
run, can be saved by including fine-by-fine comments while the 
intent is fresh in your  mind. 

,--THE GUIDELINE: ................................................................ -~ 
] Aim to comment [ 
I every single line of code I 

Let's reiterate the guidelines, in case you were asleep: 

#10. 

#9. 

#8. 

#7. 

#6. 

#5. 

#4. 

#3. 

#2. 

#1. 

Avoid looping whenever possible. 

Don't waste your time trying to find 
obscure (and unreaclable) non-looping 
solutions. 

Use nested arrays to keep related 
things together. 

Don't  go ape over each ( " ) .  

Don't  be afraid of files. 

Document in writing every component 
of every file. 

Spend ten percent of your APL time 
learning more APL. 

Aim to have no global variables in your 
workspace, and minimize the passing of 
globals between functions. 

Include comments at the b e g i n n i n g  of 
every function that document intent, 
syntax, and assumptions. 

Aim to comment every single line of 
code. 

Follow these guidelines and you will improve APL's  reputat ion--  
as well as your  own. 

Gary A. Bergquist, A.S.A. is president o/ Zark 1nco~orated, an APL 
consultingfirm that wor~ mainly on insurance applications. Among 
the products supported by Zarl~ are: the Zark APL Tutor, the Zark 
Library of Utility Functions, the quarterly publication Zark APL 
Tutor.brews, and the Variable Products Admlnisbration (VPA) system. 
Gary can be reached at GABergquist@,5~fET.net or at 860-872-7806. 
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T 
HIS PAPER REVIEWS THE CONCEPT OF CELLULAR AUTOMATA 
and describes a simple way to implement them in APL2. 
T w o  cellular automata are programmed:  the well-known 

Conway's  game of  life, and one that simulates an ecosystem and 
displays a behaviour similar to that represented by  the Voherra 
differential equations. Cellular automata are shown to be a pow- 
erful simulation tool for this kind of  systems. 

We shall start with a few definitions: 

Finite automata 
A determlnlstlcfinite automaton [1] consists essentially of  three 
elements: 

• A finite set of  input symbols. 
• A finite set ofstates. 
• A transition function defining the next state of  the automaton 

given its input and its state. This  function is deterministic 
(there is a single next state for every combination of  input and 
current state) and is usually described as a transition table. 
A fourth element usually considered is the initlalstate of  the 

automaton, a distinguished member  of  the set of  states. 
Aprobabilisticfinlte automaton consists of  the same dements  

as a deterministic finite automaton s but the transition function is 
probabilisfic; i.e., for every combination of input and current 
state there are several possible next states, each with a given 
probability. 

Cellular automata 
A estt=~r a=to,,aton [2-~]  is a regular grid of  points, to each of  
which is associated a finite automaton, which may differ from 
other automata in the grid only in its initial state. 

T h e  input to the automaton associated to a given point is the 
set of  states of  the automata associated to the neighboring 
points in the grid. 
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Cellular automata may differ in the following: 

• The shape and size of the grid, usually square, rectangular or 
triangular, which may be infinite. 

• The  definition of the set of neighbors to a given grid point. 
• The  actual finite automaton associated to each point in the 

grid. If  this automaton is deterministic/probabilistic, the 
cellular automaton is determinisfic/probabilistic. 

• The set of initial states of all the automata. 

In cellular automata, spedally those that use an infinite grid, 
the set of states of the finite automaton associated to the grid 
points usually includes a special symbol (the erupt 7 state). The  
number of automata not initially in the empty state is assumed to 
be finite. 

The game of Life 
Introduced by John Conway [6], it is a very simple cellular au- 
tomaton that may give rise to extremely complicated behaviors 
and has been proved to be computafionally complete; i.e., it is 
able to perform any computation which may be performed by a 
digital computer, a Turing machine, a genetic algorithm or a 
neural network. 

The  cellular automaton associated to the game of Life is de- 
fined thus: 

• The grid is rectangular and potentially infinite. 

Each finite automaton has two states: empty (also called dead, 
represented by a zero or a space character) and full (also 
called alive, represented by a one or a star symbol, *). The 
set of states is thus represented by the two boolean numbers 
{0,1} or by the two characters ' * 

• The transition function is defined by the following simple 
rules: 

• I f the automaton associated to a cell is in the empty state, 
it goes into the full state if and only if  the number of its 
neighbors in the full state is exactly three. 

