Automatic Generation of S mulation-Based
Web Coursesand Modea Documentation

Manuel Alfonseca and Juan de Lara

Dept. Ingenieria I nformética, Universidad Autonoma de Madrid, Ctra. De Colmenar, km. 15, 28049 Madrid,
Soain; E-Mail: {Manuel .Alfonseca}{Juan.Lara} @ii.uam.es

This paper presents the procedures and tools that we are using to generate fully automatic multimedia
Web courses based on simulations. These courses are composed of HTML pages with interactive simula-
tions that help the students understand the subject of the course. This is accomplished by means of an
object-oriented simulation language (OOCSMP) that allows us to include information about the appear-
ance of the HTML page where the simulation model is going to be included. The language incorporates
constructions to synchronize multimedia elements with the simulation execution, and to produce distrib-
uted simulations. The compiler for this language (C-OOL) generates Java applets for the simulation
problem, and can generate automatically the documentation for the models, in the form of HTML pages,
using information in the symbol table and special comments included in the model. One example of the
construction of a multimedia simulation page with the simulation of an ecosystem is presented, and its
extension to a distributed simulation environment is explained.

Keywords: Continuous simulation, course generation, Web-based simulation, distributed simulation,
multimedia-enriched simulation, automatic documentation, education, OOCSMP, HTML, Java, C-OOL

1. Introduction

The currently most successful hypermedia system is the World
Wide Web (WWW), which has many advantages over tradi-
tional hypertext applications. This has brought about the cur-
rent proliferation of educational courses on the WWW [1, 2],
which run from asimpletransposition of lecture notes, to pages
including more sophisticated elements, such asanimated graph-
ics, smulations and so forth. Students are also more and more
familiar with browsing the Web and playing computer games.
Such Web users, in order to use simulation, desire tools that
allow quick and easy experimentation [3].

The clear interest towards this field has created a need for
adequate tools to help in the elaboration of the courses, which
should make it possible to express al the possibilities offered
by WWW teaching [4, 5]. In the words of the Directorate-Gen-
era XIII [6]: “Fromnow on, there must be stress on helping to
develop authoring tools, easy to use by the teachers who wish
toincludein their teaching methods multimedia elements (both
local and on the Web).”

Integration of simulation and Web services can be done in
several ways|[7]:

e Thick server approach. Inthis case, the simulation programs
execute at the server, programmed in any language accessible
through the Common Gateway Interface (CGlI). This ap-
proach centralizesthe execution of the models, but increases

the traffic of data in the Web, which may generate perfor-
mance problems.

e Thick client approach [8]. The smulation tools (interpret-
ers, plug-ins, etc.) have to be preloaded or downloaded to
every client, and then executethere. Thisapproach decreases
the datatraffic at the cost of stringent client requirements. If
executable programs are downloaded, there is a danger of
client incompatibility and virus transmission.

» Purenavigator approach. The modelsareintegrated with the
HTML pages making up the educational courses and ex-
ecuted as Java “ applets.” Java has many interesting proper-
ties, such as “write-once, run-everywhere,” that provide cli-
ent independence. This approach means the initial 1oading
of the pages will be slower (the applets have to be down-
loaded), but the model execution may be fast.

» Distributed execution. The models execute simultaneously
in several machinesthat cooperate with each other. If Javais
used asthe programming language, such programs may com-
municate by means of Remote Method Invocation (RMI)
[9], the Java analogue to the traditional and well-known
Remote Procedure Call (RPC) for distributed computing. In
the Java distributed object model, a remote object is one
whose methods can be invoked from another Java Virtual
Machine, potentially on another host.

Received: Month Year; Revised: Month Year; Accepted: July 2000

TRANSACTIONS of The Society for Computer Smulation International
ISSN 0740-6797/00

Copyright © 2000 The Society for Computer Simulation International
Volume 17, Number 3, pp. ##-##

106 TRANSACTIONS Volume 17, No.3

Acknowlegement

This paper was sponsored by the Spanish Interdepartmental
Commission of Science and Technology (CICYT), project number
TEL1999-0181.

M. Alfonseca, J. deLara

» Distributed modeling [10]. Models can be distributed across
the Web. They reside where they can best be cataloged, in-
dexed, maintained, etc. The model designer can browse dif-
ferent components and combine them to build a more com-
plex model. This approach simplifies collaborative model
definition and model reuse.

There are two main ways of reducing the effort needed to
build the models:

» Providingalibrary that contains pre-defined classesthat may
be used by the user to build the model. In thiscase, the model
builder usually programsin agenera purposelanguage, such
as Java[11-15].

» Using aspecial-purpose simulation language and acompiler
that tranglates the modelsinto other languages, such as Java
and C++. Thisisour approach.

Parallel and distributed simulation (PADS) [16] has flour-
ished inthe latter 1990s [17], having been included in the High
Level Architecture (HLA) [18], and in air traffic and transpor-
tation systems. Transparency as to machine assignment in het-
erogeneous environments is one of the essential properties of
distributed simulation applications. A proper synchronization
of componentsis also very important. The Javalanguageis es-
pecially applicable to solving this problem.

We have been working for sometime on the devel opment of
advanced simulation tools that simplify the generation of edu-
cational courses on the WWW. The courses contain interactive
simulation programs that allow the users to explore the pro-
posed problem, to make changes, etc., promoting amore active
role of the student in the learning process and “learning by dis-
covery.” Thisfollowsthetendency of higher education to move
from a teacher-centered paradigm to a student-centered para-
digm [19]. Our work is motivated by the lack of tools directed
to integrating simulation models in courses for the Web. The
languages, tools and procedures that will be presented in this
paper are afirst step towards an authoring tool for the construc-
tion of simulation-based Web courses.

The language we are using is an extension of the old CSMP
(Continuous System Modelling Program) language, sponsored
by IBM [20]. We call the new language OOCSMP [21], for its
main difference from CSMP is the addition of object-oriented
constructs which make much easier the simulation of complex
systems based on the mutual interaction of many similar agents
(which can be modeled as collections of objects). Thelanguage
can also solve systems of PDES using finite difference and fi-
nite element methods, and has constructionsto produce distrib-
uted simulations.

This language has been used to build a course on Newton's
gravitation and the solar system [22], a course on ecosystems
[23], and a course on partial differential equations [24]. Capa-
bilitiesto handle multimedia elements and discrete events have
also been added to the language.

In this paper, we explain the methodology we have devel-
oped to:

» Generate the courses (from the design of the simulation
model, to the publishing on the Web).

* Integrate the multimedia elements in the simulation.

« Automatically generatethe model documentation, intheform
of HTML pages.

¢ Produce distributed simulations.

The third and the fourth point, as well as the instructionsto
describe the appearance of the HTML pages, are our new con-
tributions described in this paper.

