
Softw Syst Model (2004) 3: 194–209 / Digital Object Identifier (DOI) 10.1007/s10270-003-0047-5

Meta-modelling and graph grammars
formulti-paradigmmodelling inAToM3

Juan de Lara1, Hans Vangheluwe2, Manuel Alfonseca1

1Escuela Politécnica Superior, Ingenieŕıa Informática, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2School of Computer Science, McGill University, 3480 University Street, H2A 2A7 Montréal, Québec, Canada

Received: 30 January 2003/Accepted: 13 October 2003

Published online: 1 April 2004 – Springer-Verlag 2004

Abstract. This paper presents the combined use of
meta-modelling and graph grammars for the generation
of visual modelling tools for simulation formalisms. In
meta-modelling, formalisms are described at a meta-
level. This information is used by a meta-model processor
to generate modelling tools for the described formalisms.
We combine meta-modelling with graph grammars to
extend the model manipulation capabilities of the gen-
erated modelling tools: edit, simulate, transform into
another formalism, optimize and generate code. We store
all (meta-)models as graphs, and thus, express model ma-
nipulations as graph grammars.
We present the design and implementation of these

concepts in AToM3 (A Tool for Multi-formalism, Meta-
Modelling). AToM3 supports modelling of complex sys-
tems using different formalisms, all meta-modelled in
their own right. Models in different formalisms may be
transformed into a single common formalism for fur-
ther processing. These transformations are specified by
graph grammars. Mosterman and Vangheluwe [18] in-
troduced the term multi-paradigm modelling to denote
the combination of multiple formalisms, multiple ab-
straction levels, and meta-modelling. As an example of
multi-paradigm modelling we present a meta-model for
the Object-Oriented Continuous Simulation Language
OOCSMP, in which we combine ideas from UML class
diagrams (to express the OOCSMP model structure),
Causal Block Diagrams (CBDs), and Statecharts (to
specify the methods of the OOCSMP classes). A graph
grammar is able to generate OOCSMP code, and then
a compiler for this language (C-OOL) generates Java ap-
plets for the simulation execution.

Keywords: Meta-modelling – Multi-formalism – Multi-
paradigm modelling – Graph grammars – Model trans-

This is a revised and extended version of a paper presented at
the GT-VMT’02 workshop, see [10]

formation – Code generation – Causal block diagrams –
Statecharts – AToM3 – OOCSMP

1 Introduction

Complex systems are characterized by components and
aspects whose structure as well as behaviour cannot be
described in a single formalism (due to their different na-
ture). For example, if we wish to model a temperature
and level controlled vessel, the controller can be described
with a discrete formalism (such as Petri-Nets or State-
charts [15]) whereas the behaviour of the liquid (which de-
scribes the variation in volume and temperature) should
be described using a continuous formalism (such as Ordi-
nary Differential Equations or CBDs).
One of the approaches to tackle complex systems is

multi-formalism modelling. In this approach the differ-
ent parts of the system are modelled using different for-
malisms. In order to analyze a multi-formalism system, it
is not enough to look at each component in isolation. One
must consider the whole system. For this reason, multi-
formalism modelling attempts to convert all components
into a common formalism which is closed under composi-
tion, so that the whole system can be properly analyzed
or simulated.
In order to make the multi-formalism approach pos-

sible, we still have to solve the problem of dealing with
a plethora of different formalisms. One would like to ded-
icated tools to model in each one of these formalisms,
but the cost of building such tools from scratch is pro-
hibitive. Meta-Modelling is useful to deal with this prob-
lem, as it allows the (possibly graphical) modelling of the
formalisms themselves. A model of a formalism should
contain enough information to permit the automatic gen-
eration of a tool to check and build models subject to

J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3 195

the described formalism’s syntax. The advantage of this
meta-modelling approach is clear: rather than building
a whole application from scratch, it is only necessary to
specify the kind of models we will deal with. If this specifi-
cation is done graphically, the time to develop amodelling
tool can be drastically reduced to a few hours. Other
benefits, such as reduction of testing, ease of change and
maintainability are obvious.
At the very least, the generated tool should be able

to allow the construction of valid models and discover er-
rors in their construction. If (meta-)models are stored as
graphs, further manipulations of the models can be de-
scribed as graph grammars [22]. In Multi-ParadigmMod-
elling and Simulation we are interested in model manipu-
lations such as:

– Model simulation or animation.
– Model optimization, for example, to reduce its com-
plexity.
– Model transformation into another model (equivalent
in behaviour), expressed in a different formalism.
– Generation of (textual) model representations for use
by existing simulators or tools. In this paper we will
focus on this kind of model transformation.

In this article, we present AToM3 [3, 8], a tool which
implements the ideas presented above. AToM3 has ameta-
modelling layer in which formalisms are modelled graph-
ically. From the meta-specification (a model in the En-
tity Relationship formalism extended with constraints),
AToM3 generates a tool to process models described in
the specified formalism. Models are represented inter-
nally using Abstract Syntax Graphs (ASGs), a general-
ization of the concept of Abstract Syntax Trees used by
compilers. The ASG represents – in the form of a graph –
the syntactic information of the model built by the user.
As a consequence, model manipulation can be expressed
as graph grammars.
As an example, we show the generation of a tool

to graphically build OOCSMP [2] models. OOCSMP is
a (textual) object-oriented continuous simulation lan-
guage whose development started in Madrid in 1997. In
this paper we define a meta-model similar to UML class

Table 1. Meta-modelling levels

Level Description Example

Meta-Meta-Model Model describes a formalism that
will be used to describe other for-
malisms. Specified with a meta-
formalism

Description of Entity-Relation-
ship Diagrams, UML Class
Diagrams

Meta-Model Model describes a simulation
formalism. Specified with a meta-
formalism

Description of Deterministic
Finite Automata, Ordinary
Differential Equations (ODE)

Model Description of an object. Specified
with a formalism

f ′(x) = − sin x, f(0) = 0 (in the
ODE formalism)

diagrams [6]. In contrast to UML class diagrams,methods
can be described using graphical formalisms used com-
monly for simulation, such as Statecharts and Causal
Block Diagrams. A model described using the previous
meta-model is translated into (textual) OOCSMP using
a graph grammar. Once the visual model has been trans-
lated into OOCSMP, anOOCSMP compiler can translate
it into Java or C++ for simulation.
The article is organized as follows: Sect. 2 presents the

main ideas behind Multi-Paradigm Modelling. Section 3
gives an overview of the AToM3 tool. Section 4 presents
the meta-model for OOCSMP and for Causal Block Dia-
grams in detail. Section 5 gives an overview of the graph
grammar for code generation. Section 6 presents an ex-
ample, in which a model of a hybrid system (a tempera-
ture and level controlled vessel) is built and OOCSMP
code is generated for subsequent simulation. Section 7
presents some related work and finally Sect. 8 states the
conclusions and future work.

