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This paper presents an agent-based model of an organization. The

model is made of a social network—composed of the different

organization workers—and a knowledge network. Workers are

assigned tasks, for which they have to use information in the know-

ledge network. We have modeled the quality of the information by

assigning each information item a probability of being wrong.

Agents can interact with other agents, who can recommend to them

new information items in the knowledge network for the task to be

performed. Workers are assigned different information-seeking

behavior (passive, active, and learning), governing the way in which

they interact with each other. Moreover, indirect interaction is also
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possible, as a publicly accessible knowledge base contains each

agent’s preferred information items.

The model was implemented in SDML, and its simulation

shows that agents quickly learn to discern the better information

items for the given task. However, group formation (agents’ collabor-

ating by exchanging information) takes longer to stabilize. Addition-

ally, when the quality of items is changed, agents can quickly select

the better new knowledge items, and organization performance

improves again to a maximum that is only randomly disturbed.

INTRODUCTION

In computer modeling and simulation, systems are described using a cer-

tain language for the purpose of virtual experimentation (Zeigler et al.

2000). Many disciplines benefit from these techniques, as they are

allowed to experiment in cases where using the real system would be dif-

ficult, expensive, non-ethical, or impossible. Some of the areas that tra-

ditionally have used simulation as a research or decision-making tool

include physics, mathematics, biology, and economics. Lately, simula-

tion is becoming increasingly popular in the social sciences with the

emergence of agent-based simulation techniques (Gilbert and Troizsch

1999). In this paradigm, the fundamental element is the agent (Jennings

et al. 1998), which can be defined as a ‘‘computer system, situated in an

environment, which is able to perform flexible and autonomous actions

to achieve its design objectives.’’

In this way, in agent-based modeling and simulation macroscopic

phenomena emerge by the actions and interaction of elements at the

microscopic level (Alfonseca and de Lara, 2002). Thus, the classical

macro-level approach of representing systems as differential equations

is no longer used. Instead, the variation of the quantities in the model

is obtained from the explicit modeling of the individual elements. For

example, an agent-based model of an ecosystem does not use the Vol-

terra (1931) equations (which give the variation in the population of

the species in the ecosystem by means of a system of differential equa-

tions), but explicitly models each individual in each species and their

interaction in a given environment. Moreover, after parameter cali-

bration both models should produce comparable results.

Social and organizational modeling originated from seminal work

such as Simon (1948, 1984), Cyert et al. (1949, 1963), March et al.
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(1958), Newell et al. (1976), Cohen (1985), and Newell (1990).

The approach centers its attention on the decision-making process and

behavior of the individuals and the overall system (that is, an organiza-

tion). Several assumptions were made, such as bounded rationality of

individuals, complexity of both the individual’s surrounding and the

organization’s environment (e.g., technology is unclear), and ill-defined-

ness of the individuals’ decision-making situations (there is ambiguity of

choice and problematic preferences). The individual’s decision-making

process is considered a key aspect for understanding social and organiza-

tional systems. Cognitive theories of individuals (Simon 1984; Cohen

1985; Newell 1990) have been suggested and implemented. Classical

models in this area are the models proposed in Cohen et al. (1972)

and Masuch et al. (1989). Both models follow Cyert et al.’s Behavioural

Theory of the Firm. The two models share the objective of explaining how

organizations can survive despite pervasive apparent disorder. More

recently, other directions of research have emerged. One example is

Carley’s models for understanding structural change and learning in

organizations. One of her models (Carley 2001) was the starting point

of the model we show in this paper.

In the present article, we use the agent-based modeling and simula-

tion paradigm to model inter-individual and individual-knowledge inter-

actions (who-who network, and who-what network) in an organization.

The evolution of these two webs is driven not only by individual interest

in obtaining new knowledge (active interaction) or by individual affinity

(shared knowledge, which we call passive interaction) as in Carley’s model

(Carley and Hill, 2001) and (Carley, 2001), but also by individual’s learn-

ing in accordance to organizational performance. Learning-driven inter-

action occurs as agents classify both other agents and knowledge items.

Learning or evolution of the individual’s mental models is allowed by

using the endorsement mechanism explained by Cohen (1985) and by

Moss (1995) in order to classify other agents and knowledge items

according to past performance.

During the simulation, the organizational network (who-who) under-

goes a ‘‘soft’’ structural change, where the workers learn to discern the

better knowledge items to perform the given task. After a certain period

of time, the organization achieves certain stability and the ‘‘entropy’’

decreases. After such stability is achieved, a period of ‘‘strong’’ structural

change is induced, as we change the quality of the knowledge items for

the given tasks. As a consequence, the organization’s learning, up to that
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point, becomes in part obsolete. A reorganization becomes necessary.