The paper is organized as follows: Section 2 presents the
procedure that we follow to generate courses based on simula-
tion for the Web. An example of a page of a course on ecology
is shown. In Section 3, the compiler that generates the courses
is presented. Section 4 discusses the extensions added to the
language to produce distributed simulations, and describes an
ecosystem model that can be executed in a parallel manner. Fi-
nally, in Section 5, we present the conclusions and our future
work.

2. Automatic Generation of Courses

We have devel oped aprocedureto generate generic Web courses
based on simulation. The procedure can be applied to any course
dealing with a scientific or technical subject. The course will
consist of HTML pages with simulation applets in them. The
procedures and tools allow us to program (in a high-level lan-
guage) and obtain both the HTML pages and the applets.

Inaprevious publication [25], this procedure was described
as partially automatic. It has been improved to achieve full au-
tomation, and to permit including multimedia elements in the
simulations. This procedure is shown in Figure 1.

ssaso.d anewoyny

Figure 1. Procedure to generate Web courses

Volume 17, No.3 TRANSACTIONS 107

September TRANSACTIONS 2000

The steps of the procedure will be explained in the following
sections. At the same time, the design of a course on ecology
and the construction of a course page will be shown in detail.

2.1 Sep 1: Designing the Course on Paper

Thefirst stepisto design the course on paper. Depending on the
course, asingle model may be used in one or more (sometimes
all) pages. The steps of the procedure can be applied to any
coursethat contains simulations. In our case, we want to design
a course on ecology; in another application, the models would
be different, but the steps to be followed remain the same.
Themodelswill be based on the Volterraequations [26] gen-
eralized to make them applicable to multi-level multi-species
ecosystems. Other approaches to ecological simulations are
based on multi-agent simulations[27], multimodels[28], formal

grammars[29], cellular automata[30], etc. The coursewill con-
sist of seven pages:

< Anintroductory page, with a three-species ecosystem (one
primary producer, one prey and one predator), with the ap-
propriate parameters to bring the ecosystem out of equilib-
rium. Thispage will demonstrate the periodicity of thiskind
of system.

e A three-species system in total equilibrium.

e A three-speciessystem, originally intotal equilibrium, which
isinvaded after some time by a new predator. The invasion
takesthe system out of total equilibrium, but it soon reaches
an oscillatory stahility.

e The same system, this time invaded by a new prey. The
periodical stability attained after sometimeisdifferent from
the preceding case.

Listing 1. Species class (file Species.csm)

INCLUDE “macros.csm”
* TITLE class Species
* BACKGROUND “ck040bg.gif”

* ABSTRACT This file contains the \ITALIC{Species} class, used to encapsulate
** a]]1 the behaviour of a \ITALIC{Species} in one ecosystem.
Juan de Lara (\LINK{“www.ii.uam.es/~jlara” www.ii.uam.es/~jlara })

* AUTHOR
* EMAIL Juan.Lara@ii.uam.es
* DATE 2/11/99
* BAR [C,75]
CLASS Species
{
* name
NAME name
* icname
ICON icname
X0 : Initial population.
M, N1, N2 (\N2)
start

The Name of the Species.

* % % % %

K : (\K) proportionality constant.

DATA X0, M, N1, N2:=0, start:=0, max:=1000,

* 111 (\I11), When (\When), Int (\Int)
DATA I11:=10, When:=1000, Int:=1000
DYNAMIC

X:=STEP (start)*LIMIT (0, max, XT)

XT:=INTGRL (X0, XP)

XP:=K* X* (M-IMPULS (When, Int)*I11)

Xpdell :=0
Xpdel2 :=0
Teats :=0
Teats0 :=0

ACTION Species S, Percent, Last

* Interaction between species of the same trophic chain
Xpdell +=INSW(Percent, Percent*S.X*S.Teats0/S.Teats, 0)
Xpdel2 +=INSW (Percent, 0, Percent*S.X*S.X/S.XO0)

Teats +=INSW(Percent, 0, 1)*S.X
TeatsO0 +=INSW(Percent, 0, 1)*S.X0

XP +=INSW (Percent, Last*K*N2*X*Xpdell*X/XO0,

The icon that will be used in some graphical representations.

Parameters for the Volterra equations.
(\start) time when the species enters in the ecosystem.
max : (\max) maximum population of the species.

K:=1
Variables to cause epidemics.

Begin main simulation loop
Limit the population at reasonable size
Calculate actual population

*
*
*
* Produce an epidemic, i1f appropriate

Last*K*N1* X* Xpdel2* Teats0/Teats)

108 TRANSACTIONS Volume 17, No. 3

M. Alfonseca, J. deLara

» A five-species system in equilibrium.

» A five-species system with a user interface that lets the stu-
dent modify the different parametersto perform experiments.
Some of these experiments are suggested by the text in the
page, but the student may perform many more.

» A simulation of an ecosystem with 15 different species that
interact to build complicated trophic chains and ecological
niches. This ecosystem is a simplification of the savanna
ecosystem.

Each page will provide explanations in the appropriate mo-
ment of the simulation. This will be done by including multi-
media elements synchronized with the simulation execution.

2.2 Sep 2: Building the Necessary Models

In the second step, we build the modelsin our continuous simu-
lation language, OOCSMP. In our case, al the models will be
based on a single OOCSMP class, called Species that will en-
capsulate the behavior of a speciesin one ecosystem. Then, we
will declare one object for each species in the ecosystem. The
OOCSMP code for the Species classis shown in Listing 1.

In the listing, we have added some special comments (the
lines beginning with an asterisk) to help the compiler generate
the model documentation. To achieve this task, the compiler
also takes advantage of theinformation held in the symbol table
(the classes declared, the methods, parameters and types they
have; the objects and their types; the procedures declared, etc.).
The documentation consists of an HTML filefor themain model,
plus an extra page for every class used in the model. Parameter
and object classes are linked to the corresponding class docu-
mentation page. We have added new entriesin the compiler sym-
bol table to hold the name of the HTML file and the location
inside the file where each class documentation is located.

Severa new special comments have also been included to
provide the compiler with extra information about the model
construction. They indicatethe model author, the e-mail address
(a“mailto:” HTML tag is created), an abstract of the model be-
havior, the date when the model was programmed, itstitle, etc.
All the comments can beincluded in the OOCSM P main model
or inside the definition of aclass. Additional comments control
the visual aspect of the documentation (bars, links, tables, im-
ages with associated explanations, etc.) HTML native code can
also be included inside the OOCSMP model, by means of the
HTML instruction.

We can tell the compiler how to translate some sentences to
HTML (or any other tagged language such as Tex), by means of
macros. For exampl e, thefollowing macro defines how to change
the background appearance:

TRANSLATE “BACKGROUND bckg”,
“<BODY BACKGROUND=bckg>"

The file “macros. csm” includes this and other macros to
make sections with associated targets, to include preformatted
text, etc.

Itisalso possibleto format thetext by means of special tags.
Those tags make it possible to do things such us:

e Changethetext style, the size, thefont; insert list items, tar-
gets, links, etc.

