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Cellular automata. A cellular automaton is defined as the six-fold
(G,Gy,N,Q, f,T), where GG is a matrix of automata. Gg is the initial
state of the grid and is a mapping Go : G — @ an injective function that
assigns an initial state to each automaton in the grid. N (neighborhood)
is a function that assigns to each automaton in the grid the set of its
neighbors. @ is the set of possible states of every automaton in the grid.
f is the transition mapping f : Q@ x Q" — @ where f(qo, (q1,---,qn)),n =
Q is the next state of any automaton in the grid if its current state is
qo and whose neighborhood’s states are (g1, ...,q,). T C @Q is the set of
final or target states. Every automata in the grid has the same number
of neighbors, transition mapping and set of possible and final states.

It is obvious that each finite automaton in the grid is defined a =

(Qna Qa fa GO(G’)’T)

Probabilistic Cellular Automata. Cellular automata are probabilis-
tic if each automaton in the grid is a probabilistic finite automata.

In probabilistic cellular automata, the automata on the grid choose
thir next state from a set of options, assigning probabilities to each
transition while the pure non-deterministic approach only establishes
the set of options.

A probabilistic cellular automaton is the six-fold (G, Gy, N, Q, M, T),
where G, N, Q,T are defined as in a cellular automaton, and Gy is the
initial state of the grid and is the mapping Gy : G — ([0,1] N R) |Vz €



G = Zfﬁ i (Go (7)) = 1, an injective function that assigns an initial
state vector to each automaton in the grid. The state’s vector of an
automaton shows the probability that the automaton be in each state.
The following notations will be used indistinctly in the following pages:

[1; (Go (z)) = [, (Go (z))=probability that the automaton z is in
state ¢; at the initial moment.

M is the transition matrix, a matrix of probabilities of transition
between states, with dimension #Q"™ x #Q X #Q. In order to sim-
plify the notation that M is considered a family of #Q" square matrices
#0Q x #Q (there is a matrix for each particular neighborhood config-
uration). Each finite probabilistic automaton a in the grid is defined

a = (QnaQaMa Go(a),T)

Example: assume an infinite square grid. The concatenation of the
row and column indices identifies the automaton at this position in the
grid. Von Neumann neighborhood will be used. Automata are binary,
that is @ = {0,1}. The cellular automaton is

pear — (G1,Go, Ny, Q, M, T) where Gi € Mz 7, is an infinite square
matrix of automata around position (0,0). Go(z) = 0.5Vz € Q, i.e.
each state is initially equiprobable. N,, : F — F4V(i,j) € Z x
Z, Nyy (G[Za]]) = (G[Z - 1a]] ) G[Zaj + 1] )
Gli+1,7], Gli,j — 1] right)

0.1 0.9 0.3 0.7 0.5 0.5 0.7 0.3
[0.8 02] [04 0.6] [0.6 04] [02 0.8}
0.9 0.1 0.7 0.3 0.5 0.5 0.7 0.3
Vo [ 0.2 08 ] [ 0.4 06 ] [ 0.6 0.4 ] [ 02 08 ]
0.9 0.1 0.7 0.3 0.5 0.5 0.7 0.3
[0.2 []8] [04 [].6] [0.6 04] [02 08}
0.1 0.7 0.5 02 08

0.9 0. 703 0.5 0. )
[ 0.2 0.8 ] [ 0.4 0.6 ] [ 0.9 0.1 } [ 0.4 0.6 }
where matrices are disposed from left to right and from top to down.
The first matrix is Mygop and the last is My111.

1
Let us choose an automaton in the grid and name it x. | 4 | x | 2

3

Assume that the five automata have the following probability vectors
at a given moment (the indices identify the automata in the previous
figure, the first position in the vector is the probability of be 0): p; =
(0.2,0.8),p2 = (0.6,0.4), p3 = (0.3,0.7),p4 = (0.9,0.1), p, = (0.1,0.9)

If the neighborhood configuration of automaton x were, for instance
(0,1,0,0), the following matrix operation computes the next state vector



for automaton x: p, X Moyigo.

The probability of this situation is p;[0] * pa[1] * p3[0] * p4[0]. We
have to compute the equivalent probabilities for all possible neighbor-
hood configurations and add the results, thus getting:

P X (Zz’,j,k,le{ﬂ,l} (p1[i] * p2[g] * palk] x p4[l]) x Mijkl) which can be ex-
pressed by means of the tensor product, where the dot operator repre-
sents the element by element matrix product.

Dy X (Z (H;e{1,2,3,4} pm) ° M)

A configuration of a probabilistic cellular automaton. A con-
figuration C of a probabilistic cellular automaton is a time dependent
mapping C(t) : F — @ that assigns a state to each automaton in the
grid.