This phenomenon occurs in a period of ‘‘strong’’ structural change in

the organization, as the inter-agents and the agents-knowledge interrela-

tions have to be changed in order to adapt to the new situation. After

such variation of the reliability of the items, the organizational entropy

highly increases. This entropy is lower during the period of soft structural

change. Later on after the probability of the items is varied, certain sta-

bility is achieved again, and entropy decreases.

The aim of this paper is to analyze both soft and strong structural

change. For this purpose, measures of behavior, such as performance,

knowledge diffusion, group consensus, and dynamic group formation,

are examined. The latter (dynamic group formation) is examined, as in

(Carley and Hill 2001), in its simplest form: the triad (a group of three,

collaborating individuals). Results show that agent’s and organization’s

learning occurs in a relatively short time after modifying the quality of

the knowledge items. Such learning is much faster than the initial learn-

ing at the beginning of the simulation when agents start obtaining know-

ledge from an almost empty ‘‘mind.’’ (At the beginning of the simulation,

the agents’ database is almost empty, and individuals are given only two

knowledge items.) As expected, changes at the inter-individual and indi-

vidual-knowledge webs get slower as the simulation goes on in a period

of low structural change, as agents’ knowledge stabilizes and perform-

ance of both the agents and the organization increase.

The rest of the paper is organized as follows: Section 2 presents the

basic organization model. Section 3 briefly comments the implemen-

tation in the SDML language. Section 4 discusses the experiments per-

formed and obtained results. Finally, section 5 ends with the

conclusions and future work.

THE ORGANIZATION MODEL

In our agent-based model of organizations, workers are represented as

cognitive agents. The organization goal is classifying a given problem

in one of two possible classes. This is a classical task in organizational

modeling and is described in Carley and Hill (2001) and Carley

(2001). Our model is in fact an extension of Carley’s model in several

ways, as it is discussed throughout the paper. The problem to be solved

by the agents is modeled as a string of binary digits. The problem is

classified as ‘‘1’’ if the number of ‘‘1’’ items exceeds the number of
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‘‘0’’ items and vice versa. The organization decision is based upon its

workers’ decision. In this way, the problem is partitioned and solved

by the organization workers. Each one of them can analyze a limited

number of items and produces an individual result according to this par-

tial knowledge. The organization decision is made by taking the majority

of classification results from all the agents. A schema of our model is

shown in Figure 1.

Each agent has a seeking information behavior that is chosen prob-

abilistically among passive, active, or learning. Passive agents interact with

others similar to them, in the sense that they use similar information to

solve the given task. In each interaction the agent may take a new know-

ledge item, up to the agent memory limit. Active agents tend to interact

with agents that use information that is different from theirs. Finally,

learning agents interact with the agents that gave them good knowledge

items in the past. For this purpose, they classify other agents and know-

ledge items depending on the individual performance. Thus, the individ-

ual result is compared with the expected result, and the interaction

preferences are updated accordingly.

Agents are able to discard knowledge items in their memory and

substitute them with others recommended by other agents. Moreover,

Figure 1. A scheme of the organization model.
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similar to cooperative systems, we have modeled a ‘‘recommender system’’

containing the best items found by each agent. In this way, an agent can

probabilistically choose an item from the recommender system.

From the local interactions of the agents, we expect the organization

to develop self-organization mechanisms and reach a certain degree of

stability. According to (Bonabeau et al., 1999), self-organization relies

on four basic elements: (i) multiple interactions between the agents in

the system, (ii) positive feedback (amplification of certain behaviors),

(iii) negative feedback (counteracting positive feedback by deadening

mechanisms), and (iv) amplification of random fluctuations, to facilitate

the discovery of new solutions and prevent convergence to suboptimal

solutions. In our case we need a mechanism to help in the discovery

of new solutions; that is, finding better items for the given task. Thus,

we assign a small probability for an agent to choose a random item in

the problem space. This is especially useful if the organization environ-

ment changes. If the fitness of the knowledge items for the task changes,

the ability to access unused items allows a re-organization of the who-who

and who-what networks. This phenomenon is explained in detail in

Section 4.

Figure 2 depicts a conceptual model of the organization using a

UML class diagram (Booch et al. 1999). This is a kind of diagram

commonly used in computer science. Each box represents a concept

(a class in computer science jargon), that may contain a compartment

for the concept attributes. Concepts are related to other concepts by

means of relationships. A hollow triangular arrow means an ‘‘is-a’’

relationship. For example, a problemItem is an Information. Moreover,

child classes inherit all the properties of parent classes. In this way, pro-

blemItem inherits the Value attribute from Information. A black diamond

in a relationship extreme means composition (‘‘made-of ’’). For

example, a problem is made of problemItems. Relationships are option-

ally labeled with their name and multiplicity. For example a problem

is made of zero or more problemItems. Moreover, relationships can be

qualified with attributes, which are shown in class-like notation. For

example, relationship itemError between problemItem and correctAnswer

has attribute reliability, modeling the error probability (if zero, the item

is correct).