* Give access to the name of the author, the e-mail address
and the date (if specified before) by means of \auTHOR,
\EMATIL and \DATE.

e Accesstheinitial values of the simulation variables (in List-
ing 1 this has been done for variables N2, start, max, K,
111, when and Int). If thevariableisavector or amatrix,
an HrML tableis created to show itsvalues.

e Computesimple expressions (notinvolving oocsmp blocks,
just diadic and monadic operators). Thisisdone by inserting
the expression between two “ $” symboals.

e Thecompiler countsthe number of tables, imagesanditems
inalist, and those counters can be accessed by means of the
tags \ rcounT, \ 1counT and \ 1TEMCOUNT, which can take
part in any expression and are useful to make ordered lists,
and to reference images and tables automatically.

* Access other variables, such as the current date, the current
time, the name of thefile, etc.

Compound formats can be created, by means of the sTyLE
instruction. For instance:

STYLE “\LLINK{“, “ITEM{ \LINK{“

creates a compound style called “ \ Lz Tnk” that can be used to
createalist of links. The stylesin acompound style can also be
compound.

2.3 Sep 3: Adapting the Model to the Page

In this stage we have to design the simulation runs for every
page in the course. In our example, class Species will be used,
but each ecosystem will contain a different number of species
with different m, N1 and n2 coefficients, to simulate equilib-
rium and oscillating equilibrium situations. In the last page (the
one with the simulation of the simplified savanna ecosystem)
wewill userealistic data[31] for the coefficients and the trophic
chains.

Asan example for this stage, the construction of page three
(invasion of a predator) will be shown. In this page, we have
initially an ecosystem with three speciesin equilibrium (zion,
Gnuand LGrass), asecond predator (Cheetah) will invadethe
ecosystem at time = 50. We will create four species objects,
and the values of the coefficients are tailored so that the system
isinitialy intotal equilibrium (the derivatives of all the popula
tions must be equal to zero). For the cheetah object, the de-
fault value of variable start will be overridden with avalue
of 50. The resulting model is shown in Listing 2.

2.4 Sep 4: Validating the Model

At thispoint, we haveto test the models. The compiler provides
afast, easy-to-use standalone environment that simplifies test-
ing and allows the course-writer to experiment with many differ-
ent Situations. Depending on compiler options, we can choose be-
tween generating C++ or Java code for the problem. For testing

Volume 17, No.3 TRANSACTIONS 109

September TRANSACTIONS 2000

Listing 2. Model for the predator invasion page (fileisafrical.csm)

TITLE Three species , invasion of predator

INCLUDE “Species.csm”

* Actual species

Species Cheetah (“Cheet”, “icons/wcat002.gif”, 4,-.028,.0014, .0 , 50)

Species Lion (“Lion”, “icons/lion002.gif”, 2,-.02, .001)

Species Gnu (“"Gnu”, “icons/bovin008.gif”, 20,-.02, .0001, .016666666)

Species LGrass (“LGrass”,”icons/leafs015.gif”, 400, .01, O, .0005)

DYNAMIC * Begin main simulation loop
Species.STEP () * Invoke main section on all Species
Cheetah.ACTION (Gnu, 1, 1) * Begin interactions ...

Lion.ACTION (Gnu, 1, 1) * ...between species
Gnu.ACTION (Lion, - .6, 0) * the methods are invoked...
Gnu.ACTION (Cheetah,- .4, 1) * following the trophic chain.
Gnu.ACTION (LGrass, 1, 1)
LGrass.ACTION (Gnu, -1, 1)
TIMER delta:=0.01,FINTIM:=900,PRdelta:=.5,PLdelta:=5 * Declare control variables
METHOD ADAMS * Select the integration method

purposes, we usually choose asimple print or atwo-dimensional
plot of “interesting” model variables.

C++ismoresuitableif the calculation cost of the simulation
is great. On the other hand, we use Javaif the model is simple
but requires a complicated output visualization, since we pro-
vide more output forms when generating Java code. The Java
and the C++ code generated are different in some details: the
Java code is multithreaded and has to simulate the pointers; the
C++ code can take advantage of default parametersin construc-
tors and functions, but some optimizations related to memory
management in expressionsinvolving vectors and matriceshave
to be done by the compiler. An example of the generated Java
codeisshownin Listing 3.

2.5 Sep 5: Deciding Type and Position of the
Graphical Outputs

Severa output forms can beincluded in asinglesimulation prob-
lem. If we choose to generate Java applets, the main panel of
the simulation will be embedded inside the HTML page of the
course. We can assign up to nine graphical outputsto this panel
(in a 3x 3 grid), but more outputs can be added as separate
windows.

Several graphical outputs can be chosen by the course de-
signer, such as: animated two-dimensional plots, three-dimen-
sional plots, iconic plots, graphicsto show the equations graphi-
cally, maps of isosurfaces, graphics to show the nodes of the
grid used to solve a partial differential equation, etc.

In our example, we selected two graphical outputs:

» Ananimated two-dimensional plot that will be used to show
the populations of all the species in the ecosystem.

» Aniconic plot which shows a number of icons representing
each speciesin proportion to its population.

To complete this stage, we have to add to Listing 2 thein-
structions shown in Listing 4 (see next page).

The first parameter in each instruction defines the position
where the output is going to be placed (at the Center and at the

110 TRANSACTIONS Volume 17, No. 3

South of the main panel). The second parameter (Species. x)
means the x attribute of every object belonging to the class
Species. In our case, this would be equivalent to specifying
“Lion.X, Cheetah.X, Gnu.X, LGrass.X," butobviously
more general.

2.6 Sep 6: Including Multimedia Elements

If we decide to include multimedia elements in the simulation,
in the next step we have to synchronize them with the simula-
tion execution. The general procedure designed to include mul-
timedia elementsin asimulation is shown in Figure 2.

The conditionsto change between amultimediaelement and
another element are OOCSMP logic expressions. When one of
these conditions becomes true, the corresponding element is
launched. Inthisway, it iseasy understand what is happening in
the simulation.

We will explain each step in the procedure shown in Fig-
ure2 with our example.

* Inthefirst step we identify the appropriate multimedia ele-
ments, in our case, atext panel, explaining what happensin
the model (therewill be three explanations: before the inva-
sion, when the predator breaks the equilibrium, and when
the oscillatory equilibrium is reached), and an image show-
ing the trophic chain at every moment (two different trophic
chains: before and after the predator invasion).

* Inthe second step we identify the conditions to change the
texts and the images. Three different intervals are needed:

* From the beginning of the simulation till the invasion of
the predator. Thiscondition can be expressed in OOCSMP
aS. START ((TIME>=0)&s (TIME<50))

* From the invasion of the predator to the setting of stability.
This can be set in OOCSMP as:
START ((TIME>=50) && (Lion.XP<0) &&
Cheetah.XP<0) && (Gnu.XP<0))

(continued on page 112)

M. Alfonseca, J. deLara

Listing 3. A scheme of the Java-generated code

package <NAME>
import java.awt.*;

//import objects from our Java library
import csmp.plot.PlotData;

public class frm <NAME> extends (Frame|Applet) implements Runnable [,...]
// other interfaces, depending on the graphical outputs selected...