2 Computer AidedMulti-ParadigmModelling

Computer Aided Multi-ParadigmModelling (CAMPaM)
[18, 25] is a research area which has the objective to sim-
plify the modelling of complex systems by combining
three different directions of research:

– Meta-Modelling, which is the process of modelling
formalisms. Formalisms are described as models de-
scribed in meta-formalisms. The latter are nothing
but expressive enough formalisms, such as Entity Re-
lationship diagrams (ER) or UML class diagrams.
A model of a meta-formalism is called a meta-meta-
model; a model of a formalism is called a meta-model.
Table 1 depicts the levels considered in our meta-
modelling approach. Note that we only consider three
levels, although a meta-formalism mf1 can be pow-
erful enough to describe the meta-meta-model of an-
other meta-formalism mf2. We consider both mf1 and
mf2 as meta-formalisms and place them in the same
meta-level. As we will see later, in AToM3 it is usu-

196 J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3

ally the case that meta-formalisms can describe meta-
formalisms as well as formalisms.
To be able to fully specify modelling formalisms, the
meta-formalism may have to be extended with the
ability to express constraints (limiting the number
of meaningful models). For example, when modelling
Deterministic Finite Automata, different transitions
leaving a given state must have distinct labels. This
cannot be expressed within ER diagrams alone. Ex-
pressing constraints is usually done by adding a con-
straint language to the meta-formalism. Whereas the
meta-formalism frequently uses a graphical notation,
constraints are usually given in textual form. For this
purpose, some systems [14] (including ours) take ad-
vantage of the Object Constraint Language OCL [19]
used in the UML. As AToM3 [3] is implemented in the
scripting language Python [21], arbitrary Python code
can also be used.
Another alternative to using constraints is to express
as graph grammar rules, the kind of editing actions
the user can perform at each moment in the modelling
phase. This approach is called syntax-directed [4].
Other kinds of visual editors are called free-hand [17]
and allow the user more flexibility in the model edit-
ing phase, but they have to check that the model
the user is building is correct. In AToM3, free-hand
editing is the default approach, and model correct-
ness is guaranteed by evaluating the constraints de-
fined at the meta-level (and associated with events)
when the user is building the model. In AToM3,
free-hand editing can be combined with the syntax-
directed approach by building graph grammar rules
for editing tasks. See Sect. 7 for some comments about
this.
– Model Abstraction, concerned with the relationship
between models at different levels of abstraction.

Fig. 1. Formalism Transformation Graph (FTG)

– Multi-Formalism modelling, concerned with the coup-
ling of and transformation between models described
in different formalisms. In Fig. 1, a part of the “for-
malism space” is depicted in the form of a Formal-
ism Transformation Graph [24]. The different for-
malisms are shown as nodes in the graph. The solid
arrows between them denote a homomorphic relation-
ship “can be mapped onto”. The mapping consists
of transforming a model in the source formalism into
a behaviourally equivalent one in the target formal-
ism. The dotted, vertical thick arrows denote the ex-
istence of a simulator for the formalism, which pro-
duces simulation traces. This iterative simulation can
be seen as a special case of formalism transformation
(into the “traces” formalism). The vertical dashed line
separates continuous (left) and discrete (right) for-
malisms, whereas the horizontal dashed line below for-
malism “DAE non-causal set” separates causal (up-
per) and non-causal formalisms. It can be observed
how DEVS [26] (Discrete EVent system Specification)
can be a suitable target formalism when the purpose
of the transformation is simulation, as DEVS can be
simulated by parallel, highly efficient simulators based
on the HLA arquitecture.
In our approach, we allow the specification of com-
posite systems by coupling heterogeneous components
expressed in different formalisms. For the analysis of
its properties, the composite system must be assessed
by looking at the whole multi-formalism system. That
is, its components may have to be transformed to
a common formalism, which can be found in the FTG.
In our approach formalisms are meta-modelled and
stored as graphs. Thus, the transformations denoted
by the arrows (both for simulation and for formalism
transformation) of the FTG can be modelled as graph
grammars. In Sect. 6, we present a simple hybrid sys-

J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3 197

tem specified with Statecharts and Causal Block Dia-
grams. Both components are transformed into OOC-
SMP (a causal simulation language whose runtime
system can solve Algebraic, Ordinary and Partial Dif-
ferential Equations) for simulation.

3 AToM3: An overview

AToM3 [3, 8] is a tool which uses and implements the con-
cepts presented above. As it has been implemented in
Python, it is able to run (without any change) on all plat-
forms for which an interpreter for Python is available:
Linux,Windows andMacOS. The main idea of the tool is:
“everything is a model”. During its implementation, the
AToM3 kernel has been bootstrapped from a small ini-
tial kernel. Models were defined for bootstrapped parts
of it, code was generated and then later incorporated
into it. Also, for AToM3 users, it is possible to mod-
ify some of these model-defined components, such as the
(meta-)formalisms and the user interface.
AToM3’s architecture is shown in Fig. 2, where models

are represented as white boxes, having on their upper-
right corner an indication of the formalism they were
specified with. In the figure, and for the example in this
paper – a graphical representation of OOCSMPmodels –
the meta-meta-model is ER (theMMF is also ER, as this
meta-formalismwas bootstrapped). This meta-formalism
is used to describe which are the valid OOCSMP models.
The meta-model obtained is thus OOCSMP, the meta-
formalismMF is ER. Finally, using this OOCSMP meta-
model, it is possible to build OOCSMPmodels such as the
one shown in Fig. 8.
The main component of AToM3 is the Kernel, re-

sponsible for loading, saving, creating and manipulat-
ing models (at any meta-level, with the Graph Rewrit-
ing Processor and graph grammar models), as well as

Fig. 2. The architecture of AToM3

for generating code from the (meta-)+models. This code
(meta-models and meta-meta-models) can be loaded into
AToM3 as shown in Fig. 2 (load Formalism arrows). The
first kind of models allows constructing valid models in
a certain formalism, the second is used to describe the for-
malisms themselves.
The ER formalism extended with constraints is avail-

able at the meta-meta-level. As stated before, it is per-
fectly possible to define other meta-formalisms using ER.
Constraints can be specified as OCL or Python expres-
sions, and are associated with events (similar to event-
programming systems such as Visual Basic). The designer
must specify when (pre- or post- and on which event) the
condition must be evaluated. Events can be related ei-
ther to the abstract syntax (such as editing an attribute,
connecting two entities, etc.) or purely graphical (such as
dragging, dropping, etc.) If the constraint associated with
an event is evaluated to false, the event is cancelled, or un-
done if the constraint was a post-condition. Constraints
can be either associated with entities (local constraints)
or with the whole model (global constraints). In AToM3,
we can also define Actions, similar to Constraints but
with side-effects.
Whenmodelling at the (meta-)+level, the entities that

