run, can be saved by including line-by-line comments while the
intent is fresh in your mind.

-—THE GUIDELINE:

Y

Aim to comment
every single line of code

A e !

—————

Let’s reiterate the guidelines, in case you were asleep:

#10. Avoid looping whenever possible.

#9. Don’t waste your time trying to find
obscure (and unreadable) non-looping
solutions.

#8. Use nested arrays to keep related
things together.

#7. Don’t go ape over each ().
#6. Don't be afraid of files.

#5. Document in writing every component
of every file.

#4. Spend ten percent of your APL time
learning more APL.

#3. Aim to have no global variables in your
workspace, and minimize the passing of
globals between functions.

#2. Include comments at the beginning of
every function that document intent,
syntax, and assumptions.

#1. Aim to comment every single line of
code.

Follow these guidelines and you willimprove APL’s reputation—
as well as your own. u

Gary A. Bergquist, A.S.A. is president of Zark Incorporated, an APL
consulting firm that works mainly on insurance applications. Among
the products supported by Zark are: the Zark APL Tutor, the Zark
Library of Utility Functions, the quarterly publication Zark APL
Tutor News, and the Variable Products Administration (VPA) system.
Gary can be reached at GABergquist@SNET.net or at 860-872-7806.

SEPTEMBER 1999 — VOLUME 30, NUMBER 1

Programming Cellular Automata in APL2

—by Manuel Alfonseca
Madrid, Spain

Universidad Autonoma de Madrid
Dept. Ingenieria Informatica
Manuel.Alfonseca@ii.uam.es

Acknowledgment: T#is paper has been sponsored by the Spanish
Interdepartmental Commission of Science and Technology
(CICYT), project numbers TIC-96-0723-C02-01 and TEL97-
0306.

and describes a simple way to implement them in APL2.

Two cellular automata are programmed: the well-known
Conway’s game of life, and one that simulates an ecosystem and
displays a behaviour similar to that represented by the Volterra
differential equations. Cellular automata are shown to be a pow-
erful simulation tool for this kind of systems.

THIS PAPER REVIEWS THE CONCEPT OF CELLULAR AUTOMATA

We shall start with a few definitions:

Finite automata

A deterministic finite automaton [1] consists essentially of three
elements:

* A finite set of input symbols.

* A finite set of states.

* A transition function defining the next state of the automaton
given its input and its state. This function is deterministic
(there is a single next state for every combination of input and
current state) and is usually described as a transition table.
A fourth element usually considered is the initial state of the

automaton, a distinguished member of the set of states.

A probabilistic finite automaton consists of the same elements
as a deterministic finite automaton, but the transition function is
probabilistic; i.e., for every combination of input and current
state there are several possible next states, each with a given

probability.

Cellular automata

A cellular automaton [2-5] is a regular grid of points, to each of
which is associated a finite automaton, which may differ from
other automata in the grid only in its initial state.

* Theinput to the automaton associated to a given point is the

set of states of the automata associated to the neighboring
points in the grid.

27

Cellular automata may differ in the following:

* The shape and size of the grid, usually square, rectangular or
triangular, which may be infinite.

* The definition of the set of neighbors to a given grid point.

* The actual finite automaton associated to each point in the
grid. If this automaton is deterministic/probabilistic, the
cellular automaton is deterministic/probabilistic.

» The set of initial states of all the automata.

In cellular automata, specially those that use an infinite grid,
the set of states of the finite automaton associated to the grid
points usually includes a special symbol (the empty state). The
number of autornata not initially in the empty state is assumed to
be finite.

The game of Life

Introduced by John Conway [6], it is a very simple cellular au-
tomaton that may give rise to extremely complicated behaviors
and has been proved to be computationally complete; i.e., it is
able to perform any computation which may be performed by a
digital computer, a Turing machine, a genetic algorithm or a
neural network.

The cellular automaton associated to the game of Life is de-
fined thus:

* The grid is rectangular and potentially infinite.

e Each finite automaton has two states: empty (also called dead,
represented by a zero or a space character) and full (also
called alive, represented by a one or a star symbol, *). The
set of states is thus represented by the two boolean numbers
{0,1} or by the two characters ' *'.

e The transition function is defined by the following simple
rules:

> If the automaton associated to a cell is in the empty state,
it goes into the full state if and only if the number of its
neighbors in the full state 1s exactly three.

» If the automaton associated to a cell is in the full state, it
goes into the empty state if and only if the number of its
neighbors in the full state is less than two or more than
three.