The probability that a probabilistic cellular automaton (A) is in a
given configuration (C) at a given moment (t) will be denoted p; 4(C)
where ¢t and A will be omitted whenever they are obvious from the con-
text.

Each automaton in the grid has a state vector that shows the prob-
ability for it to be in each possible state. So, the event “the automaton
is in configuration C” could be expressed as [,c; the automaton is in
configuration C(a)”.

If v, is the state vector for automaton a then mq(,)(va) represents
the probability that automaton a is in state C(a):

pt,A(C) = laea To(a) (Va)

The sum of these probabilities over the set of all possible configura-
tions must equal 1.

pt,A(C) = ZCGsetfof7possiblefconfz'gurations (HaEG TC(a) (U(ll)) =1

This expression assumes that the set of possible configurations is
ordered.

Bidimensional IL Systems. A bidimensional L. System is an L Sys-
tem whose words are matrices of characters instead of linear strings. In
order to clarify the notation, the following conventions will be followed:

The context will always be written before the symbol changed by the
production rule. The context will be determined by a function ¢ that
generates the horizontal and vertical displacements of the context sym-
bols with respect to the current symbol



Formally, a bidimensional (K,0)IL System is defined as the five-
fold (3, P, g,w,c) where Y, P, g,w are defined in the usual way and
c:[1LE]NN— {-1,0,+1}.

Example: a bidimensional IL System with von Neumann neighbor-
hood is an extended (4, 0)system whose ¢ function is defined as follows:
c(1) = (0,+1), ¢(2) = (+1,0), ,¢(3) = (0, —1), ¢(1) = (=1,0).
!
Graphically | x4 | = | 2
T3
If Moore neighborhood is used we will have an (8,0) bidimensional IL
System with the following ¢ function: ¢(1) = (—1,+1), ¢(2) = (0,+1),
c(3) = (+1,41), ¢(4) = (+1,0), ¢(5) = (+1,—1), ¢(6) = (0, -1), ¢(7) =
(—1,-1), ¢(8) = (—1,0).

I 9 rs3

Graphically | zg | = | 24

r7 | Tg Iy

Probabilistic L Systems We define a probabilistic L System as an
L System where each production rule has an associated probability with
the restriction that the sum of the probabilities associated to all the rules
applicable to a symbol at any time must be 1.

A deterministic I System (DL) can be seen as probabilistic with a
probability of 1 associated to every rule.

In a DL System, a derivation is linear. In a probabilistic L. System
(S), it is a tree, with a probability associated to each branch and the sum
of the probabilities associated to all the branches with the same origin
being 1. This tree will be called T,,(S), and n is the depth of the tree.

Formally, a probabilistic L. System is an L. System where the rule set
P has been replaced by a set of pairs (R, p(R)) where R is a derivation
rule and p(R) its probability, with the restriction that if P’ C Pis the
set of rules applicable to a symbol at a given context, > p;,pr =1

Example:  Assume the following probabilistic (1 : 1) IL System Sy =
(39, P»,0011) where
Y9 =10,1,¢9} (g is the end marker)



(xsg n=1x,1) Vre Y, Vse{0,1} )
(gsz n=x,1) Vredy, Vse{0,1}
P (z0y == 2,0.3) Vz,y € {0,1}
27 (20y ==1y,0.7) Vz,y € {0,1}
(xly == y,0.3) Vz,y € {0,1}
[ (zly ::= 2,0.7) Vz,y € {0,1} J

i.e. the first symbol in the string becomes its right neighbor, the
last becomes its left neighbor, intermediate Os become their left/right
context with probability 0.3/0.7 and intermediate 1s do the same with
probability 0.7/0.3.

Figure 1 shows the first three derivations of system S5 indicating the
probability of each branch.

Observe that the probability of reaching a node by a given path is
the product of the probabilities of the branches that go from the axiom
to that node along that path. The sum of the probabilities of all the
nodes in the tree at a given derivation level is 1.

If a node at derivation level k may be reached by more then one path,
the probability that the word is generated by a derivation of depth k is the
sum of the probabilities of all the paths, computed as above. Formally,
the probability that word z is generated by system S in n derivations is
Pn,s(z) = 2 p(Di)=2AD;ETn(S) (HbjeD,l, (Hrkebjp(ﬁc))) where

D; is a path in tree T}, (S).

b; is a branch in path D;.

7}, is a production rule applied at branch b;.

p(D;) is the result of derivation D,.