may appear in a model must be specified together with
their attributes (and constraints and actions as stated
before). For example, to define the Petri Net Formal-
ism, it is necessary to define both Places and Transitions.
Furthermore, for Places we need to add the attributes
name and number of tokens. For Transitions, we need
to add the name attribute. The (meta-)+information is
used by the AToM3 Kernel to generate some Python files,
which, when loaded by the Kernel, allow the processing of
models in the defined formalism (see upper-right corner in
Fig. 2, labelled as “AToM3 (meta-)+models’ structure”.)
One of the components of the generated files is

a model of a part of the AToM3 user interface (see arrow-

198 J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3

like box labelled as “User Interface Model” in the upper-
right corner of Fig. 2) . This user interface model follows
the “Buttons” formalism, and has its own meta-model.
Initially, this model represents the necessary buttons to
create the entities defined in the formalism’s meta-model.
It can be modified by the user to include, for example,
buttons to execute graph grammars on the currentmodel.
In the example of this paper, we define a graph grammar
to generate OOCSMP (textual) code from the OOCSMP
meta-model. We have added a button to the user inter-
face to execute this graph grammar, invoke the OOCSMP
compiler with the generated code, and execute the re-
sulting simulation applets. AToM3 generates this user
interface model by executing a graph grammar on the
meta-model (in the ER formalism) whose interface is to
be generated. The graph grammar traverses the model
and converts each Entity and each Relationship into
a Button (the basic entity of the Buttons formalism).
When a formalism is loaded, this user interface model is
interpreted by AToM3 to create the real buttons in the
user interface. It is envisioned that, in the future, a more
complete user interface model will be generated, possibly
combining the current “Buttons” formalism with a State-
chart model of user interaction dynamics.
In AToM3, entities may have two kinds of attributes:

regular and generative. Regular attributes are used to
identify characteristics of the current entity. Generative
attributes are used to generate new attributes at a lower
meta-level. The generated attributes may be generative
in their own right. Both types of attributes may contain
data or code for pre- and post-conditions.
Entities are connected by means of ports, which can

be named or unnamed. An entity may have both types of
ports. Unnamed ports are used when all the connections
are semantically equal and there is no need to distin-
guish them. A typical example is Statecharts, in which
states have unnamed ports to connect to other states.
Named ports are used when we have different meanings
for the same types of connections. A typical example of
this are the entities in the CBD formalism, where some
entities represent functions to which other entities may be
connected, representing the function’s parameters. One
needs to know exactly which parameter corresponds to
each connection. For example, an INTEGRAL block has
two parameters: the initial condition and the signal to be
integrated. If we connect a block to an INTEGRAL, we
need to know if this connection is to be interpreted as
the initial condition or as the value to be integrated. This
way, two named ports are needed for the INTEGRAL
block to store the connections to each parameter.
In the meta-model, it is also possible to specify the

graphical appearance of each entity of the defined for-
malism. This appearance is, in fact, a special kind of
generative attribute. Objects’ graphical appearance can
be icon-like or arrow-like with optional icon decorations
in the centre, segments and extremes. For example, for
Statecharts, we can choose to represent States as ovals

with the name inside the oval. Transitions are arrow-
like drawings with the events, conditions and actions be-
sides them. That is, we can specify how some semantic
attributes are displayed graphically. Constraints and ac-
tions can also be associated with the graphical entities.
Each graphical form, part of the graphical entity, can
be referenced by an automatically generated name that
has methods to change its graphical properties (colour,
visibility, etc.) That is, in AToM3, graphical manipula-
tions must be explicitly specified by the user by means
of constraints expressed in Python. This is in contrast
with other approaches [4] in which constraint languages
for graphical layout are used. Python constraints have the
drawback of being at a lower abstraction level than a con-
straint language, but they are usually more efficient.

3.1 Graph transformation in AToM3

Graph grammars [22] are a generalization of Chomsky
grammars, for graphs. They are composed of rules; each
having graphs on their left and right hand sides (LHS and
RHS). Rules are evaluated against an input graph (called
host graph). If a matching is found between the LHS of
a rule and a zone in the graph, then the rule can be ap-
plied. When a rule is applied, the matching subgraph of
the host graph is replaced by the RHS of the rule. Rules
can have applicability conditions, as well as actions to be
performed when the rule is applied. Some graph rewrit-
ing systems have control mechanisms to decide which rule
should be checked next. In AToM3, rules are ordered ac-
cording to a priority, and are checked from higher to lower
priority. After the application of a matching rule, the sys-
tem again tries to match, starting from the higher priority
rule in the list. The graph grammar execution ends when
no more applicable rules are found.
Model manipulations can be expressed in AToM3, ei-

ther as Python programs or as graph grammar models.
The latter has the advantage of being a higher-level, nat-
ural, visual, declarative and formal notation. This makes
computations become models, easier to specify, under-
stand, and maintain and frees the user of knowing AToM3

implementation details. The kind of model manipulations
we are interested in include model execution, model op-
timization (for example, reducing its complexity), model
transformation into another formalism, and code gener-
ation. The latter can be seen as a special case of for-
malism transformation. As a drawback, the use of graph
grammars is constrained by efficiency as in the most gen-
eral case, subgraph isomorphism testing is NP-complete.
However, the use of small subgraphs on the LHS of graph
grammar rules, as well as using node and edge types and
attributes can greatly reduce the search space.
In Fig. 3, a transformation of a model between two for-

malisms (Fsource and Fdest) has been depicted. To convert
a model from formalism Fsource to Fdest it is necessary
to use the meta-models for both Fsource and Fdest, to-
gether with the meta-model for graph grammars. The

J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3 199

Fig. 3. Model transformation in AToM3

graph grammar we are presenting in this paper, which
generates OOCSMP textual code from graphical OOC-
SMP models, is not a model transformation, but a code
generation grammar. The OOCSMP models are made
of classes in which methods are specified in Statecharts
or in the CBD formalism. That is, our source formalism
(Fsource in Fig. 3) is (the graphical) OOCSMP, but we do
not need a meta-model for the OOCSMP textual syntax
(Fdest in Fig. 3). This meta-model would be a description
of the Abstract Syntax Graph that an OOCSMP compiler
builds when parsing an OOCSMP program. Instead, we
directly generate OOCSMP textual code from the CBD
or the Statecharts model, rather than representing inter-
nally the OOCSMPmodels as Abstract Syntax Graphs.
In AToM3, graph grammars can be graphically edited

(as any other model), as shown in Fig. 4. The image
shows a moment in the editing of the RHS of a rule. The
graph grammar is composed of three rules (see dialog
window to the left). Note how in AToM3 graph gram-
mars can have actions to be executed before and after the
graph grammar execution. The next dialog window to the