» In any other case, the automaton remains in the same
State.

Each time step 1s called a “generation.” The set of all the cells
alive at a given time step is called the “population.”

The fact that the grid is potentially infinite makes the game of
life difficult to implement. However, restricted versions, associ-
ated to a grid of finite dimensions, are very simple, at the cost of

28

losing computational completeness. The implementation is
almost trivial in APL, since the states of all the automata in the
grid may be represented by a boolean matrix. Listing 1 shows a
program that implements the game of Life.

[0] Y LIFE N;X1;0I0
[1) a The game of life

[2] 0I0<1
L3] +((0=0NC 'Y')A0zONC 'A')/L
4] G-1

[5]1 A«2=720 20p2

[6]1 [L:'Generation ',(¥G),' Population ',%+/,A

[71 Pt =Y [11CT xT[A+1T,[1]17-"), '

(8l +(A/,A=0)/0

ol -(N<G)/0

[10] G+<G+1

[11] X1<0,0,[11CA,[1]0),0

[12] X1<(16X1)+("1oX1)+(1eX1)+(18X1)+(1¢1eX1)+
(T1¢1eX1)+(1¢ 1eX1)+ 10 1eX1

[13] X1<«1 1+71 "1+xa

[14] A«(X1=3)vArXle2 3

[151 -L,D0

Listing 1: An APL program implementing the game of Life

The cellular automata for all the nodes in the grid are
implemented simultaneously injust four sentences (11-14), with
no loops. The first three compute for every cell the number of
neighborsin the full state, while sentence 14 performs the change
of state by applying the three rules indicated above.

This program performs subsequent generations of the game
of Life up to generation number N. Two global variables are
used: A (the boolean matrix defining the initial states of all the
automata in the grid) and G (the initial number of generations).
The program 1s written in such a way that it is possible to stop
the execution of a run and continue it later from the point at
which it was left. If the global variables do not exist, the program

=] APL2 Session Manager - 1001
Log Edit Signals Options Windows Help

ra nb Population !

Input [APL]

Figure |

APL Quote Quad

generates a random boolean matrix and starts a new generation
count. This may also be done simply by specifying any value for
the optional left argument of the function.

Figure 1 shows a classical situation in the game oflife: a glider

throwing cannon.

Ecosystem simulation by cellular automata

Cellular automata similar to the game of life, but more compli-
cated, have been defined in the literature [7]. Some of these
automata are able to model complicated systems, such as gas
diffusion, usually represented by differential equations and
simulated by means of continuous simulation languages [8].

In a previous paper [9] we have used an extension of the
Volterra differential equations [10] to model different complex
ecosystems. The result of this work can be seen at the following

WWW address:
http://www.ii.uam.es/~epulido/ecology/simul.htm

The work presented here models the same system by means
of a specially designed cellular automaton with the following
characteristics:

* Each cell may contain up to four individuals of the prey (x),
each pointing in a different direction.

 Each cell may also contain up to eight predators, which may
exist in two different states (a, b) and point in one of the four
main directions.

* The state of the automaton associated to each cell is defined
by the individuals (up to twelve) currently occupying the cell
and may be represented by a 12 bit boolean vector.

* Thetotal cellular automaton state at a given time step may be
represented by a 12xNxM boolean APL object, where N and
M is the size of the rectangular grid.

* Thenextstate of each automaton is the result of applying two
successive transition operations: a set of collisions and a set
of movements.

* The transition function for the collisions is defined by the
following rules:

» The prey reproduces if there are at least two and at most
three individuals in the same cell. The new individual
generated takes one of the available (empty) orientations
with the same probability.

» A predator in the a state dies if there is no prey in the
same cell.

SEPTEMBER 1999 — VOLUME 30, NUMBER 1

» Apredatorin the a state goes into the b state if there are at
least two prey individuals in the same cell. In this case,
one of the prey individuals dies (is eaten).

» A predator in theb state goes into the a state if there is no
prey in the same cell.

» A predator in the b state becomes two predators in the a
state (reproduces) if there are atleast two prey individuals
in the same cell. In this case, one of the prey individuals
is consumed. The new predator is generated only if there
is an empty orientation in the a state in the cell. The
actual orientation is chosen at random.

» After all the possible collisions have taken place, all the indi-
viduals in each cell move to the neighboring cell in the direc-
tion they are oriented. The grid is assumed to be a plane
torus (i.e., the upper and lower rows are contiguous, as well
as the right and left columns).