FEach path in the tree is a derivation. The expression could be
written alternatively in Lindenmayer notation as follows: pj, s(z) =

> p(D;)=zAD;€Tn(S) (H(l,k)eoi p (pi (1, k)))) where p (p; (1, %))) is the prob-
ability associated to the production rule p; ((1,k)).

Language generated by a probabilistic L. System. Let S be a
probabilistic L System. Let n be a natural number (n € R). Let § be a
real number ( 6 € R).

The language generated by Sy, is defined

L(S,0)={z|3eXN:xz¢€ L,(S)Apns(z) >0}
In the previous example, the language for threshold 0 is L (Ss,0) =
{0001,0011,0101, 0111, 0000, 0010, 1010, 1011, 1111}



Step-equivalence between probabilistic L Systems and proba-
bilistic cellular automata. Let A be a probabilistic cellular automa-
ton. Let S be a probabilistic bidimensional IL System.

Definition: S is step-equivalent to A if and only if
Vt € N, VC(configuration of A)30 € R, w € L(S) such that

pr,L (w) = pia(C)

Probabilistic L System associated to a probabilistic cellular au-
tomaton.

Theorem: Given a probabilistic cellular automaton A = (G, Gy, N, M,
Q) there is an equivalent probabilistic bidimensional II. System that is
step-equivalent to the cellular automaton.

Constructive proof: Consider the bidimensional (n : 0) IL System
S =(3,Pg,w,c) where 3. = QU {s;} and s; will be used to express
the axiom of the L System; ¢ is a symbol not in ) ; P is the set of the
pairs (rules, probability): (?x = y,M? [w,y]) axiom w is a matrix
with the same dimensions as G whose elements are all equal to s;; ¢
and N refer to the same elements in their matrices. Rules with ¢ use
M?z where 7' is obtained from ¢ by replacing ¢ by the appropriate
boundary symbol in the automaton.
It is easy to see that S is step equivalent to A .

Example:

The cellular automaton. Assume an automaton whose mean-
field evolution follow the Lotka-Volterra equations for a predator (species
Y, carnivorous) and a prey (species X, herbivorous), with a slight mod-
ification that accounts for the saturation of the herbivorous species

‘“V;(t) = KNy (t) (1 - A;’;;?) ~ KNy (t) Nx (1)
deLt(t) = —K3Ny (t) + K4Ny (t) Nx (t)

where N3 is the saturation level of species X. The saturation term
is necessary since the automaton cannot represent the unlimited growth



of species X in the absence of individuals of the specie Y. The terri-
tory in which the population dynamics takes place is a regular two-
dimensional square lattice with periodic boundary conditions, with only
nearest neighbors displacements allowed. The solution to the inverse
problem of finding the reactive rules that yield a specified set of mean-
field equations has been given by Boon et al. in their extensive review
on reactive lattice-gas automata. The reactive rules are encoded into a

reaction probability matrix, whose entries are the probability of obtain-

ing an outgoing configuration n® = {nf* n3'} from a given incoming

n = {n{? n}. In particular, one possible prescription leading to the
previous expressions in the mean-field limit is

P S5y = WKy it s (n(;'t,ni;" + 1) 5 ('n;’,'",'n;,") (1 -5 ('n’,{',m)) +

L K m . . . . . .
h. [K2 n’;’n;ﬂ + —Nsit — n'y (nzx" — 1) — Ky ny & ('n’;',m):| 5 ('n/}"t,nlxn — 1) 8 (noy"f,‘n;,") +
m —
X

hK4né("n§,"5 (ng(ut,n?) ) (nuyut,ni," + 1) (1 -4 (n;,",m)) +
h I:K'; n;}' — Ky n’;n;"r; (n%,", m)] 8 (n”X"t, n’;) 8 (n;;'t,ng" — 1) for n'™ # no"t

p(ni™ S ni™y = 1- Z p(ni™ 5 nou) )

nout fnin

where §(n,n’) is a Kronecker delta (an indicator equal to 1if n = n' and
0 otherwise), the inverse of h represents the reaction time-scale, and m
is the maximum number of particles of a single species at a given node,
which coincides with the number of channels associated to a node. In
the present model m = 4, meaning that this is the maximum number of
individuals of each species that may occupy a given node. The condition
that p(n™™ — n°") be a probability ( i.e. a non-negative number in the
interval [0, 1] ) imposes restrictions on the possible values of the reaction
constants K; , h and N§* that can be used in the simulations. In partic-
ular N§*should be smaller or equal to m (this upper limit corresponds
to full occupation of an automaton node).