For the implementation we do not strictly follow this conceptual dia-

gram, but rearrange the information for better performance and easier

coding.
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Agents classify other agents (AgentEndorsement in Figure 2) and

knowledge items (ItemEndorsement in Figure 2) depending on the

obtained performance. This classification is a numerical value (a weight)

that is used to know how good the interaction with the other agent or the

use of the item was in the past. For this classification, we use the concept

of endorsement (Cohen 1985, Moss 1995). This concept defines the fol-

lowing formula to calculate the weight:

Eðb; �aaÞ ¼
X

valð�aaiÞ�0

bvalð�aaiÞ �
X

valð�aaiÞ<0

bjvalð�aaiÞj

where b is the chosen basis, �aa is a vector of attributes of the object to be

endorsed and val is a function giving the value of that attribute.

In this model, individuals endorse information items and other indi-

viduals. When information interchange occurs, individuals keep track of

both the item and the individual suggesting such item. After each pro-

blemCycle, an individual compares its suggestion with the real input item,

and, according to the goodness of its answer, it endorses the item and the

individual that suggested it. The above E function calculates the weight

of an item or an agent according to these subsequent evaluations. The

Figure 2. Conceptual model of the organization (in UML notation).
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base b is set to 1, and the two possible evaluations are either 1, in the case

that the agent suggestion is good, or –1, in the other case. Thus, the

function E reduces to

Eðb; �aaÞ ¼
X

valð�aaiÞ�0

1�
X

valð�aaiÞ<0

1

where val(āi) might take the value 1 or –1. An individual remembers only

those endorsements set in the last 4 days. This value may seem small;

however, since there are 40 cycles each day, quick learning occurs.

When an individual interacts in the learning mode, it chooses

another individual in accordance to its weight. This selection is random;

each individual has a probability of being chosen proportional to

its weight. Similarly, when an agent gives a hypothesis about the input,

it uses a set of items chosen in accordance to a uniform distribution

probability, where each item has a chance proportional to its relative

weight. If an individual has a memory of size S (in this experiment S is

usually set to seven, a number suggested by Herbert Simon), then S items

have to be randomly chosen at each problem cycle. In order to suggest

the problem result, individuals always use the item endorsements. On

the contrary, only agents whose behavior is learning endorse other

agents.

In addition, a given organization can be decomposed in static

groups, or departments, each of them made of a certain number of indi-

viduals. Individuals belonging to different static groups do not interact.

For the experiments in this paper, we set the number of static groups to

one, as we do not want to restrict the interaction between individuals to

study dynamic group formation.

IMPLEMENTATION IN SDML

For our implementation, we have used the SDML language (Strictly

Declarative Simulation Language, Moss et al., 1998), which is based

on the KD45 modal logic. With this system the user has access to a

certain number of predefined types, or agents, with a basic functionality,

which should be sub-classified to describe the actual problem concepts.

Agent behavior is specified in a declarative way, by means of rules.

Agents may be nested, and at each level of nesting one may define a num-

ber of time levels, the most external one being eternity. Initial and final

rules can be associated with different time levels. For instance, in our
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organization model, we have defined the day time level, inside which is

the problem cycle. Each day encloses 40 problem cycles, meaning that 40

problems should be solved every day. A complete simulation run lasts

for a number of days (in the range of 500). Figure 3 shows the relation-

ship between the time levels and the associated actions, using a UML

activity diagram.

In our model, the most external agent is the universe, which is an

instance of universalAgent, one of the built-in types of agent. Agent uni-

verse creates (and contains) another agent (called Organization), which

belongs to the type we call OrganizationModel and contains the main

simulation logic. This agent creates the groups inside the organization

(instances of the agent type we call Group). Each of these groups, in

turn, contains several instances of the agent type Individual. This hier-

archy has been reflected in Figure 2, and is explicitly shown in Figure 4.

The agent types OrganizationModel and Group are subtypes of the

SDML type parallelAgent since their instances contain several agents

running in parallel.

Agent Organization sets the simulation environment, creates the

organization groups, and gives values to the simulation parameters. An

overview of the database for this agent is shown in Figure 5. In our

implementation, we have followed the conceptual model described in

Figure 3. Time levels for the organization model.
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Figure 2, with a few changes for the sake of efficiency. Among the para-

meters created by this agent, we may mention the following:

. interactionStyle, which describes the probabilities of an agent being

active, passive, or learning. In our experiments, these probabilities

Figure 5. Database of agent Organization.

Figure 4. Agent hierarchy of the model.
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are the same for every individual; thus, this parameter has been moved

to this level to save memory.

. unReliabilityKnowledge is a list indicating the probability that each

information item is erroneous. In Figure 2, this is the reliability attri-

bute in the itemError relation that joins items problemItem and correct-

Answer.