{

// Declare arrays of simulated pointers to the variables beeing integrated,
// plot and printed

// Declare the model Data
// Declare the graphical objects

public void run() // launchs a thread for the calculus (not done in C++)

{ ...}

public void stop()// Stops the thread (not done in C++)

{ ...}

void <NAME> s2() // Calculus to be done in the simulation loop, the same in C++
{ ...}

void initAllArrays()

{ ...} // initializes the arrays of simulated pointers... (not necessary in C++)
public void frm <NAME> ()

// constructor,adds graphical objects and initializes data, (not necessary in C++)
{ ...}

public void <NAME> sim(...) // The simulation Loop, is almost the same for C++
{ // Initialize the selected graphical representations

for (;:){
<NAME> s2 () ;
// Print the selected variables

// Plot some variables (varies depending on the chosen graphical output)
// Perform integration, depending on the selected integration method...

}

}

public boolean handleEvent (Event e) // Handles user actions

{ ...}

private void updateArrays ()

// Updates the array of pointers to the variables beeing integrated

{...}

private void updatePlots () // Updates the array of variables to be plotted
{...}

private void updatePrints() // Updates the array of variables to be printed
{ ...}

// Some other functions depending on the graphical outputs selected

}

Listing 4. Adding the graphical outputsto thefile africal.csm

PLOT [C], Species.X, TIME
ICONICPLOT [S], Species.X

Volume 17, No.3 TRANSACTIONS

111

September TRANSACTIONS 2000

0OCSMP model

——

Identify multim edia
elements

PR

Find element changing
conditions

e —

Integrate in the
model

-

Figure 2. Procedure to integrate the
multimedia elements with the simulation

Where xp isthe derivative of the population of the cor-
responding species. At the beginning of thisinterval, we
have to change the text and the image.

» After astate of oscillatory equilibrium is reached. This can

be expressed by means of the pErFauLT clause, which

launches the corresponding multimedia elements when no
other expressionistrue. At the beginning of thisinterval, we
have to change the text explanation.

The two multimedia elements will be located in the main
panel, to theright of the previous graphics (£ and sE). Listing 5
shows the instructions that must be added to Listing 2 to in-
clude the multimedia elements.

2.7 Sep 7: Adding Instructions for the HTML Generation

In the earlier versions of the system [25], links, images, etc.,
had to be manually added to the generated HTML pages. This
process can be now avoided, due to the fact that the simulation
language has been extended with instructions to control the ap-
pearance of the HTML page where the applet will be placed.
We have aready described some for the automatic generation
of documentation, which can also be used in this step. Thus
there are two kinds of “HTML appearance” instructions. those
for the documentation (with the asterisk), and thosefor the course
page. In addition to those, there are other instructions to add
descriptivetext, or to include previously compiled models, which
isuseful when several simulationshaveto be placedinthe same
page. Intheseinstructions, the compiler translates appropriately
special symbals, such as accented vowels, and others.

Advantage can also be taken of the OOCSMP 1NCLUDE in-
struction, which provides reusing of HTML sections common
to several pages, such as indexes to other course pages, foot-
notes, headings, etc.

Listing 6 shows the OOCSMP code necessary to obtain the

Listing 5. Adding the multimediaelementsto thefile arrical.csm

IMAGEPANEL [E], START ((TIME>0) &&TIME<50)), “inicio.gif”,
DEFAULT, “inv.gif”
TEXTPANEL [SE], START ((TIME>O0) &&TIME<50)), “inicio.txt”,
START ((TIME>=50) && (Lion.XP<0) && (Cheetah.XP<0) && (Gnu.XP<0)),
"inv.txt”,
DEFAULT, “equilib.txt”

Listing 6. Instructionsto generate the HTML page

* Third page of the course on ecology

* AUTHOR Juan de Lara

* EMAIL Juan.Lara@ii.uam.es

* DATE 21/12/99

TITLE The introduction of a predator breaks the equilibrium
DESCRIPTION Let’ s see how the introduction of a new predator
DESCRIPTION affects our system in equilibrium.

IMAGE [C], “../images/africal.JPG”, “Example’ s trophic chain”
DESCRIPTION As you can see, the introduction of a new predator causes a
DESCRIPTION decrease on the population of the herbivores.

DESCRIPTION Because of this decrease, an increase on the population of the
DESCRIPTION plants takes place.\n
MODEL [670;630], [C], “africal.csm”,
INCLUDE “ecoindex.csm”

INCLUDE “footnote.csm”

(at TIME = 50)

“/thesis/courses”

112 TRANSACTIONS Volume 17, No. 3

M. Alfonseca, J. deLara

futten [dcdn Y Freooics Heesmesier dpeds

i :-q 1
ﬁ: B
T _.l_._"'"'-
Cheetah
Fop=4

meregss on the popolaton of the plants tabkes place

[L 0

BE —
oo Sl TX ¥
NN

@] Lis

F.n:.i::‘.-\:l" § mepinl chas

Az pou can see, the niroduction of a mew predator canses a decrease oa the populsion of the herbirore. Becanes of this decrease, an

Cunet fee [ROO000 | Fralies [S000

-8

Loiep prass
Pap=400)

T ﬁ.{l
| T

Pap=2 Pap=i lesside, T=350
el

+f

i e
1% 'u,\ ™ f1ooms
iyhr":'

III"T “"x_

L

il & dale o gty sy
H ithen] vidp e

B WFC

Figure 3. The generated course page

third page of the course. This pageis shown in Figure 3.
Thefile ecoindex. csm contains an index, common to all
the pagesin the ecology course. The footnote. csm file con-
tains a footnote common to all the courses we have generated.
This course, with the otherswe have generated with our lan-
guage, can be found on the Internet at:

http://imww.ii.uam.es/~jlara/investigacion

3. TheCompiler

The compiler we are using to generate the courses is called
C-OO0L (aCompiler for the OOCSMP L anguage), and itswork-
ing scheme is shown in Figure 4.

The compiler can generate code for three different object
languages: Java (applets or programs), plain C++, or C++ that
usesthe Amulet [32] library. In every case, it is possible to gen-
erate documentation for the models, in theform of HTML pages.

Other systems, such asAME [33] or OOPM [10] a so gener-
ate C or C++ code from the simulation models; but in general,
thereis alack of systems that can integrate executable models
with educational courses for the Web.

MGEN (M esh GENerator) isagraphical tool programmed
in Javathat can be used to generate OOCSMP code for the do-
mains, meshes and conditions that will be used to solve a sys-
tem of partial differential equations. The user can also make use
of the standard components in the OOCSMP library, which in-
cludes electronic components, mechanical components, and
components to solve typical partial differential equations.