Figure 2 depicts the time-evolution of the automaton for Ky = Ky =
K3 = K4 =1, h = 0.0313 (close to the maximum possible value of h).
For these values of the reaction constants, there are configurations (in
particular those where ni? = m), for which Eq. (1) yields negative val-
ues. These negative values are set to zero. This procedure does not alter
the mean-field behavior of the automaton in a significant manner, since
the configurations affected appear rather infrequently. In the same plot
the dynamics corresponding to the solution of the mean-field equations
are also displayed. The mean-field equations in this automaton provide
a very good approximation to the evolution of the species node densities,
even for the largest possible values of h, although, as the figure shows,



the frequency of the damped oscillations predicted by the mean-field ap-
proximation is slightly smaller than the frequency of the actual simulated
time-series. These small discrepancies can once again be accounted for by
the (limited) influence of correlations in the dynamics. The observation
that the influence of correlations is small in this automaton is corrobo-
rated by the absence of spatial structure of the species populations. In
Figure 3 we compare the results of simulations in an automaton with the
same characteristics as the previous one, except that the inverse reaction
time-scale is h = 0.00313. The mean-field approximation provides in this
case an excellent description of the global population dynamics in the
echosystem.

The step-equivalent IL System. FEach automaton in the grid
contains several individuals of each species. Let us call 1=x(t) and k=y(t)
the number of individuals of species x and y at time t. The previous
probability prescription can be represented by means of the state diagram
in figure 4, where

[ K s #Am | _ [ Kyl yt)£m
P 0 z(t) =m » P2 0 yt)=m [’

ps = maz (o { Kay() y() # m })
"1 Kay(t) — Kaz(t)y(t) y(t)=m )

- . Kaw(B)y(t) + 3k 525 0(8) [o(t) = 1] z(t) #m
P\ Kor0y() + ke 25 0(t) [2() — 1) — Kaz() 2(t) =m

This probability distribution is shown in the following table, which
represents the rules of the step-equivalent IL system:

L@k ] (L Kk)ey1 [ O+, R)eqr [ R+ Dsqr | (RIS [ =1, F)egq ]
(0,0) (0,0),1 - - - -
(0,1) (0.1).1 7 7 7 Z
(0,2) (0,2),1 - - -
(0,3) (0,3),1 - - -
(0,4) (0.4).1 7 7 Z
(1.0) (1.0).1 7 7 7 7
(1,1) (1,1),1— %p; (2,1), hKy (1,2), hKy (1,0), hK3 (0,1), hpg
(1,2) (1,2),1 - 5p; (2.1), hK, (1,3),2h K4 (1,2).2h K5 (0,2), hpa
(1,3) (1,3),1 — Xp; (2,3), hK, (1,4),3hK4 (1,2),3h K3 (0,3), hpa
(1.4) (1,4),1 — Bp; (2,4), hKy - (1,3),4h(K3 — K4) (0,4), hps
(2,0) (2,0),1 - - - -
(2.1) (2,1),1 — %p; | (3,1),2hK; (2,2),2h K4 (2,0), hKKg (1,1), hpa
(2.2) (2,2),1— %p; | (3,2),2hK; (2,3), 4h K4 (2,1).2h K5 (1, 2), hpa
(2,3) (2,3),1—%p;, | (3,3),2hK, (2,4), 6h K, (2,2), 3h K4 (1,3), hpa
(2.9) (2,4),1— %p; | (3,4),2hK, B (2,3), 4h(K5 — 2K4) (1,4), hpa
(3,0) (3,0),1 - - - -
(3,1) (3,1),1 - %p; | (4,1),3hK; (3,2), 3h K4 (3,0), hK3 (2, 1), hpa
(3,2) (3,2),1— %p; | (4,2),3hK, (3,3), 6h K, (3,1), 2h K1 (2,2), hpa
(3,3) (3,3),1 — Xp; (4,3),3h K, (3,4),9h K4 (3,2),3h K3 (2,3), hpa
(3.9) (3,4),1— %p; | (4,4),3hK, B (3,3),4h(K5 — 3K4) (2,4), hpa
(4,0) (4,0),1 - - - -
(4,1) (4,1),1— %p; - (4,2), 4h Ky (4,0), hK3 (3,1), hpa
(4.2) (4,2),1 — 5p; 7 (4,3),8h K4 (4,1),2h K5 (3.2), hpa
(4,3) (4,3),1 — Xp; - (4,4),12h K4 (4,2),3hK3 (3,3), hpa
(4,4) (4,4),1 — Xp; - - (4,3),4h(K3 — 4K4) (3,4), hpa




The step-equivalent Bidimensional IL System has as alphabet the set
of all possible configurations of the nodes (the number of individuals of
species x and y in the node), the previous table gives the rules, and the
axiom is a matrix of symbols s;. The context is the current symbol itself.
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