Fig. 4. Editing a Graph Grammar in AToM3

right shows the information about the third rule, named
“gen_OOCSMP_Outputs_CBD”. In AToM3 a rule has
a name, a priority, a time delay, a flag for subtype match-
ing, textual conditions and actions (expressed in Python)
and LHS and RHS models. The time delay flag is used if
the graph grammar is executed in animation mode. Note
how this value can be changed by the actions of the rules.
Other execution modes for graph grammars are step-by-
step and continuous. The subtype matching flag is used
as in the matching process we can specify either an ex-
act type matching between the nodes of the LHS and the
nodes in the host graph or a “subtype matching”. In the
latter case nodes (or connections) in the LHS and in the
host graph do not need to have the same type, but AToM3

checks at run-time whether the node (or the connection)
in the host graph has at least the same set of attributes
as the node in the LHS, that is, if the node in the host
graph is a structural subtype of the node in the LHS. We
do not need to express the subtyping relationship in the
meta-models. This relationship is found at run-time. This
idea is very useful as one can write very general graph
grammars, and reuse them for many formalisms, in unan-
ticipated situations.
The next dialog window to the right of the previous

one shows the RHS of the rule being edited. Nodes and
edges in LHS and RHS are provided with numbers (the
entity we are seeing has been labelled “1”) in such a way
that if a number appears in both LHS and RHS, the node
is not deleted. If it appears in the LHS, but not in the
RHS, the node is deleted. Finally, if the number appears
in the RHS but not in the LHS, the corresponding node is
created. Nodes and connections in the LHS must be pro-
vided with the attribute values that will make a match
with nodes and connections in the host graph. In AToM3

200 J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3

we can specify that any value of these attributes will make
amatch, or we can set a specific value. Attributes of nodes
and connections in the RHS of a rule, can either main-
tain the value (checkbox labelled as “Copy from LHS” in
the right-most dialog window in the figure), receive a spe-
cific value (specified in the different widgets in the dialog
window, depending on the attribute’s type), or calculate
a new one by means of Python code (button labelled as
“Specified”). This code can use other node and connec-
tion attributes.

4 A graphical representation
of OOCSMPmodels

Our approach formodelling complex systemswithAToM3

is to use the most appropriate formalism for each com-
ponent in the system, and translate them into a common
formalism for simulation. In our case, the common formal-
ism is OOCSMP [2]. This is an Object Oriented extension
of the CSMP Continuous Simulation Language [16], de-
veloped at the Universidad Autónoma in Madrid. OOC-
SMP has been extended to handle discrete events, solve
Partial Differential Equations, and produce distributed
simulations. A compiler (called C-OOL) is able to pro-
duce Java applets from the OOCSMP models to perform
the simulation. The C-OOL compiler generates a graphi-
cal user interface for the simulation that allows the users
to experiment, change parameters and answer “what if..?”
questions. One of the main drawbacks of OOCSMP is the
lack of a graphicalmodelling environment:models are text
files whichmust be coded by hand.
OOCSMP models are made of objects that interact

via method invocations. Instructions inside methods are
indeed equations, which the compiler sorts appropriately
in order to be able to solve them (the language is causal).
The main simulation loop is called DYNAMIC, and is

Fig. 5. Using AToM3 for multi-formalism modelling with OOCSMP (methods can be described with CBDs or statecharts)

declared outside any class definition. This is the main sec-
tion of the model and gets solved once for each instant of
time. In OOCSMP models, one should also specify con-
trol variable values, which control some of the simulator
solver parameters, such as the time step, the interval at
which the different outputs get refreshed, etc.
In this section we present a graphical representation

for OOCSMP models (built using AToM3). The idea is
to use AToM3 to describe OOCSMP models in a formal-
ism similar to UML class diagrams, where methods can
be described using either CBDs, Statecharts or directly
in textual OOCSMP. This allows for the specification of
multi-formalism systems in appropriate, graphical and
well-known formalisms instead of using a “lower level”
textual language such as OOCSMP. The models are then
translated into textual OOCSMP code for simulation.
This translation is also a model, expressed in the graph
grammar formalism. The process is illustrated in Fig. 5.
It must be noted that this approach supports meta-model
reuse: once we have the meta-model for the structural
part of OOCSMP, we can easily add meta-models of for-
malisms to specify methods with, in a clean, modular way.
In the figure, it can be seen that both the Statechart and
the CBD meta-models are independent and can be used
separately.
The meta-model for the structural part of OOCSMP

(the UML class-like notation) is quite simple (see Fig. 6).
This meta-model is composed of a single entity called
OOCSMPclass, which can be related to other OOCSM-
Pclass entities by inheritance. These OOCSMPclasses
have a name, a list of Parameters (similar to class at-
tributes) and a list of methods (specified in CBDs, State-
charts or directly in textual OOCSMP). The main simu-
lation loop (the DYNAMIC section) is specified as the
only method of a special object calledMain.
TheMethods attribute is a list with elements of a com-

posite type OOCSMPMethod. Each such element has

J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3 201

OOCSMPInheritance

OOCSMPClass

Name, type=String
Parameters, type=List
Methods, type=List

Fig. 6. A meta-model for OOCSMP
(structural part)

a name, a list of parameters and a body, which is a model
defined either in Statecharts, CBDs or textual OOCSMP.
In AToM3, “types” is just another formalism, and these
composite types (to be assigned to attributes) are de-
clared by building a model (as described in [1]). The
model for theOOCSMPMethod type is shown in Fig. 7. In
the figure, it can be seen that an OOCSMPMethod (node
at the top of the canvas) is a tuple with three components,
aMethod_Name (type String);Method_Parameters, a list
of Parameter entities (a composite type which is a tuple
with a name and a value, which can be a scalar, an object
or a collection of objects), and the method specification.
This last component is a Union, which means that it can
be specified either in the Statechart or CBD formalisms,
or directly in textual OOCSMP syntax. In the latter case,
the OOCSMP textual syntax is not checked by AToM3,
this task is performed by the OOCSMP compiler.
In addition, some attributes have been associatedwith

the OOCSMP meta-model as a whole: its name, author,
and description on the one hand, and control variable
definition on the other. These are variables the user ini-

Fig. 7. A model in the “types” formalism which represents an OOCSMP method

tializes and are used during the simulation to control as-
pects such as the basic time step (delta), the final time
(FINTIM) and the interval at which variables are printed
(PRdelta) or plotted (PLdelta).
With this information, AToM3 generates some Python

files (see Fig. 2, box labelled as “AToM3 (Meta-)+Models’
structure”) which, when loaded in AToM3, allow the user
to graphically build OOCSMPmodels (see Fig. 8). In the
figure, we can see that an OOCSMP class (namedVessel)
has been defined in the left window. This class has a num-
ber of attributes (T0, L0, A, H, C, all of them of scalar
type) and two methods: Behaviour and Controller. The
first is being edited. The dialog window to the right of the
previous one (labelled as “Edit value”) was automatically
generated from the types model shown in Fig. 7 and is be-
ing used to edit the properties of method Behavior. The
method’s body is shown in the top-mostwindow, using the
CBD meta-model. This method models the variation in
temperature and level of the liquid inside a vessel.More de-
tails about this example are given in Sect. 6.
We have modified the user interface generated from

the OOCSMP meta-model by AToM3 adding a button
to execute a graph grammar for the OOCSMP code gen-
eration. Additionally, images have been assigned to the
buttons. This can be seen to the left of the background
window in Fig. 8. We presented the definition of the Stat-
echarts meta-model with AToM3 in [9]. The next subsec-
tion presents the details of the CBD meta-model.