. sizeShortKnowledge is the number of items an agent uses while classify-

ing its input. As this value is the same for every individual, it has been

moved to the organization level.

. randomNoiseEnvironment is the probability that an individual (interact-

ing in the active mode) chooses an item among those not used by any

agent, rather than using the recommendation system. The recommen-

dation system is made of a list of contributed items, one per individual.

Every day each individual contributes the item with the highest

endorsement value in its database.

. Problem is a list of items that define the problem in each problem cycle.

(Figure 5 shows the problem for cycle 24, identified as ‘problem-64.’)

. correctAnswer is a list of binary digits containing a description of the

problem. The problem is generated from this list, changing each bit

according to the probability associated to each item.

. individualAnswer is the answer of each individual, which is used to

compute the global answer.

. Answer is the global answer provided by the organization.

Subagent Group-1 of Organization is the only existing static group in

the experiments described in this paper. It contains data such as the

number of individuals in the group=organization (numberOfIndividuals),

plus additional information indicating who interacts with whom.

Individuals are responsible for most of the simulation dynamics.

They interact with other agents by interchanging information items every

day, make a classification of the problem (1 or 0), learn from their experi-

ence by using endorsements for characterizing and evaluating both infor-

mation items and individuals, decide the mode of interaction every day,

and so forth. The database for an individual is shown in Figure 6.

Next, we present the simulation mechanism by describing the

actions to be performed by each group of rules described in Figure 3.

In the initial eternity rules, the organization, group, and individuals set their

parameters. In particular, the group creates the agents inside it.
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At the beginning of each day (initial day rules), the organization cre-

ates a list with the knowledge not used by any agent. The group deter-

mines who interacts with whom; that is, the inter-individual interaction

(in case interaction is active or passive). Each individual updates the

knowledge items (an item is kept only if it is among the first l information

items with the highest endorsement value, where l is the size of the indi-

vidual’s short memory, or if the endorsement value for such item is posi-

tive), chooses its interaction style (passive, active, or learning) and who it

will interact with (in the case that selected interaction style is learning).

In case of being active, it chooses an item from the environment. It can

be taken either from the recommendation system or from the list of not

used items. Then, it gets an item from an individual (keeping track not

only of the knowledge item but also of the agent) and updates the history

of its partners (when a knowledge item is lost, the particular link with the

agent the item came from is lost) and the endorsements (those not older

than four days are kept). Finally, it makes a global suggestion (the item

with the highest endorsement value) to the organization.

At the beginning of each cycle (initial problem cycle rules), the organi-

zation generates the problem. Then, in every problem cycle (problem

cycle rules), each individual classifies the problem and endorses the used

Figure 6. Database for an individual.
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items and related individuals, after comparing their answers and the cor-

rect answer. At the end of each problem cycle (final problem cycle rules),

the organization calculates its answer and the consensus. Finally, at the

end of each day (final day rules), the organization calculates several stat-

istics, such as knowledge diffusion, triads, and performance (explained in

the next section).

SIMULATION EXPERIMENTS

In this section we enumerate a few experiments performed with the

above-described model. In our first set of experiments we tested different

combinations of interactions styles for the agents, by setting their prob-

abilities to one of the following combinations: equally biased, always

passive, always active, or always learning. Differences in the agent mem-

ory size (3, 7, or 10) were also tested.

The reliability of the input items was changed during the simulation

runs, as this paper’s objective was to examine the dynamics of the simu-

lated organization when the quality of the items changes. The initial

reliability of the input items, at the beginning of the simulation runs, is

the following:

½0 0 0 0 0 0 0 0:5 0:5 0:5 0:5 0:5 0:5 0:5 1 1 1 1 1 1�

Simulations were run for 500 days. The reliability values were ran-

domly changed on simulation days 100, 200, 300, and 400. As explained

above, the individuals solve 40 problems every day, one per problem

cycle. Thus, in a full simulation run, 20,000 problems are solved. 40

problem cycles per day is appropriate because they provide the indivi-

duals with sufficient experience to make learning possible. Individuals

learn as they endorse information items and other individuals, after each

problem cycle, according to how good their answer was. On the other

hand, running the simulation for one hundred days before modifying

the reliability of the information items, guarantees that agent learning,

group formation, and performance stabilizes. In a sense, the last part

of each period of 100 days is independent from the previous period.

For the case of equally biased individuals, the simulation was run

four times (i.e., four trajectories were studied). Thus, for this case,

4 � 5 ¼ 20 simulation periods of soft structural change and 4 � 4 ¼ 16

transition periods from soft structural change to strong structural change
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were analyzed. On average, each simulation took about two days to finish

with a Pentium IV computer.

Results

Organizational Performance. Organizational performance measures

(as a percentage) how often the organization gives the correct answer

to the problems. Seven different types of experiment were performed.