A user interface is generated automatically, and can be con-
figured by means of compiler options. Thisis useful if we want
to restrict the possibilities of interaction of the user with the
simulation. The interface allows the student to experiment with
the problem, and to answer “what if...?" questions, in aVisua
Interactive Simulation paradigm [27]. The interface is much
more complete, and the OOCSM P programmer has more out-
put forms available when generating Java code.

4. From Standalone Applicationsto Distributed
Applications

Traditionally, the term parallel simulation has been applied to
discrete event smulation (PDES) [34]. When it was applied to

Volume 17, No.3 TRANSACTIONS 113

September TRANSACTIONS 2000

| MGEN |

Figure 4. Our C-OOL compiler.

continuous simulation, the parallelizati on eff orts have been cen-
tered on the algorithmsfor the sol ution of systems of equations,
aswell asmatrix operations[35]. In our environment (the Web),
this approach is not useful, because it usually implies a fine
grain parallelism (for example, in the resol ution of elliptic prob-
lems with iterative methods, each processor is associated with
oneor afew matrix elements). The Web environment can have
avery high latency; therefore, we have to increase the granular-
ity, to minimize communications and maximize computation.
Onthe other hand, the Internet offers us some advantages, such as:

e Itisanexisting infrastructure.

It has common and well established communication proto-
cols and mechanisms.

e Itishighly scalable.

These advantages are converting the Internet into an inter-
esting framework to solve more interesting and complex prob-
lems[36, 37].

Distribution has been incorporated into OOCSMP using the
rmi Java packages[9] at object level. It ispossible to specify in
which machine each object must be created, or if the object must
be replicated in every computer. Each machine taking part in
the simulation hasalabel, used to specify it independently of its
actual address. In thisway, it is easy to change the distribution
scheme by changing the machines assigned to each label. A
simple OOCSMP model is compiled for every machine taking
part in the simulation, with the appropriate compiler options.

Different output visualization forms can be used in each
machine, which makes it possible to visualize (and change) lo-
cal or remote objects. The distribution scheme allows us to use
different integration methods in each machine.

Synchronizati on points (semaphores) are added automatically
by the compiler, assuring the seridization of the distributed code.
Another synchronization point isadded at the end of each smula-
tion step. This guarantees the same simulation time in al the ma-
chines. Thereisalso the possibility of not generating semaphores.

114 TRANSACTIONS Volume 17, No. 3

Thisscheme of distribution isappropriate when wecaniden-
tify clusters of objectsthat interact only between themselves. In
the ecological example, distribution would not be a good solu-
tion, because all the objectsinteract. Suppose, however, that we
want to simulate several separate ecosystems at the same time.
The species in these ecosystems do not interact, but migration
is possible. The proper solution to this problem is distribution,
as we can assign each ecosystem to a different machine.

Two types of migration have been implemented: seasonal
and due to overpopulation. The migration target is selected be-
tween all the ecosystems in the simulation (the target ecosys-
tem can bein another machine); the migrating specieswill choose
the ecosystem with fewer individuals of the same species, to
minimize competition.

Theinformation associated with ageneric species (food pref-
erence coefficients, type of migration it performs...), was en-
capsulated on aclass called Mspecies. We have developed an-
other class (Population) to represent the behavior of a
particular species on aparticular ecosystem (containing theini-
tial and actual number of individuals, areferenceto the generic
speciesit belongsto,...). Each ecosystem has been modeled asa
collection of species. Except for migration, each population in-
teracts only with other species in the same ecosystem.

Using these classes, we have simulated a set of three eco-
systems. One of them is in equilibrium, and has three species
(Lions, Gnhus and Grass). The others are not in equilibrium and
have four species (Lions, Gnus, Zebras and Grass). We can ob-
serve an invasion of the Zebras into the first ecosystem, break-
ing the equilibrium.

All the speciesin the same ecosystem are created in the same
machine, and the classes with information about a generic spe-
cies have been replicated in al the machines. The distributed
model is not much faster than the single processor model, due
to the fact that network time dominates computation time in
this particular example, but as we increase the number of spe-
ciesin each ecosystem and the number of ecosystems, the per-
formance of the parallel version increases.

M. Alfonseca, J. deLara

Listing 7 showsthe oocsmp code for this simulation.

Thefilemachines. csmcontainstheip address of machines
with labels m1, m2 and m3. For testing purposes, different labels
can point to equal addresses.

The species in each ecosystem invoke method migrate,
which selects the appropriate migration scheme for the current

species. If the migration condition holds, migration takes place.
This is taken as a discrete event (handled by the Fcysw and
INSw instructions), and theintegrators are reset, asif we had an
“initial” condition, because an abrupt modification in variable
xP takesplace, and thisvariableisbeing integrated. Fcnsw and

(continued on page 118)

Listing 7. OOCSMP code for the distributed ecosystems simulation

INCLUDE “machines.csm”
* Type of migration constants
DATA EXCESS:=0, SEASON:=1
CLASS MSpecies *
{
NAME name *
ICON splcon *
DATA CANMIGRATE, TYPE *
DATA Percent[4] , Last[4] *
DATA M, N1, N2:=0 *
}
CLASS Population *
{
NAME popName *
DATA X0, orden *
MSpecie Sp *
DYNAMIC *
XT :=INTGRL (X0, XP) *
XP:=X*Sp.M *
X :=INSW(XT,0,XT) *
XPdell :=0 *
XPdel2 :=0 *
TEats :=0 *
TEats0 :=0
DECX num
X—=num *
XP-=num* Sp.M *

MIGRATE1l Population Ecos/[]

EXCESO := Sp.CANMIGRATE* (2*X0-X)
EMIGRAN:= INSW (EXCESO,EXCESO, 0)
POSMIN := POSITION (MIN (Ecos.X), Ecos.X

X+=EMIGRAN
XP+=EMIGRAN* Sp.M

Keeps generic information about a species

Name of the Species

Icon associated for the output form
Indicate if it can miggrate,
Vectors that indicate the preferences (trophic chains)
Coefficients of the Volterra equations

Simulates the behaviour of a population of species

Name of the population
Initial population,
Pointer to the class that it belongs to

Beginning of the main simulation loop for this class

Calculate actual population
Calculate population increment,
Prevent a population to be negative.
Initializes endogen variables,
...in the ACTION method,
interaction.

* DECX: method that is called in migrations
Reduce the population in
Calculate the new increment to apply.

INSW (EMIGRAN, Ecos[POSMIN] .DECX (EMIGRAN),) * Increment the other population.
MIGRATE2 Population Ecosys[] * Seasonal Migration
PMIN := POSITION (MIN (Ecosys.X), Ecosys.X) * Position of the ecosystem with
* less individuals of the same type
DSEASON := TIME%50 * Calculate if it is migration time
FCNSW (DSEASON, , INSW (Sp.CANMIGRATE, ,Ecosys[PMIN] .DECX (-X)),) * If so, discrete...
* event, if the species can migrate

and the migration type

order in the trophic chain

with M coefficient.

they will be used...
that implements species...