4.1 Describing the Causal Block Diagrams Formalism

The basic element of the CBD formalism is the Block,
which represents transfer functions, such as arithmetic
operators or integrators.Blocks can be connected to other

202 J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3

Fig. 8. The generated tool for OOCSMP modelling (defining an OOCSMP method with the CBD formalism)

blocks, these connections transmit signals between them.
Signals are functions of time. In the meta-model in Fig. 9
we have also included entities to represent constants, con-
trol variables (such as TIME, the basic time interval,
etc.), parameters and outputs. These last elements are
connected to the blocks whose values we want to visual-
ize (print or plot) in the simulation execution. Thus, the
meta-model is made of the following entities:

– Block entities, composed of aName (which is filled au-
tomatically with a unique name by AToM3, but the
user canmodify it) and a field namedType, which is an
enumerate type that indicates the kind of function this
block performs. These functions include infix n-ary
operators, such as “+” and “*”, prefix unary opera-
tors, such as “−”, and functions such as INTEGRAL
and DERIVATIVE. There are 60 blocks in OOCSMP,
all of them included in this meta-model. Block entities

also have aValue, which is the result of the application
of the block’s function to its parameters, six named
ports for connecting input blocks, and one named port
for output. The input ports are used in some types of
Blocks (such as INTEGRAL and DERIVATIVE) to
distinguish the inputs. Other blocks (such as the adder
or the multiplier) do not need to distinguish between
individual ports.
– Constant entities, which represent values that do not
change during the simulation. They are composed of
a Value (a float) and a Name (a string).
– Output entities are used to indicate which Block
values should be displayed in the simulation (once the
model is compiled into OOCSMP). This entity is com-
posed of an attribute named Type (to select whether
the value should be plotted or printed) and another at-
tribute called Location to select in which part of the
user interface (automatically generated by C-OOL,

J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3 203

Fig. 9. Meta-model of CBDs, expressed in the ER formalism

the OOCSMP compiler) the output panel should be
located. It accepts nine possible values: NW, N, NE,
W, C, E, SW, S, SE. Two additional named ports,
Dependent and Independent, allow to distinguish be-
tween dependent and independent variables while
plotting. Dependent variables are calculated by means
of expressions possibly containing other dependent
and independent variables. Usually, the independent

Fig. 10. Defining the graphical appearance of Output entities

variable is time. The independent variable is repre-
sented on the X-axis, while dependent variables are
represented on the Y-axis.
Figure 10 shows a dialog window used to describe the
graphical appearance of Output entities. The list on
the left shows the semantic attributes of the entity.
The canvas in the middle allows the user to draw the
graphical appearance that will be associated with the

204 J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3

entity. In this canvas, it is possible to show semantic
attributes. In this case the canvas shows the Type at-
tribute. Notice that it is also possible to put in the
canvas as many instances of the named ports (the two
last attributes in the Attributes list) as desired, but all
connections to any of the instances of the same named
port are stored in the same attribute. In this example,
we have added two instances of ports Dependent and
Independent (shown as little circles in the border of
the rectangles). The button labelledConnector is used
to add unnamed ports to the canvas. Notice also that
it is possible to specify graphical constraints by means
of the “Set Constraint” button.
– Control_Variable entities are used to include in the
model those variables used by the simulator to control
the simulator execution. These entities have only one
attribute, which is an enumerate type with the control
variable to be selected: TIME (the simulation time),
delta, (the time step size for the numerical integration)
PRdelta and PLdelta (communication intervals, that
is, time elapsed between output refreshes, for printing
panels and for plot panels). For example, TIME is of-
ten used as the independent variable for plotting, and
we frequently place this control variable connected to
an Output entity of type plot.
– Parameter entities, which are used to input or output
values to the outside of this component. These entities
have a Name, a Value and a Type that can be either
Input, Output or both.

In order to keep the model correct, some constraints
have to be added:

– The number of connections to the Independent port of
Output entities is one. This constraint is local to Out-
put entities and must be verified before saving and be-
fore applying a graph grammar, as we want the model
to be always correct in this respect. In this way, we
ensure that all saved models are correct and that all
models to which a graph grammar is applied (such as
the one for code generation explained in Sect. 5) are
also correct.
– The number of connections that Block entities can re-
ceive depends on its type. For example, integrators
receive two, whereas adders can receive any number
of connections greater than one. This means that we
cannot set the exact number as the arity of the rela-
tionship Connected_to_Block in the meta-model. We
have to set a local constraint on Block entities, that
makes sure that, depending on the Type attribute, the
number of connections is the correct one.

The tool generated from this meta-model description
can be seen in the top-most window in Fig. 8. We have
modified the default user interface model generated by
AToM3, in such a way that we have only left the buttons
to create Blocks, Outputs, Parameters, Control Variables
and Constants. The buttons to create relationships have

been eliminated, as relationships are created when con-
necting entities.

5 Generating OOCSMP code

As was mentioned before, one of the main drawbacks of
OOCSMP is the lack of a graphical modelling environ-
ment. Models are textual files which must be coded by
hand. The work in this paper provides such an environ-
ment, replacing the OOCSMP syntax by graphical, well-
known simulation formalisms. This has the advantage
that one does not have to remember the exact OOCSMP
syntax, but only use graphical simulation formalisms.
That is, the user can use graphical modelling formalisms,
as opposed to coding directly in the “low-level” OOC-
SMP (low-level, from the point of view of these high-level,
graphical formalisms).
In this section, we show how to produce OOCSMP

code for the modelling environment generated in the pre-
vious section. This task can be performed with a graph
grammar. The initial action of the graph grammar opens
a file to store the OOCSMP code and adds an extra at-
tribute (visited) to all the nodes of the graph (that is,
to all the classes in the model). This attribute controls
whether code for that node has been already generated,
and is initialized to 0. The initial action also writes in
the file the name of the simulation model and of the
author.
The only rule of the graph grammar traverses each