The first four gave rise to very similar behavior, while the last three were

different. Figure 7 summarizes the results of the seven cases.

(a) Base model: The interaction probabilities are set to 0.3, 0.3, and 0.4

for the passive, active, and learning modes, respectively. The agents

were assigned a memory of seven items. When simulation begins, the

time needed to achieve maximal performance is about 20 days. After

this transitory period, performance oscillates in the [0.95, 1] range,

and some aspects (not all) of soft structural change decrease. For

instance, group formation does not decrease (see the next section).

However, after the reliability of the input items changes; i.e., after

a strong structural change is induced, the length of the transitory

period reduces to less than half (4–8 days). This can be understood

by remembering that, at the beginning of the simulation, the agent’s

mental model is empty (it contains only two information items with-

out endorsements), while, after a reliability change, the agent knows

many items, although they are wrongly endorsed after the change,

and the agent needs to update them. Just after a strong structural

change, the performance decreases to around 0.5, i.e., the organiza-

tional performance becomes random. In this model, once the stable

period is reached, the randomness of the environment input items

has little impact on the performance.

(b) Active model: The agents are always active. Compared with the

base case (a), a faster learning is observed at the beginning of the

simulation.

(c) Short memory model: This model is identical to the base model (a),

except that the agent’s memory size is 3. In this model, the perform-

ance increases faster, and the range of oscillation is smaller (the per-

formance is almost always equal to the maximum, 1). After changing

the reliability of the information items, the performance of this

model is affected more strongly than in the base model.
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Figure 7. Performance for (a)–(g) models: strong structural change induced each 100 days.
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(d) No recommendation model: This model is the same as (a), but without

recommendation system. This model’s behavior is very similar to the

base model (a)’s.

(e) Passive model: The agents are always passive. The performance stabi-

lization is achieved in about 20 days. However, as expected, after

some time the passive interaction stops, as the individuals exhaust

their possibilities for information exchange. This confirms Carley’s

results, but in our case learning and information diffusion seem to

be much faster. After a strong structural change is induced, good

learning is a question of chance, and behavior becomes good or

bad in general, without improving beyond a certain upper bound

(different for each period of soft structural change). In all the cases,

the performance oscillates in a certain range.

(f) Learning model: The agents are always learning. Stabilization takes

longer, and performance oscillates in a wider interval (which only

occasionally reaches the upper bound of 1), as compared to the base

model (a). In this case, the randomness in the environment continues

affecting the organization’s performance over time.

(g) No-noise model: Similar to (a), but without noise. The presence of

noise means that the agents can choose items from the environment,

currently unused by other agents, perhaps discarded by the agents.

In this model, the performance improves until it oscillates in a cer-

tain range, which only occasionally reaches the value of 1. In general,

randomness in the environment continues affecting the organiza-

tional behavior.

Summary: Active learning and noise from the environment seem to

be the main source of the differences between the different configura-

tions of the experiment. The last three models are markedly different

from the first four, whose distinctive characteristic is the fact that agents

are active and receive unused information (noise) from the environment.

This is understandable, because active agents look for individuals with

novel knowledge, apart from been able to perceive noise from the

environment. In the three last cases, either the agents are not active,

or they cannot perceive items from the environment. The ability to

access unused knowledge seems essential to recovering the performance

after a strong structural change is induced. Interestingly, individual

learning does not seem to help the organization performance. As shown

in Figures 7b and 7f, an organization whose individuals are active
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performs better than those whose individuals are learning. Moreover, the

recommender system does not seem to improve the performance, as long

as individuals are able to interact in an active way.

Dynamic Group Formation, Triads. In this subsection we analyze

dynamic group formation in its simplest form: groups of three, or triads

(Carley and Hill 2001). As in the previous subsection, we have analyzed

seven models, in four of which active interaction between agents and

noise from the environment have not been suppressed. These models

present similar behavior. Figure 8 presents the results.

(a) For the base model, the stabilization of triads takes longer than per-

formance stabilization, about 40 days for the first period of soft

structural change (compared to 20 days in the previous set of experi-

ments), and about 10 days after reliability changes (compared to 4–8

days). These results agree with Carley’s model (Carley and Hill

2001). Before the organizational structure has stabilized, the per-

formance reaches the best it can get (it is stabilized and oscillating).

However, both stabilizations seem to happen in less time than in

Carley’s model. On the other hand, group disturbance is present

and goes down sometimes to values as low as 64 (one half of the

maximal 120, the upper bound of the oscillation range). This hap-

pens shortly after a strong structural change has been induced.

The performance is less erratic than the triads—apparently, group

disturbance does not affect performance. In this case, the maximal

number of triads (120) is usually reached.