“num?”

%

Migration due to overpopulation
Calculate the excess of individuals
Flag to indicate migration

Position of the ecosystem with less
individuals of the same type.

* Reduce population (EMIGRAN <= 0)

* Reduce population increment

)

% % %

(Listing 7 continued on next page)

Volume 17, No.3 TRANSACTIONS 115

September TRANSACTIONS 2000

Listing 7. OOCSMP code for the distributed ecosystems simulation (continued from previous page)

* increase target population.
X—-=X* FCNSW (DSEASON, 0, Sp.CANMIGRATE, 0) * Reduce population to zero.
XP-=XP* FCNSW (DSEASON, 0, Sp.CANMIGRATE, 0) * Update increment

MIGRATE Population Others[], Population Placeg[]
FCNSW (Sp.TYPE, , MIGRATE]l (Others), MIGRATE2 (Places))

Migration

Invoke the appropriate
method, depending on the
migration type.

* % % %

ACTION Population S * Interaction between species
XPdell +=FCNSW (Sp.Percent[S.orden] *S.TEats, * See [23] for details.
Sp.Percent[S.orden] *S.X*S.TEats0/S.TEats, 0, 0)

XPdel2 +=FCNSW (Sp.Percent[S.orden] *S.X0, 0, 0, Sp.Percent[S.orden] *S.X*S.X/S.X0)
TEats +=FCNSW(Sp.Percent[S.orden], 0, 0, 1)*S.X
TEats0 +=FCNSW (Sp.Percent[S.orden], 0, 0, 1)*S.X0
XP +=FCNSW (Sp.Percent[S.orden] *X0, Sp.Last[S.orden]* Sp.N2*X*XPdell*X/X0, O,
Sp.Last[S.orden] * Sp.N1* X* XPdel2* TEats0/TEats)
}

* Implement the preferences of each species (trophic chain)

DATA PercLi[4] , PercLi[] =00.7 0.30 * Lions eat gnus(70%) and Zebras (30%)

DATA LastLi[4], LastLi[] := 0 0 10 * Flags vector, with the last position

DATA PercGn[4] , PercGn[] := -1 0 0 1 * Gnus eaten by Lions(100%), eat Grass(100%)
DATA LastGn[4], LastGn[] := 1 0 0 1 * Flags vector, with the last position

DATA Perczb[4] , Perczb[] := -1 0 0 1 * Zebras eaten by Lions (100%),eat Grass(100%)
DATA Lastzb[4] , Lastzb[] := 1 0 0 1 * Flags vector, with the last position

DATA PercL@G[4] , PercLG] := 0 -0.5 -0.5 0 * Grass eaten by Gnus (50%)and Zebras (50%)
DATA LastLG[4], LastLG] := 0 0 10 * Flags vector, with the last position

* Declare the species of the ecosystems

MSpecies Lion(“Lion”,”1ion002.gif”,1,EXCESS, PercLi, LastLi,-.0195, .0013982857142857)
MSpecies Gnu (“Gnu”, “bovin008.gif”, 1,SEASON, PercGn, LastGn, -.02, .0002, .03)
MSpecies Zebra (“Zebra”,”zebra003.gif”, 1,EXCESS, PercZb, LastzZb, -.01, .0000625, .0075)
MSpecies LGrass (“LGrass”,”leafs015.gif”, 0,EXCESS, PercLG, LastlG, .01, .0 , 0.001)

* Declare each population of each ecosystem.
* The first ecosystem will be placed in machine ml, The population of Zebras has 0
* individuals initially

Population Lil (“Lionl”, 2, 0, Lion) MACHINE ml
Population Gnl (“Gnul”, 20, 1, Gnu) MACHINE ml
Population Zbl (“Zebral”, 0, 2, Zebra) MACHINE ml
Population LGl (“LGrassl”,400,3, LGrass) MACHINE ml

* The Second ecosystem will be placed in machine mZ2.

Population Li2 (“Lion2”, 2, 0, Lion) MACHINE m2
Population Gn2 (“Gnuz2”, 22, 1, Gnu) MACHINE m2
Population Zb2 (“Zebraz2”, 20, 2, Zebra) MACHINE m2
Population LG2 (“LGrass2”,300,3, LGrass) MACHINE m2

(Listing 7 continued on next page)

116 TRANSACTIONS Volume 17, No.3

M. Alfonseca, J. deLara

Listing 7. Continued from previous page

* The Second ecosystem will be placed in machine m3.

Population Li3 (“Lion3”, 5, 0, Lion) MACHINE m3

Population Gn3 (“Gnu3”, 3, 1, Gnu) MACHINE m3

Population Zb3 (“Zebra3”, 34, 2, Zebra) MACHINE m3

Population LG3 (“LGrass3”,720,3, LGrass) MACHINE m3

Population Ecosysteml := Lil, Gnl, Zbl, LG1 * Declare the collection of objects

Population Ecosystem2 := Li2, Gn2, Zb2, LG2 * of each ecosystem.

Population Ecosystem3 := Li3, Gn3, Zb3, LG3

Population Lions := Lil, Li2, Li3 * 3 aditional collections with all

Population Gnus := Gnl, Gn2, Gn3 * the species of the same type.

Population Zebras:= Zbl, Zb2, Zb3

DYNAMIC * Main simulation loop
NOSORT * Don’t allow the compiler to reorder equations
Lions.MIGRATE (Lions, Lions) * Perform migration of Lions...
Gnus .MIGRATE (Gnus, Gnus) * Perform migration of Gnus...
Zebras.MIGRATE (Zebras, Zebras) * Perform migration of Zebras
Ecosysteml.STEP () * Main section of Ecosysteml’s populations
Ecosysteml.ACTION (Ecosysteml) * Interaction of Ecosysteml’s populations
Ecosystem2.STEP () * Main section of Ecosystem2’s populations
Ecosystem2.ACTION (Ecosystem2) * Interaction of Ecosystem2’s populations
Ecosystem3.STEP () * Main section of Ecosystem3’s populations
Ecosystem3.ACTION (Ecosystem3) * Main section of Ecosystem3’s populations

* Choose output forms,

* where the objects have

PLOT [C],
PLOT [S],
PLOT [N],

* Choose the control variables and the integration method

TIMER delta:=0.01,FINTIM:=320,PRdelta:=.5,PLdelta:=5
METHOD ADAMS

[MACHINE=m1] ,
[MACHINE=m2] ,
[MACHINE=m3] ,

the population of each species will be plotted in the machine

been placed.