of the classes declared in the model, generating code for
the attributes. Then, for each method, the rule calls an-
other graph grammar, specifically built for the formalism
in which this method is expressed. The next subsection
explains the graph grammar for code generation from
CBD. The called graph grammar generates code for the
method, specified either in Statecharts, in CBD or in tex-
tual OOCSMP. The advantage of this approach is that
graph grammars that generate OOCSMP code from dif-
ferent formalisms are independent and modular.
The final action in the grammar generates code to give

values to the control variables, including the final time,
the communication intervals (PLdelta and PRdelta) and
the time advance (delta). These were indicated as global
attributes of the model (see Sect. 4).
Of course, there are more efficient ways to generate

code from visual models than by using a graph grammar.
For example, coding the algorithm in Python and access-
ing the AToM3 API for retrieving the model elements.
But graph grammars provide high level control mechan-
isms which allow the user to perform complex manip-
ulations and graph matching, and the user can specify
model manipulations without too much knowledge of the
AToM3 internals.
The next subsection presents the graph grammar to

generate OOCSMP code from methods described in the
CBD formalism.

J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3 205

Fig. 11. Graph Grammar for OOCSMP code generation
from methods specified as block diagrams

5.1 Generating OOCSMP code from the methods specified
in the CBD formalism

The initial action of this graph grammar adds an extra
attribute (visited) to all the nodes of the graph except
Control Variables (that is, to all Constant, Block and
Output nodes). This attribute controls whether code for
that node has already been generated, and is initialized to
0. The graph grammar is composed of three rules, none
of which changes the matching subgraph. It is shown in
Fig. 11. We use the notation “n(x)” in the “action” sec-
tion to refer to the node in the host graph which matches
the LHS node whose label is “x”.
Rule number one is applied when a Constant node is

found that has not been previously processed. The rule
generates a DATA statement for the constant node and
marks it as visited. Rule number two is applied when
a Block node is found that has not been previously pro-
cessed. It generates the appropriate OOCSMP syntax,
depending on the type of the block, and marks it as vis-
ited. Rule number three is applied when an Output node
is found that has not been previously processed. It gener-
ates the necessary OOCSMP code to output the variables
connected to it (plotted or printed). Note how, in the “ac-
tion” sections, we are accessing the connected elements
of the nodes (through ports), as these may have an arbi-
trary number of connections. Another approach is to use
similar ideas with amalgamated and parallel graph trans-
formation [23], which allow dealing with variable context
by combining and syncronizing productions.

6 Example: A temperature
and level controlled vessel

As an example of how to apply the concepts and tools pre-
sented above, we introduce a toy model to illustrate the

usefulness of the approach. In the example, we consider
a temperature and level controlled liquid in a vessel. This
is a modification of the system described in [5], where
structural change is the main issue. On the one hand,
the liquid can be heated or cooled; on the other hand, li-
quid can be added or removed (we do not consider phase
changes for this simple example). The liquid’s tempera-
ture T and level L are governed by the following Ordinary
Differential Equation model:

dT

dt
=
1

L

[
W

cρA
−φT

]
(1)

dL

dt
= φ if 0< L<H else 0 (2)

is_low= (L < Llow) (3)

is_full= (L> Lhigh) (4)

is_cold= (T < Tcold) (5)

is_hot= (T > Thot) (6)

The inputs to the model are φ, the flow rate, and W ,
the rate at which heat is added or removed. The model’s
parameters are A, the cross-section surface of the vessel,
H, its height, c, the specific heat of the liquid and ρ, the li-
quid density. Equations (3)–(6) set threshold output sen-
sors, which are the outputs of this model and are sent to
the discrete-event controller. Equations (1)–(6) have been
included in method Behaviour in class Vessel (see Fig. 8)
using CBDs. Note how, in the model, the is_low, is_full,
is_cold and is_hot flags appear as green boxes (parame-
ters), labelled as “Output” at the bottom of the model.
Their value is calculated with the OOCSMP block INSW,
which returns the second argument if the first argument is
less than zero, else it returns the third argument. The in-
puts of the model appear labelled as Fi andW, to the top
of the window. Note also how we are plotting the value of
L and T with respect to time.
The other part of the system is a controller for the

temperature and the level, which tries to maintain both
quantities between certain limits. This is implemented
as a Statechart (shown in Fig. 12) and is embedded in
method Controller in the Vessel class. The idea is to have
an orthogonal component for the temperature and an-
other one for the level. Each component has three states,
corresponding to the situation in which the quantity to
control (level or temperature) is high, medium or low.
The possible events (that is, the model’s inputs) which
make the system change its state are is_low, is_high,
is_cold and is_hot. As associated actions to these events,
φ and W are modified. For example, if the system is in
state cold in orthogonal component temperature and re-
ceives the event IS_COLD, it increases W by some fixed
amount DW and remains in the same state (responding
to subsequent IS_COLD events in the same way) until
the event IS_COLD is no longer sent by the Behaviour
model. φ andW are the outputs of this model, which are
fed to method Behaviour. Finally, the main simulation
loop is modelled as textual OOCSMP code and contains

206 J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3

Fig. 12. Defining the controller for the Vessel in the Statecharts formalism

Fig. 13. A moment in the simulation of the vessel model

the appropriate invocation of methods Behaviour and
Controller.
This model is transformed into OOCSMP for simu-

lation using the graph grammar defined in Sect. 5. Once
the model has been compiled into Java with C-OOL, we
can execute the simulation. A moment in the simula-
tion is shown in Fig. 13. In the upper plot, the variation
of temperature and level is shown. After some tran-
sitory effects at the beginning of the simulation (not
shown), the temperature reaches an oscillatory equi-
librium. In the middle plot the values of IS_COLD,
IS_HOT, IS_LOW and IS_HIGH are shown. It can
be observed how IS_COLD is switching from 0 to
1 periodically to maintain the temperature between

the limits. The listing at the bottom shows some of
the variable values. This simulation applet is available
at http://www.ii.uam.es/∼jlara/investigacion/
ecomm/hybrid.html for the reader interested in experi-
menting with it.