(b) Compared to the base model, in the active model, the maximum num-

ber of triads (120) is also reached, but the groups are much more

unstable; the number of triads is much more variable. In fact, this

number is usually in the [90, 120] range; although in some periods

of soft structural change this range becomes smaller or wider (120

always being the upper bound). At the beginning of the simulation,

the transitory period is about 24 days, again longer than the transitory

period for performance, which is about 12. The oscillation ranges for

the different intervals of soft structural change are different.

(c) In the short memory model, the triads are much more unstable than in

the base model. They rarely reach the maximum of 120, sometimes

going down to values such as 70, during the period of soft structural

change, which never happens in the base model. It seems that
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Figure 8. Triads.
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stabilization takes less time, about 20 days, but it is not clear,

because the number of triads is completely erratic. The stabilization

observed in Figure 8 is not very convincing, but this trend is backed

by the performance stabilization at about day 8 (see the previous sec-

tion and Figure 8). It seems that a shorter memory (3, compared to

7) allows for faster learning, but group formation is unstable. This

might happen because individuals choose more dynamically new

individuals and forget the old ones, which favors fast learning. This

is helped by the fact that each day consists of many problem cycles

(40), which allows the information items to be evaluated many times,

so a good selection can be reached.

(d) For the no recommendation model, at the beginning, the triad stabili-

zation takes about 60 days (much longer than the performance stabi-

lization, which takes about 30 days). The number of groups is usually

near the maximal 120, although in this case it was quite erratic. The

triads are not disturbed after reliability changes. This aspect of their

behavior is similar to that observed in the base model, although more

instable. This instability is lower than in the active model.

(e) For the passive model, once the interaction of agents stops, the num-

ber of triads achieves a fixed value, which is different for every simu-

lation experiment. In our case, this value happened to be 20. After

reliability changes, the number of triads keeps its previous value.

For this configuration, at the beginning, the group formation stabi-

lizes in about six days, and the performance in about 10. This is an

atypical case, compared with the previous ones. It seems that, after

interaction stops, the individuals continue learning and improving

their answers. In this configuration, the individuals are not allowed

to interact with their knowledge models, but they still use endorse-

ments to classify the information items.

(f) For the learning model, very unlike the base and the active models, the

maximal number of triads (120) is never reached, but groups are more

stable. This may happen because the individuals keep their endorse-

ments of other individuals for several days, thus slowing down the

group change. At the beginning, the triad formation transitory period

is about 16–20 days, again longer than the performance transitory

period, which is about 10–11 days. Group formation is much less

erratic than the performance, which continues erratic during the

whole simulation, in the range [0.7, 0,95]. Only for two of the five

cases of soft structural change we have simulated, the performance
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reaches the upper bound of 1. Examples of ranges for the number of

triads in the different intervals of soft structural change are [95, 106],

[93, 115], [90, 110]. In some of these intervals, the variability of the

triads is high and erratic.

(g) Finally, for the no noise model, the performance stabilizes around 28,

and the number of triads in around 20 days. This is another atypical

case. Usually the number of triads reaches the 120 maximum with a

small oscillation range, with some exceptions (as in the second per-

iod of soft structural change).

Summary: In most of the configurations, the organizational struc-

ture, defined as the number of triads, stabilizes later than the perform-

ance. This is not the case for two models: the passive, and the no

noise model, where both the performance and the group formation sta-

bilize in less time than in Carley’s model. In addition, the performance is

less erratic than the number of triads—apparently, group disturbance

does not affect performance. In all the models, except in the learning

and the passive, the triads reach their maximal value of 120, although

in the active and the short memory models (especially in the latter) their

number is erratic. Learning behavior in agents seems to produce more

stable groups because of the selection mechanisms of the agents with

which the interactions take place. As endorsements are kept for several

days and change slowly, group changes take longer.

Agent’s Consensus and Diffusion. Consensus is the proportion of

agents that suggest the answer that the organization finally adopts. For

example, if for one problem the organization’s answer (or hypothesis) about

the number of ones and zeroes in the input is 1, and seven agents (from a

total of 10) suggested this value, then the consensus for that problem is 0.7.

Diffusion is the proportion of agents that effectively exchange infor-

mation in a given day. An agent may want to exchange information, but

the interaction will effectively occur only if both agents do not share the

same knowledge items.

Agent consensus and diffusion is shown in Table 1. Again, models

(a)–(d) are very similar, although in the active model the information dif-

fusion is smaller. The short memory model shows a higher diffusion than

the base model; having fewer items in memory raises the probability of

knowledge exchange. For the other three models, the consensus is smal-

ler. The passive model shows that diffusion stops, as expected. The
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reason is that, in this model, the agents tend to interact with other agents

that have a similar knowledge, thus blocking knowledge diffusion.

Figures 9 and 10 display the evolution of consensus and diffusion for

the base model.

Structural Change: Organizational Behavior and Reorganization.