Ecosysteml.X,
Ecosystem?2.X,
Ecosystem3.X,

TIME * Ecosysteml is plotted in ml
TIME * Ecosystem2 is plotted in mZ2
TIME * Ecosystem3 is plotted in m3

Volume 17, No.3 TRANSACTIONS 117

September TRANSACTIONS 2000

1INSw can be used as mathematical blocks (returning a value),
or as“event handlers’ (when they appear asan instruction), simi-
lar to the constructions 1F...THEN and IF. .. THEN. . .ELSE
of traditional programming languages. In OOCSMP, “abrupt
changes’ of variables being integrated are treated in the same
way when those variables appear in discontinuous blocks, such
as STEP, PULSE, IMPULS, €fC.

Basically, methods migrat 1 (migration dueto overpopula-
tion) and migrat2 (seasonal migration) test for the migration
condition to take place. If so (discrete event), the population of
the actual speciesisdecreased (inthefirst case, by the excess of
individuals; in the second case, all theindividuals migrate) and
the number of individualsin the species of the target ecosystem
isincreased. Methods sTEP and acTroN arevery sSmilar tothose
in the previous Species class described above.

Objects of the Mspecies class are replicated (the compiler
replicates the objects in al the machines if we don't specify a
machinelabdl). Population objectsbelongingtothe sameeco-
system have been assigned to the same collection of objects,
and to the same machine.

Finally, atwo-dimensional plot of thelocal objectswill show
the graphical output.

To execute this model, it has to be compiled three times,
once for each machine (m1, m2 and m3). The Java classes
MSpecies and Population generated by the compiler remain
the same for each machine, but the main file changes.

5. Conclusions and Future Wor k

We have presented several procedures and tools that simplify
the generation of Web courses based on simulation. Thesetools
automatically document the simulation models. The oocsmp
instructionsto design the rTML pages of the course simplify the
task of constructing the course. Portions of the page can be re-
used in different pages, or even in different courses.

Synchronization of the simulation execution with the pre-
sentation of multimediaelements can also be accomplished. The
multimedia el ements give the student a better understanding of
what ishappening at every moment. Theinformationisgiven at
the precise instant and in a more rich way than in static FTML
explanations.

We have also detailed some techniques to generate distrib-
uted simulations. Our simulation scheme has the advantage of
permitting the passing of models from single machine models
to distributed models in a natural way, with minimum changes
in the model. The simulation designer does not have to worry
about the low-level implementation of distribution by the sys-
tem, or about the synchronization points, as happens when pro-
gramming with librariesin general purpose languages.

With our distribution scheme, asingle model isneeded. The
distribution scheme can be easily changed. Each machine can
use adifferent integration method. Manipulation and change of
remote objects can aso be achieved.

As future work, we have several working lines:

» With respect to the language:

» A possible improvement of the instructions to generate
HTML codewould bethepossibility of defining frames.

118 TRANSACTIONS Volume 17, No. 3

Frameswould be useful to present course indexes, head-
ings and footnotes.

e Moremultimediaelements can be added to thelanguage,
such as animations, virtual reality, etc.

e Thediscrete event handling of our language can be im-
proved by creating an event queue, event types, event
handlers, etc. These extensions are also directed to en-
able agent-oriented simulation [38, 39, 40] in OOCSMP.

« With respect to the distribution scheme: we pretend to mi-
grate from rmi to Corba [9] as the supporting package for
distribution. In this way, we would be able to mix Java and
C++ objects generated by c-oor in the same problem.

e With respect to the compiler: we are considering the possi-
bility of generating Mode1ica [41] code.

e With respect to the environment: we are also thinking of
building a graphical environment to construct the courses.
This tool would cover al the stages of the procedures pre-
sented in this paper and would turn OOCSMP and C-OOL
into an authoring tool for simulation courses. Ideally thetool
would also providefacilitiesfor collaborative programming
across the Internet, covering in this way another aspect of
the term “Web-based simulation” [10, 28].

6. References

[1] Thomson Publishing. Internet Distance Educationwith Visual C++.
http: //mww.thomson.conmymi crosoft/vi sual-c/teacher.h, 1997.

[2] The Globewide Network Academy. http://gnacademy.org, 1997.

[3] Page, E.H., Buss, A, Fishwick, PA., Healy, K., Nance, R.E. and
Paul, R.J. “Web-Based Simulation: Revolution or Evolution?’
to appear in ACM Transactions on Modeling and Computer
Smulation, 1999.

[4] Aviation Industry CBT Committee on Computer Managed In-
struction. Computer Managed I nstruction Guidelines and Rec-
ommendations, AGR 006, Version 1.1, AICC. http://
www.aicc.org/agr006.htm, 1997.

[5] Schutte. “Virtual Teaching in Higher Education: The New Intel-
lectual Superhighway or Just Another Traffic Jam?”
http: //mmw.csum.edu/soci ol ogy/virexp.htm, 1997.

[6] Directorate-General XI11. Educational Multimedia: First Elements
of Reflection. Task Force on MultimediaEducational Software,
1996.

[7] Fishwick, PA. “Web-based Simulation: Some Persona Obser-
vations.” Proceedings of the 1996 Winter Smulation Confer-
ence, Coronado, CA, pp 772-779, 1996.

[8] Schmid, C. “A Remote Laboratory Using Virtual Reality on the
Web.” Specia issue of SMULATION, Web-Based Simulation,
Vol. 73, No. 1, July 1999, pp 13-21, 1999.

[9] Berg, D.J., Fritzinger, S. Advanced Techniques for Java Devel-
opers, Wiley Computer Publishing, 1998.

[10] Cubert, R.M., Fishwick, PA. “OOPM: An Object-Oriented
Multimodeling and Simulation Application Framework.” SMU-
LATION, Val. 70, No. 6, pp 379-395, June 1998.

[11] Hedly, K.J, Kilgore, R.A. “Silk: A Java-Based Process Simula-
tion Language.” Proceedings of the 1997 Winter Smulation
Conference, Atlanta, pp 475-482, 1997.

[12] Page, E.H. and Moosg, Jr., R.L., Griffin, S.P. “Web-based Simu-
lation in SimJava using Remote Method Invocation.” In Pro-

M. Alfonseca, J. deLara

ceedings of the 1997 Winter Smulation Conference, Atlanta,
pp.468-474, 1997.

[13] Howell, F. and McNab, R. “A Discrete Event Simulation Library
for Java.” Proceedings of the First International Conference
on Web-based Modeling and Smulation, P. Fishwick, D. Hill
and R. Smith (Eds), SCS, San Diego, 1998.

[14] Page, E.H. and Griffin, S.P. “ Transparent Distributed Web-Based
Simulation using Simjava.” Proceedings of the First Interna-
tional Conference on Web-based Modeling and Smulation, P.
Fishwick, D. Hill and R. Smith (Eds), SCS, San Diego, 1998.

[15] Perumalla, K.S. and Fujimoto, R.M., “Interactive Parallel Simu-
lations with the Jane Framework.” To appear in Special 1ssue
of Future Generation Computer Systems, Elsevier Science, 2000.