7 Related work

There are some similar tools in the graph grammars com-
munity, such as GenGed [4], which builds syntax directed
or free-hand visual modelling environments. Their ideas
are similar to ours, butwedonotpose thediagram’s graph-
ical appearance as Constraint Satisfaction Problems. It is

J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3 207

the meta-model designer who, by means of pre- and post-
conditions and actions, expressed as Python code, must
take care of the graphical layout. Sometimes, this can be
more difficult than using constraints, but our approach of-
fers more efficiency as constraint solvers tend to be slow.
Other systems also make a clear distinction between ab-
stract and concrete (graphical information) syntax, with
a flexible mapping between both models. The current ver-
sion of AToM3 only supports a one-to-one mapping from
entities into icons and relationships into arrows.
DiaGen [17] is a tool based on hypergraph grammars

that may combine characteristics of free-hand and syntax-
directed editors. The user inputs a textual specification
of the visual language and obtains a set of Java classes
which are complemented by a Java library to obtain the
visual environment. In AToM3, the specification of the vi-
sual language (the meta-model) is done graphically, and
the generated files are loaded again into AToM3. There
is no structural difference between the generated editors
(which could be used to generate other ones!), and the edi-
tor which generated them. In fact, one of the main differ-
ences of the approach taken in AToM3 with other similar
tools, is the concept that (almost) everything in AToM3

has been defined by a model (under the rules of some for-
malism) and thus the user canmodify it.
In the simulation community, with respect to com-

plex systems modelling, the approach of [20] is similar to
ours. They have implemented several editors for continu-
ous (sequential function charts) and discrete formalisms
(Statecharts) using the meta-modelling tool DoME [11].
The user builds composite models with these editors.
Models are subsequently translated into the object ori-
ented simulation language MODELICA [12]. In DoME,
model manipulations must be expressed either in the
Lisp-like language Alter or in Smalltalk; in our approach
they can be visually specified by means of graph gram-
mars (combined with Python if desired).
A different approach to the modelling of complex sys-

tems is Paul Fishwick’s Multi-Modelling [13]. His ap-
proach deals with multi-formalism (a multi-model can
be composed of components described in different for-
malisms) and multiple abstraction levels. To synchronize
the system at its highest level, a coordinator is used to dir-
ect the events to the appropriate models (co-simulation).
The approach of the Ptolomey [7] environment is another
example of the power of this approach. It is noted that its
power is partly due to the fact that it is an integrated en-
vironment, which does not need to interface with external
simulations.
Our approach (Multi-Paradigm Modelling) proposes

Meta-Modelling as a method to obtain a tool to model
in each formalism, and translates models between for-
malisms for the purpose of simulation and analysis. This
previous step (translation) to simulation makes the simu-
lation process cleaner and permits analysis of properties
of the multi-formalism model with tools available in the
base formalism. In addition, when a model is translated

into a formalism, there are possibilities to apply opti-
mizing transformations. If the translation process goes
throughmultiple formalisms, then one can apply optimiz-
ing transformation in each formalism. For example, if all
the components of a multi-formalism system are trans-
lated, say, to Petri-Nets, then one can use complexity
reduction transformations and later reachability analy-
sis to verify that certain system states are reachable. In
contrast, in the Multi-Modelling approach, one cannot
apply these analysis tools, as each component has been
described in a different formalism and no transformation
to a common formalism is performed. As stated in the in-
troduction, it is not sufficient to look at properties of the
subcomponents in isolation, one should look at the prop-
erties of the system as a whole.

8 Conclusions and future work

In this paper we have presented an overview of AToM3,
a tool which makes the generation of modelling tools
possible by combining meta-modelling and graph gram-
mars. By means of meta-modelling, it is easy to de-
fine the syntax of the kind of models we are interested
in. By means of graph grammars we can express model
manipulation, such as simulation, optimization, trans-
formation and code generation. As an example, we have
presented the generation of a visual modelling environ-
ment for OOCSMP. For that purpose, we have designed
a meta-model similar to UML class diagrams, in which
methods can be described using Statecharts, CBDs or
OOCSMP textual code. Thus, the user does not have
to know the OOCSMP syntax, but may use some well-
known simulation formalisms. These are then translated
into OOCSMP syntax using a graph grammar for subse-
quent simulation.
The advantages of using an automated tool for gen-

erating customized model-processing tools are clear: in-
stead of building the whole application from scratch, it is
only necessary to specify – in a graphical manner – the
kind of models we will deal with. The processing of such
models can be expressed by means of graph grammars, at
the meta-level. Our approach is also highly applicable if
we want to work with a slight variation of some formal-
ism, where we only have to specify the meta-model for
the new formalism and a transformation into a “known”
formalism (for example, one that already has a simulator
available). We then obtain a tool to model in the new for-
malism, and are able to convert models in this formalism
into the other for further processing.
In the future, we plan to extend the tool in several

ways:

– Exploring the automatic proof of behavioural equiv-
alence between two models in different formalisms
by bi-simulation. This may help in validating that
a graph grammar for formalism transformation is
correct.

208 J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3

– Integrating a module to help the user decide which
alternatives are available at a certain moment of the
modelling of a multi-formalism system. This module
may assist in deciding which formalism to use to trans-
form each component (using the Formalism Trans-
formation Graph, see [24]).
– Extending the tool to allow collaborative modelling.
This possibility, as well as the need to exchange and
re-use (meta-. . .) models, raises the issue of formats
for model exchange. A viable candidate format is
XML.
– Extend the user interface model (which is generated
by AToM3 for meta-models) with Statecharts. This
will allow the user to control more complex behaviours
of the generated tool.
– Provide the tool with automatic layout algorithms for
the graphical representation of the models. These can
be specially useful after applying a graph grammar
which modifies the model’s structure.

TheMeta Object Facility (MOF) [19] is anOMG stan-
dard for a meta-metamodel. Using this MOF Model, one
could define different metamodels (for example for UML).
Using XMI it is possible to automatically obtain DTDs
and XML documents for the models. It is worth exploring
either the possibility of meta-modelling the MOF Model
or to change the current AToM3 “hard-wired” primitives
for meta-generation to make it “MOF compatible”. This
would require a completely separate model for the graphi-
cal representation of models as well, together with a much
more flexible mapping from abstract to concrete syntax
(such as in GenGed).
With respect to AToM3 as a front end for OOCSMP,

we would like to improve the graph grammar for code
generation from CBD models, to distinguish expressions
whose value is not going to change during the simulation.
These values may be calculated at the beginning of the
simulation (in a section called INITIAL) rather than at
each time step. We are also working to extend the num-
ber of formalisms available to specify OOCSMP models,
in particular we are working on meta-modelling Forrester
System Dynamics and their translation into OOCSMP.

Acknowledgements. The authors would like to thank three anony-
mous referees for their useful comments. Juan de Lara and Manuel
Alfonseca gratefully acknowledge partial sponsorship for this work
by the Spanish Ministry of Science and Technology (MCYT),
project number TIC2002-01948. Hans Vangheluwe gratefully ac-
knowledges partial support for this work by a National Sciences
and Engineering Research Council of Canada (NSERC) Individual
Research Grant.