The aim of this section is to examine structural change (SC), i.e., organi-

zational behavior (soft SC) within a period with fixed reliability of the

Table 1. Agent consensus and diffusion

Consensus envelopes Diffusion envelopes

Measure model General Most common General Most common

Base [0.5, 1] [0.8, 1] [0, 0.7] [0.3, 0.5]

Passive [0.5, 1] [0.6, 0.9] [0,0] [0,0]

Active [0.5, 1] [0.8, 1] [0, 0.6] [0, 0.2]

Learning [0.5, 1] [0.6, 1] [0.2, 0.6] [0.2, 0.4]

No noise [0.5, 1] [0.6,1] [0.1, 0.7] [0.2, 0.6]

No recommendation [0.6, 1] [0.7, 1] [0.1, 0.7] [0.2, 0.7]

Short memory [0.7, 1] [0.8, 1] [0.2, 0.8] [0.3, 0.7]

Figure 9. A consensus trajectory for the base model.
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information items, and re-organization (strong SC) after a variation of

the reliability of these items. Structural change is analyzed by examining

the total weight or endorsement value assigned to information items with

different reliability. If the agents are learning it should happen that, while

the reliability of the items is fixed, the agents will give higher endorse-

ment value to those with reliability 1, less to those with reliability 0.5,

and the lowest to those with reliability 0. Once the reliability of the items

changes, reorganization must happen, as the agents should adapt their

mental models to the new environment. Between a period of soft struc-

tural change and the next one, strong structural change happens, while

the mental models are reorganized.

This behavior is studied by considering the differences between: (a)

the total endorsement value for all the items with certain reliability (e.g.,

1) and (b) the total endorsement value for all the items with another

reliability (e.g., 0, or the conjunction of the other two: 0 or 0.5). In fact,

three cases were considered:

I. Total endorsement value for all the items with reliability 1, vs. total

endorsement value for all the items with reliability 0.

II. Total endorsement value for all the items with reliability 1, vs. total

endorsement value for all the items with reliability 0.5.

Figure 10. A diffusion trajectory for the base model.
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III. Total endorsement value for all the items with reliability 1, vs. total

endorsement value for all the items with reliability 0 or 0.5.

For the base model, the unreliable items are quickly discarded in

favor of the reliable items (see Figure 11). However, the agents seem con-

fused with items with reliability 0.5, as expected. In this case, the dif-

ficulty for differentiating items with reliability 0.5 is lower than when

the agents are only learning, as explained below. A similar behavior is

observed in the case of active agents and for the short memory model,

although in this case learning is much faster; i.e., the selection of the best

items occurs quickly. The simulation shows that the stabilization of the

items used is slower when the memory has only 3 items (it takes about

16–20 days after inducing a structural change, while in the other config-

urations it takes around 20–40 days; and it happens about 60 days after

the beginning of the simulation, compared to about 70 in the other

cases). When the recommendation system is eliminated, structural

change and learning is similar to that in the base model. This is under-

standable, as the items placed at the recommendation system are usually

similar to those that the agents exchange among them.

As in the other cases, agents of learning type have difficulties to dis-

cern and classify items with reliability 0.5. Such agents also have some

Figure 11. Relation between used items with reliability 1 and 0, base model.
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upper bound for learning (sometimes this is quite poor). This is under-

standable, if we remember that the agents will take items from the

environment and from the recommendation system only when they are

active, not when they are of the learning type. In some sense, learning

individuals are somewhat blind, like the passive individuals. Despite

these limitations, it is shown that learning individuals behave much bet-

ter than passive individuals. This suggests that, to model learning agents

(the sort of agents researchers in social simulation usually simulate), it is

important to consider indirect interactions, such as that provided by a

recommendations system, and the interaction with the organizational

environment, such as the noise that makes available to the individuals

previously discarded or totally new information, which might become

useful after a structural change in the environment. The simulated ran-

dom influence from the environment helps the organization to avoid

being trapped in an old and obsolete culture.

For the passive model, there is not structural change. Once the agents

stop exchanging information, their learning is very limited, and the dif-

ference in endorsements depends only on the reliability assigned to the

items. Once more, when noise is eliminated from the environment

(as in the no noise model), there are important differences in structural

change compared to the other configurations. Structural change is

limited. Aggregating noise from the environment seems to impel struc-

tural change.

Item Weight Distribution. This section analyzes the distribution of

item endorsements (or weights) in the agent population when the model

stabilizes (at simulation days 100, 200, 300, 400, and 500). Weight distri-

bution presents similarities in the base, passive, and no recommendation

models (therefore, only the first one is discussed). As stated before,

agents give their answer by using the endorsements scheme in all the

configuration cases, but the models differ on how the agents interact.

Figure 12a shows the distribution for the base model. It depicts low

(close to 0) values and medium-high values (above the mean, but below

the maximal value).

