’Ecuyer, P. and Smith, R. “Panel: Strategic Directions in
Simulation Research.” Proceedings of the 1999 Winter Simula-
tion Conference, 1999.

[18] Defense Modeling and Simulation Office, HLA Home page,
http://hla.dmso.mil/.

[19] Maly, K., Overstreet, C.M., González, A., Denbar, M., Cutaran,
R., Karunaratne, N., Srinivas, C.J. “Use of Web Technology
for Interactive Remote Instruction.” Proceedings of the Web’97
Conference. On Internet at http://www7.scu.edu.au/programme/
posters/1855/com1855.htm, 1998.

[20] IBM72. Dr. Alfonseca: please provide this reference cita-
tion.

[21] Alfonseca, M., Pulido, E., Orosco, R., de Lara, J. “OOCSMP: An
Object-Oriented Simulation Language.” ESS’97, Passau, pp.44-
48, 1997.

[22] Alfonseca, M., de Lara, J. and Pulido, E. “Semiautomatic Gen-
eration of Educational Courses in the Internet by Means of an
Object-Oriented Continous Simulation Language.” In Proceed-
ings of ESM’98, SCS, pp 547-551, 1998.

[23] Alfonseca, M., de Lara, J. and Pulido, E. “Educational Simula-
tion of Complex Ecosystems in the World-Wide Web.” Pro-
ceedings of ESS’98, SCS, pp. 248-252, 1998.

[24] de Lara, J., Alfonseca, M. “Simulating Partial Differential equa-
tions in the World-Wide Web.” Proceedings of EUROMEDIA
’99, pp-45-52, Munich, 1999.

[25] Alfonseca, M., de Lara, J., Pulido, E. “Semiautomatic Genera-
tion of Web Courses by Means of an Object-Oriented Simula-
tion Language.” Special issue of SIMULATION, Web-Based
Simulation, Vol 73, No. 1, pp. 5-12, July 1999.

[26] Volterra, V. Leçons sur la Thèorie Mathèmatique de la Lutte pour
la Vie. Gauthier-Villards, Paris, 1931.

[27] Campos, A.M.C., Hill, D.R.C. “An Agent-Based Framework for
Visual-Interactive Ecosystem Simulations.” TRANSACTIONS
of the SCS, Vol. 15, No. 4, pp 139-152, 1998.

[28] Fishwick, P.A. “A Multimodeling Basis for Across-Trophic-Level
Ecosystem Modeling: The Florida Everglades Example.”
TRANSACTIONS of the SCS, Vol. 15. No. 2, pp 76-89, 1998.

[29] Csuhaj-Varjú, E., Kelemen, J., Kelemová, A., Paun, G.
“Eco(grammars) Systems–A Grammatical Framework for Life-
like Interactions.” Artificial Life, Vol. 24, pp 1-28, 1997.

[30] Alfonseca, M., Ortega, A. “Representation of Some Cellular Au-
tomata by Means of Equivalent L Systems.” Submitted to Com-
plexity International, 2000.

[31] Rodríguez de la Fuente, F., et al. Enciclopedia Salvat de la Fauna,
Salvat, 1970.

[32] Myers, B., et al. The Amulet v3.0 Reference Manual. Carnegie
Mellon University School of Computer Science Technical Re-
port No. CMU-CS-95-166-R2 and Human Computer Interac-
tion Institute Technical Report CMU-HCII-95-102-R2, 1997.

[33] AME Home page, http://helios.bto.ed.ac.uk/ierm/ame/index.html.

[34] Zeigler, B., and Ahang, G. “Mapping Hierarchical Discrete Event
Models to Multiprocessor Systems: Concepts, Algorithm, and
Simulation.” Journal of Parallel and Distributed Computing,
Vol. 9, pp 271-281, 1990.

[35] Kascic, M.J. “Vector Processing on The Cyber 200.” Infotech
State of the Art Report, “Supercomputers”, Infotech Interna-
tional Ltd, Maidenhead, U.K., pp. 1-38, 1979.

[36] Interim Java Grande Forum Report. “Java Grande Forum.” Tech-
nical Report JGF-TR-4, http://www.javagrande.org/report.htm.

[37] Serbedzija, N.B. “The Web Supercomputing Environment.” Pro-
ceedings of the WWW’97, http://www7.scu.edu.au/programme/
posters/1838/com1838.htm, 1997.

[38] Wooldridge, M., Müller, J.P., Tambe, M. Intelligent Agents II.
Agent Theories, Architectures and Languages, Springer, 1995.

[39] Jennings, N.R., Sycara, K., Wooldridge, M. “A Roadmap of Agent
Research and Development.” Autonomous Agents and Multi-Agent
Systems, Vol. 1, pp 7-38, Kluwer Academic Publishers, 1998.

[40] Swarm Development Group Home page: http://www.swarm.org.

[41] Elmqvist, H., Mattson, S.E. “An Introduction to the Physical
Modeling Language Modelica.” Proceedings of the 9th Euro-
pean Simulation Symposium, ESS’97, SCS, pp 110-114. See
also The Modelica Home page, http://www.Modelica.org, 1997.

Manuel Alfonseca is a Doctor in Electronics
Engineering and Computer Science, with both
degrees from the Universidad Politecnica of
Madrid. He teaches and does research at the De-
partment of Computer Science of the Universidad
Autonoma of Madrid, where he is the Subdirector
of Research. Previously he worked at the IBM
Madrid Scientific Center, where he reached the
level of Senior Technical Staff Member. He is a
Member of SCS, the New York Academy of Sci-

ences, IEEE, ACM, the British APL Association, and the Spanish As-
sociation of Scientific Journalism. He has published more than 150
technical papers and several books on computer language translation,
simulation, complex systems, graphics, databases, artificial intelligence,
object-oriented technology, and theoretical computer science. He also
writes science for the layman (six books and 70 papers in a major Span-
ish daily journal) and children’s literature (19 published books), and
has received the 1988 Lazarillo Award, sponsored by the Ministry of
Culture and the Spanish branch of the IBBY.

Juan de Lara is a Lecturer at the Universidad
Autonoma of Madrid. He obtained his PhD in
June 2000, with a doctoral thesis on Web-based
simulation. In 1996 he became a Higher Engi-
neer in Computer Science. He is also a Techni-
cal Engineer in Computer Science, graduating
in 1994 with a Top of the Class Award. He
worked for Cap-Gemini Spain from 1996
through 1997.