[16] Fujimoto, R.M. Parallel and Distributed Smulation Systems,
Wiley Interscience, 1999.

[17] Page, E.H., Nicol, D.M., Balci, O., Fujimoto, R.M., Fishwick,
PA., L'Ecuyer, P. and Smith, R. “Panel: Strategic Directionsin
Simulation Research.” Proceedings of the 1999 Winter Smula-
tion Conference, 1999.

[18] Defense Modeling and Simulation Office, HLA Home page,
http://hla.dmso.mil/.

[19] Maly, K., Overstreet, C.M., Gonzdlez, A., Denbar, M., Cutaran,
R., Karunaratne, N., Srinivas, C.J. “Use of Web Technology
for Interactive Remote Instruction.” Proceedings of the Web' 97
Conference. On Internet at http: //mww7.scu.edu.au/programme/
posters/1855/com1855.htm, 1998.

[20] IBM72. Dr. Alfonseca: please provide this reference cita-
tion.

[21] Alfonseca, M., Pulido, E., Orosco, R., deLara, J. “OOCSMP: An
Object-Oriented Simulation Language.” ESS 97, Passau, pp.44-
48, 1997.

[22] Alfonseca, M., de Lara, J. and Pulido, E. “ Semiautomatic Gen-
eration of Educational Coursesin the Internet by Means of an
Object-Oriented Continous Simulation Language.” In Proceed-
ings of ESVI'98, SCS, pp 547-551, 1998.

[23] Alfonseca, M., de Lara, J. and Pulido, E. “Educational Simula-
tion of Complex Ecosystems in the World-Wide Web.” Pro-
ceedings of ESS 98, SCS, pp. 248-252, 1998.

[24] delara, J., Alfonseca, M. “Simulating Partial Differential equa-
tions in the World-Wide Web.” Proceedings of EUROMEDIA
'99, pp-45-52, Munich, 1999.

[25] Alfonseca, M., de Lara, J., Pulido, E. “Semiautomatic Genera-
tion of Web Courses by Means of an Object-Oriented Simula-
tion Language.” Specia issue of SMULATION, Web-Based
Simulation, Vol 73, No. 1, pp. 5-12, July 1999.

[26] Volterra, V. Lecons sur la Théorie Mathématique dela Lutte pour
laVie. Gauthier-Villards, Paris, 1931.

[27] Campos, A.M.C., Hill, D.R.C. “An Agent-Based Framework for
Visua-Interactive Ecosystem Simulations.” TRANSACTIONS
of the SCS Vol. 15, No. 4, pp 139-152, 1998.

[28] Fishwick, PA."“A Multimodeling Basisfor Across-Trophic-Level
Ecosystem Modeling: The Florida Everglades Example.”
TRANSACTIONS of the SCS, Val. 15. No. 2, pp 76-89, 1998.

[29] Csuhagj-Varju, E., Kelemen, J., Kelemova, A., Paun, G.
“Eco(grammars) Systems-A Grammatical Framework for Life-
like Interactions.” Artificial Life, Vol. 24, pp 1-28, 1997.

[30] Alfonseca, M., Ortega, A. “ Representation of Some Cellular Au-
tomataby Meansof Equivalent L Systems.” Submitted to Com-
plexity International, 2000.

[31] Rodriguez delaFuente, F, et al. Enciclopedia Salvat dela Fauna,
Salvat, 1970.

[32] Myers, B., et al. The Amulet v3.0 Reference Manual. Carnegie
Mellon University School of Computer Science Technical Re-
port No. CMU-CS-95-166-R2 and Human Computer |nterac-
tion Institute Technical Report CMU-HCI1-95-102-R2, 1997.

[33] AME Home page, http://helios.bto.ed.ac.ukl/ierm/ame/index.html.

[34] zeigler, B.,and Ahang, G. “Mapping Hierarchical Discrete Event
Models to Multiprocessor Systems: Concepts, Algorithm, and
Simulation.” Journal of Parallel and Distributed Computing,
Vol. 9, pp 271-281, 1990.

[35] Kascic, M.J. “Vector Processing on The Cyber 200.” Infotech
State of the Art Report, “ Supercomputers’, Infotech Interna-
tional Ltd, Maidenhead, U.K., pp. 1-38, 1979.

[36] Interim JavaGrande Forum Report. “ Java Grande Forum.” Tech-
nical Report JGF-TR-4, http://mww.javagrande.org/report.htm.

[37] Serbedzija, N.B. “TheWeb Supercomputing Environment.” Pro-
ceedings of the WMV 97, http: /w7 .scu.edu.au/programme/
posters/1838/com1838.htm, 1997.

[38] Wooldridge, M., Miiller, J.P, Tambe, M. Intelligent Agents II.
Agent Theories, Architectures and Languages, Springer, 1995.

[39] Jennings, N.R., Sycara, K., Wooldridge, M. “ A Roadmap of Agent
Research and Development.” Autonomous Agents and Multi-Agent
Systems, Vol. 1, pp 7-38, Kluwer Academic Publishers, 1998.

[40] Swarm Development Group Home page: http://mww.swarm.org.

[41] Elmqvist, H., Mattson, S.E. “An Introduction to the Physical
Modeling Language Modelica.” Proceedings of the 9th Euro-
pean Smulation Symposium, ESS 97, SCS, pp 110-114. See
also The ModelicaHome page, http://mww.Modédlica.org, 1997.

Manuel Alfonseca is a Doctor in Electronics
Engineering and Computer Science, with both
degrees from the Universidad Politecnica of
Madrid. He teaches and does research at the De-
partment of Computer Science of the Universidad
Autonomaof Madrid, where heisthe Subdirector
of Research. Previously he worked at the IBM
Madrid Scientific Center, where he reached the
level of Senior Technical Staff Member. Heisa
Member of SCS, the New York Academy of Sci-
ences, IEEE, ACM, the British APL Association, and the Spanish As-
sociation of Scientific Journalism. He has published more than 150
technical papers and severa books on computer language trandation,
simulation, complex systems, graphics, databases, artificia intelligence,
object-oriented technology, and theoretical computer science. He also
writes sciencefor thelayman (six booksand 70 papersin amajor Span-
ish daily journal) and children’s literature (19 published books), and
has received the 1988 Lazarillo Award, sponsored by the Ministry of
Culture and the Spanish branch of the IBBY.

Juan de Lara is aLecturer at the Universidad
Autonoma of Madrid. He obtained his PhD in
June 2000, with adoctoral thesis on Web-based
simulation. In 1996 he became a Higher Engi-
neer in Computer Science. He is also a Techni-
cal Engineer in Computer Science, graduating
in 1994 with a Top of the Class Award. He
worked for Cap-Gemini Spain from 1996
through 1997.

Volume 17, No.3 TRANSACTIONS 119