The distribution is different for the learning model, shown in Figure

12b. In this case, the first peak disappears. For the no-noise model (Fig-

ure 12c), the endorsements of the items considered increase as they are

re-evaluated (the bad items are discarded). Usually, there is no agent

whose mental model has endorsements near to zero; the distribution is
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displaced towards the right. For the short memory model, the selection

of items is more rigorous, seeing that only three items are taken into

account to reach a decision. As seen in Figure 12d, the peak at the right

disappears. Items with low endorsement value accumulate in the first

part of the graph, while the distribution is somewhat uniform for the

upper three-quarters of the graph.

For the passive model (Figure 12e), the distribution shows two

peaks: a few accumulate around zero, the others at the upper bound of

the interval. This happens because the agents can perceive few items,

and this does not change once the model stabilizes (passive agents soon

stop interacting), even after a strong structural change is induced.

Figure 12. Endorsements distribution in the agent population.
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CONCLUSIONS AND FUTURE WORK

In this work, we have presented an agent-based model of an organization

that improves Carley’s model CONSTRUCT-O (Carley and Hill 2001).

That model is an improvement to previous ones (Carley 1992; Carley

and Svoboda 1996). In CONSTRUCT-O, the agent interaction style is

either passive or active, where each agent can be assigned a mixed strat-

egy. Agents are assigned a problem, as in our model (classifying a string

by looking at a portion of it). Group formation (triads), performance,

consensus, and diffusion were measured.

In the present paper, we have continued and improved Carley’s

model by adding a new interaction style (learning) to the agents, by using

the concept of endorsement, and by inducing strong structural changes to

the organization. For this purpose, we have added a probability of being

wrong to each problem bit (thus modeling the quality of the infor-

mation). After the stabilization of the organization (what we call a period

of soft structural change) we induce a strong change by modifying these

probabilities. Our results for the periods of soft change agree with

Carley’s model, although the stabilization in our models is much faster.

We have also experimented with other knowledge store and diffusion

mechanisms, such as the ‘‘recommender system.’’ Some interesting results

were found. For example, individual learning (as described here) is not

essential for organization performance, while active behavior is. Note

that active behavior leads to ‘‘structural learning’’ within an organization,

that is, changes in groups of agent collaborators. Working groups may

change without damping performance, and they are more stable with

learning agents. Being able to access unused knowledge (noise) becomes

essential when drastic changes are made to the problem assumptions.

Organization with passive agents cannot react to this kind of changes

in the environment.

According to cognitive theories, learning agents, as in the case imple-

mented for learning agents in this work, imitate the rudiments of human

learning (Moss 1995; Moss et al. 1998). Active and passive interactions

are also ways in which humans exchange information and learn, in

accordance with the theories of cultural transmission (Carley 2001). Rec-

ommendation systems are novel technological resources to help people to

deal with large amounts of information and increase organizational per-

formance. On the other hand, noise from the environment occurs at

any organization, all of which are open systems. Individual learning in
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our model is a combination of these different explanations of learning.

Claiming larger validity for one of them in detriment of the others is

not the purpose of this paper, and does not seem a defensible position.

However, some of these approaches have a more solid theory behind

them. A further goal, which goes beyond the reach of the present paper,

is to investigate the combination of these different models that gives the

best representation of human behavior and learning in organizations.

In the learning model, the agents develop links to the knowledge

items and to other agents with which they interact. The weight of these

links changes depending on the previous interactions. Finally, each agent

produces an output, which depends on the knowledge items. This pro-

cess resembles the working of an artificial neural network (Haykin

1999), where the agents are similar to neurons, and the endorsements

are similar to the synapse strength. Thus, the metaphor of organization

as a global brain seems appropriate. Note also that the process of training

the network is similar to the simulation loop in which different problems

are presented in every cycle. Our agents add and remove links to other

agents and knowledge items. This is similar to a neuron generating or

deleting links (axons) to other neurons. The process of modifying the

network morphology to find an optimal one is called ‘‘pruning’’ or

‘‘brain damage’’ (Le Cun et al. 1990) in the artificial neural network area,

and several methods have been proposed for this task.

In the future, we plan to extend the model by considering more

complex knowledge structures, similar to the Internet. Ideas similar to

Heylighen’s (1999) could then be integrated in the model. Different

organization structures and hierarchies can be modeled. Other mental

models for the agents and more complex problems could also be con-

sidered. Finally, it would be interesting to analyze the algorithms pro-

posed by the neural networks community and compare them with our

handling of endorsements.
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Newell, A. and H. Simon. 1976. Computer science as empirical enquiry: Symbol

and search. Communications of the ACM, 19(3):113–126.

Simon, H. 1986. The failure of armchair economics [Interview]. Challenge,

29(5):18–25.

Simon, H. 1984. The sciences of the artificial. Cambridge, MA: MIT Press.

Simon, H. 1948. The proverbs of administration. Public Administration Review,

6(June):53–57.
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