Listing 2 on the next page shows the APL2 program that
implements the cellular automaton. It may be observed that, as
in the game of hife, there is a single loop for the generations (this
loop is unavoidable), while all the collisions and movements ata
given step are performed at the same time for all the cells, by
using matricial operations.

= G e

File Options Help

['.I'__.';I e £

It is curious to observe how the evolution of this cellular
automaton mimics the Volterra differential equations that regu-
late the predator/prey interaction, without making use of any of
the tools usually associated to continuous simulation. Figure 2
shows the evolution of the predator/prey populations along time
for one execution of the program. The similarity of the curves to
the solution of the Volterra equations is obvious: the predator
population follows the ups and downs in the prey population
with a certain phase delay and a lower absolute amplitude fluctu-
ation.

29

[0] Y ECOLOGY N;A1;X1;0I0

[1] = Simulation of an ecological system with a cellular automaton
[2] 0OI0«1

[31 -+((o=0ONC "Y')a020NC 'A')/LO

41 GEN+1

[51 C«H+10

{61 A«<12 10 20p0

[71 Alt;51«(4,14pA)pC0 0 O 1)[7(2/4,1+pA)pkH]

[8] AC5 6 7 8;;1+«(4,14pAdp(0 0 0 0 0O 0 0 0 0 1)[2(n/4,14pA)p10]
[s1 -Lo

[10] L:'Generation ',(%GEN),' Population ',v+/,A

[111 HeH,+/,Al;;1]

[12] C«C,+/,Al4+18;;]

[13) ‘'Herbiveres ',(¥ 1pH),' Carnivores ',¥ 1pC

[147 Xi«{vZAL14;;1)+(2uvAALS 6 7 B;;]1)+4uvAAL9 10 11 12;;]

[15) '-','-7,[1]1(' xaabbbb'[¥1+11,[13'-'),'-'

[16] LO:=+{A/,A=0)/0

[171 -(N<GEN)/0

[18]1 GEN«GEN+1

[19] m Collisions: a+0x~>

[20] = a+2x+b+x

[21]1 = bt0x+a

[22] m b+2x+2a+x

[23] n 2x -3x

[24] Al«A

[25]1 AL5;;]1«A1[5;;:]1av#ALl14;;] A a+0x>

[26]1 ALB;;1+A1[6;;1avAA114;;]

[27]1 AL7;;1«A1L07;;1AavAALL1U;;]

[28]1 ALB;;1+«A1[8;;1AavAAL[;5]

[29] X1«A1[5;;1a1<+£A1[14;;] A at2x-b+x
[30] AL5;;]+Al5;;1A~X1

[31]1 A[S 410 11 12;;1«X1 SET ALS 10 11 12;;]

[32]1 A[w4;5;]<X1 RESET Al1i4;;1]

[33] X1<41[6;;1r1<+AA1014;;]

[34] AL[6;;]+ALl6;;1a~X1

[35] ALS 10 41 412;;1+«X1 SET A[9 10 11 12;;]

[36] AL1U4;;1«<X1 RESET Al14;;]

[37]1 X1<41[7;;)a1<+AA10145;]

[381 AL[7;:1«A07;;1Aa~X1

[39] A[9 10 11 12;;1«X1 SET A[9 10 11 12;;]

[40]1 AL:4;;1«<X1 RESET A[:1l;;]

[41] X1<A1[B;;1al<+AAL[L;;5]

(u2] ALB;;1+ALB;;1a~K1

[u3]1 A[9 10 11 12;;1<X1 SET A[9 10 11 12;;1]

[44] A[l14;;1+X1 RESET A[1lL4;;]

[u5] AL9;;]1«A[9;;]1A~X1A1[9;;1r~vAAL[1l5;] A btOx-+a
[u6]l AL5;;1+ALS5;;1vi1

[47]1 AL[10;;1<A[10;; 1A~X1<A1010;;)A~v#A1014;;]

[48]1 ALE;;1<Al6;;]vX1

[49] A[11;;1«Al011;;1A~X1«A1[11; ; Ia~vAALL S ;]

[50] AL7;;1+A[7;;1vil

[51]1 A[12;;1«A012;; 1a~X1«A1012;;1a~v£AL[14:;]

(521 A[E;;1+ALB;;1vil

[53] X1<A1[9;;1at<+£A1[14;5;] A bt2x-aatx
[54]1 AlG%;;1<A09;;1A~X1

[551 A[S 6 7 8;;1+X1 SET ALS 6 7 8;;]