References

1. Aho AV, Sethi R, Ullman JD (1986) Compilers, principles,
techniques and tools. Chapter 6, Type Checking. Addison-
Wesley

2. Alfonseca M, Pulido E, Orosco R, de Lara J (1997) OOCSMP:
An Object-Oriented Simulation Language. In: Proceedings of
the 9th European Simulation Symposium ESS97, SCS Int.,

Erlangen, Germany, pp. 44–48. See the OOCSMP home page
at: http://www.ii.uam.es/∼jlara/investigacion/download/
OOCSMP.html

3. AToM3 home page: http://atom3.cs.mcgill.ca
4. Bardohl R, Ermel C, Weinhold I (2002) AGG and GenGED:
Graph Transformation-Based Specification and Analysis
Techniques for Visual Languages. In: Proc. GraBaTs 2002.
Electronic Notes in Theoretical Computer Science,
vol 72(2)

5. Barros FJ, Zeigler BP, Fishwick PA (1998) Multimodels and
dynamic structure models: an integration of DSDE/DEVS
and OOPM. In: Proceedings of the 1998 Winter Simulation
Conference, pp 413–419

6. Booch G, Rumbaugh J, Jacobson I (1999) The Unified Model-
ing Language User Guide. Addison Wesley

7. Davis II J, Hylands C, Kienhuis B, Lee EA, Liu J, Liu X, Mu-
liadi L, Neuendorffer S, Tsay J, Vogel B, Xiong Y (2001) Het-
erogeneous Concurrent Modeling and Design in Java. Tech-
nical Memorandum UCB/ERL M01/12, EECS, University of
California, Berkeley. See also:
http://ptolomey.eecs.berkeley.edu/publications

8. de Lara J, Vangheluwe H (2002) AToM3: A Tool for Multi-
Formalism Modelling and Meta-Modelling. In: European Con-
ferences on Theory And Practice of Software Engineering
ETAPS’02, Fundamental Approaches to Software Engineer-
ing (FASE). Lecture Notes in Computer Science, vol 2306.
Springer-Verlag, pp 174–188

9. de Lara J, Vangheluwe H (2002) Computer Aided Multi-
Paradigm Modelling to process Petri-Nets and Statecharts.
In: 1st International Conference on Graph Transformations,
ICGT’2002 (Barcelona). Lecture Notes in Computer Science,
vol 2505, pp 239–253

10. de Lara J, Vangheluwe H, Alfonseca M (2002) Using Meta-
Modelling and Graph Grammars to create Modelling Environ-
ments. In: Graph Transformations and Visual Modelling Tech-
niques (GT-VMT) Workshop, Barcelona. Electronic Notes in
Theoretical Computer Science, vol 72(3)

11. DOME guide (2000) http://www.htc.honeywell.com/dome/,
Honeywell Technology Center. Honeywell, version 5.3

12. Elmqvist H, Mattson SE (1997) An Introduction to the Phys-
ical Modeling Language Modelica. In: Proceedings 9th Euro-
pean Simulation Sympossium ESS97, SCS Int., Erlangen, pp
110–114. See also http://www.modelica.org

13. Fishwick P, Zeigler BP (1992) A Multimodel Methodology for
Qualitative Model Engineering. ACM Transactions on Mod-
elling and Computer Simulation 1(2):52–81

14. Gray J, Bapty T, Neema S (2000) Aspectifying Constraints in
Model-Integrated Computing. In: OOPSLA 2000: Workshop
on Advanced Separation of Concerns, Minneapolis, MN, Oc-
tober, 2000

15. Harel D (1987) Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8:231–274

16. IBM Corp. (1972) Continuous System Modelling Program III
(CSMP III) and Graphic Feature (CSMP III Graphic Feature)
General Information Manual. IBM Canada, Ontario, GH19-
7000

17. Minas M (2002) Specifying Graph-like diagrams with DIA-
GEN. Science of Computer Programming 44:157–180

18. Mosterman P, Vangheluwe H (2002) Computer Automated
Multi-Paradigm Modeling. ACM Transactions on Modeling
and Computer Simulation 12(4):1–7. Special Issue Guest Ed-
itorial

19. OMG Home Page: http://www.omg.org
20. Pereira Remelhe M, Engel S, Otter M, Derarade A, Moster-
man P (2002) An Environment for Integrated Modelling of
Systems with Complex Continuous and Discrete Dynamics.
In: Lecture Notes in Control and Information Systems, vol
279, pp: 83–105

21. Python home page: http://www.python.org
22. Rozenberg G (ed) (1999) Handbook of Graph Grammars
and Computing by Graph Transformation. Vol. 1. World
Scientific

23. Taentzer G (1996) Parallel and Distributed Graph Transform-
ation. Formal Description and Application to Communication-
Based Systems. PhD Dissertation, Shaker Verlag

J. de Lara et al.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3 209

24. Vangheluwe H (2000) DEVS as a common denominator for
multi-formalism hybrid systems modelling. In: Varga A (ed)
IEEE International Symposium on Computer-Aided Control
System Design. IEEE Computer Society Press, Anchorage,
Alaska, pp 129–134

25. Vangheluwe H, de Lara J, Mosterman P (2002) An Introduc-
tion to Multi-Paradigm Modelling and Simulation. In: Pro-
ceedings of AI, Simulation and Planning – AIS’2002. Lisbon.
SCS International, pp: 9–20

26. Zeigler BP, Praehofer H, Kim TG (2000) Theory of mod-
elling and simulation: Integrating discrete event and continu-
ous complex dynamic systems, second ed. Academic Press

Juan de Lara is an an assis-
tant professor at the Computer
Science Department of the Uni-
versidad Autónoma in Madrid,
where he teaches Software En-
gineering. He holds a PhD degree
in Computer Science, and works
in areas such as Web based Simu-
lation, Agent based Simulation
and Multi-Paradigm Modelling.
In the latter area he worked
as a postdoc at the MSDL lab

headed by prof. Hans Vangheluwe.
His e-mail address is Juan.Lara@ii.uam.es, and his web page
is www.ii.uam.es/∼jlara.

Hans Vangheluwe is an as-
sistant professor in the School
of Computer Science at McGill
University, Montréal, Canada
where he teaches Modelling and
Simulation, as well as Software
Design. He also heads the
Modelling, Simulation and
Design Lab (http://msdl.cs.
mcgill.ca). Some of his model
compiler work has led to the
WEST++ tool, which was com-

mercialised for use in the design and optimization of Waste
Water Treatment Plants. He was the co-founder and coor-
dinator of the European Union’s ESPRIT Basic Research
Working Group 8467 “Simulation in Europe”, and a founding
member of the Modelica Design Team.
His e-mail address is hv@cs.mcgill.ca, and his web page is
www.cs.mcgill.ca/∼hv.

Manuel Alfonseca is direc-
tor of the Higher Polytechni-
cal School in the Universidad
Autónoma of Madrid. From 1972
to 1994 he was Senior Techni-
cal Staff Member at the IBM
Madrid Scientific Center. He
works on simulation, complex
systems and theoretical com-
puter science.
His e-mail address is Manuel.
Alfonseca@ii.uam.es, and his

web page is www.ii.uam.es/∼alfonsec.