[56]1 A[S 6 7 8;;1<X1 SET AL5 6 7 8;;1]

[57]1 A[l14;;]1«X1 RESET Alr4;;1]
[58]1 X1<A1[10;;1A1<+#41[14;;]
[59] A[10;;]1«A[10;;]1A~X1

[60] A[S5 6 7 8;;1+X1 SET A5 6
[61] A[5 6 7 8;;1+X1 SET ALS 6
[62]1 ALwu4;;]<X1 RESET Al14;;]
[63] X1<A1[11;;1A1<+£A1014;;]
[eul Al11;;1«A[11;;:1A~X1

[65]1 A[5 6 7 8;;1«X1 SET ALS 6
[66]1 A[S5 € 7 B;;1«X1 SET A[S 6
(671 Al1lu4;;]«X1 RESET Al1k;;]
[681 X1«A1[12;;1a1<+4A1014;;]
[69] A[22;;]1«A[12;;]1A~X1

[701 AI[5 6 7 B8;;1+«X1 SET ALS &
[711 A[5 € 7 8;;1+X1 SET A[S &
[72]1 AL-U4;;1«X1 RESET Al14;;]
[73]1 Xil<l<+AA1014;;) R 2X+3X
[7u] A[-4;;1«K1 SET AL1L;;]

[75]1 s Movements

[76]1 Al[1;;1«1eAl1;;1 a North
C771 AL5;;1«1eA05;;]

[78]1 A[9;;1«10A09;;)

[79] Al2;;1< 10402;;1 a Fast
[80] AL6;;]+« 10A[6;;]

[81] A[20;;1+« 14A[10;;5]

[B21 A[3;;1« 1eA[3;;] A South
[831 A[7;;1+ 1eAL[7;;]

[8ul Al11;;]+« 1e4l11;;1]

[85]1 AlLU;;]«1bAlY4;;] n West
[B61 ALB;;]1«10AL[8;;5]

[B7]1 A[12;;1+«10A[12;;]

[881 ~L,O

~ ~N

~1 ~
m
o

Listing 2: An APL program implementing an ecological system

30

Two successive executions of the program are never identi-
cal, even with the same initial conditions, as there are random
effects during the collisions, which depend on the initial value of
the random seed. This is different from the Volterra equations,
but give this ecological simulation an even more realistic appear-
ance.

Conclusion

The generality of cellular automata and their use to simulate
systems usually modelled by means of continuous mathematical
tools has been described. Other more complicated cellular
automata have also been developed, that generate even more
realistic simulations of complex ecosystems, including up to
three different trophic levels. =

References

1. Linz, P.: “An introduction to Formal Languages and
Automata,” D.C. Heath and Co., Lexington, 1990.

2. Von Neumann,].: “Theory of Self-Reproducing Autom-
ata,” Univ. of Illinois Press, Urbana, 1966.

3. Burks, AW, ed.: “Essays on Cellular Automata,” Univ.
of llinois Press, Urbana, 1970.

4. Wolfram, S.: “Theory and Application of Cellular Autom-
ata,” World Sci. Publ., Singapore, 1986.

5. Kari,].: “Cellular Automata. An Introduction,” in “Artifi-
cial Life: Grammatical Models,” ed. by G. Paun, Black Sea
Univ. Press, Bucharest, 1995.

6. Berlekamp, E.R.; Conway, J.H.; Guy, R.K.: “Winning
Ways for your Mathematical Plays,” Academic Press,
1982.

7. Succi, S.: “Cellular Automata Modeling on IBM 3090/
VF,” IBM European Scientific Center, ICE-0014, 1987.

8. Y.Monsef, “Modelling and Simulation of Complex Sys-
tems,” SCS Int., Erlangen, 1997.

9. M.Alonseca,].de Lara, E. Pulido: “Educational simula-
tion of complex ecosystems in the World-Wide Web,”
Proc. ESS°98, SCS Int., p.248-252, 1998.

10

Volterra, V.: “Legons sur la Théorie Mathématique de la
Lutte pour la Vie,” Gauthier-Villars, Paris, 1931.

Manuel Alfonseca is the Subdirector of Research at Escuela
Tecnica Superior de Informatica, Universidad Autonoma de
Madrid, Spain. He can be reached at “Manuel. Alfonseca@
1.uam.es”. You can see more information about Manuel and
his work on his website, “www.i1.uam.es/~alfonsec”.

APL Quote Quad