• I f  the automaton associated to a cell is in the full state, it 
goes into the empty state if and only if the number of its 
neighbors in the full state is less than two or more than 
three. 

• In any other case, the automaton remains in the same 
state. 

Each time step is called a"generation." The  set of all the ceils 
alive at a given time step is called the "population." 

The fact that the grid is potentially infinite makes the game of 
life difficult m implement. However, restricted versions, associ- 
ated to a grid offinite dimensions, are very simple, at the cost of 

losing computational completeness. The implementation is 
almost trivial in APL, since the states of all the automata in the 
grid may be represented by a boolean matrix. Listing I shows a 

program that implements the game of Life. 

[ o ] Z ~IFE N; Xl ; ~IO 
[1] ~ The game of life 
[2] 010~1 
[3] -~((0=[3NC 'Y' )^O#~NC 'A' )I~ 
[4] G~-I 
[5] A÷2=720 20p2 
[6] L:'Generat~on ',(vG),' Population ',~+/,A 
[7] '-','-',[I](' *'[A+I],[I]'-'),'-' 
[ 8 ]  -~(^I,A=0)/0 
[9] -(N_<G)IO 
[10] G÷Cr+I 
[11] XI÷0,0, [1](A, [1]0),0 
[12 ] Xl÷( 1@X1 )+( -1~X1 )+( isXl )+( -lSXl )+( 1¢1SXl )+ 

( -l~bleXl )+( 1¢-1eX1 )+-l~b-leXl 
[13] X1~-1 1~-1 -1~X1 
[14] A~(Xi=3)vAAXle2 3 
[15]  -~L,m 

Listing I: An  APL program implement ing  the  game o f  Life 

The cellular automata for all the nodes in the grid are 
implemented simultaneously injus t four sentences (11 - 14), with 
no loops. The first three compute for every cell the number of 
neighbors in the full state, while sentence 14 performs the change 
ofstate by applying the thr'ee rules indicated above. 

This program performs subsequent generations of the game 
of Life up to generation number N. Two global variables are 
used: A (the boolean matrix defining the initial states of a.ll the 
automata in the grid) and G (the initial number ofgenerations). 

The program is written in such a way that it is possible to stop 
the execution of a run and continue it later from the point at 

which it was IeR. If the global variables do not exist, the program 

ii ............................................................ ! 

t 
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t ~  s t  ~r 1 f i r  * 4 r  

- t * *  t *  - 

~,!,~ ~ .[APL! ........................................................................................................ 
Figure I 

2 8 APL Quote Quad 



generates a random boolean matrix and starts a new generation 
count. This may also be done simply by spedfying any value for 
the optional left argument of the function. 

Figure I shows a classical situation in the game of life: a glider 
throwing cannon. 

Ecosystem simulation by cellular automata 
Cellular automata similar to the game of fife, but more compli- 
cated, have been defined in the literature [7]. Some of these 
automata are able to model complicated systems, such as gas 
diffusion, usually represented by differential equations and 
simulated by means of continuous simulation languages [8]. 

In a previous paper [9] we have used an extension of the 
Volterra differential equations [10] to model different complex 
ecosystems. The result of this work can be seen at the following 
W W W  address: 

http://www.ii.uam.es/-epulido/ecology/simul.htm 

The work presented here models the same system by means 
of a specially designed cellular automaton with the following 
characteristics: 

• Each cell may contain up to four individuals of  the prey (x), 
each pointing in a different direction. 

Each cell may also contain up to eight predators, which may 
exist in two different states (a, b) and point in one of the four 
main directions. 

The state of the automaton associated to each cell is defined 
by the individuals (up to twelve) currently occupying the cell 
and may be represented by a 12 bit boolean vector. 

The  total cellular automaton state at a given time step may be 
represented by a 12xNxM boolean APL object, where N and 
M is the size of the rectangular grid. 

The next state of each automaton is the result of applying two 

successive transition operations: a set of collisions and a set 
of movements. 

The  transition function for the collisions is defined by the 
following rules: 

• The prey reproduces ffthere are at least two and at most 
three individuals in the same cell. The  new individual 
generated takes one of the available (empty) orientations 
with the same probability. 

• A predator in the a state dies if there is no prey in the 
s a m e  c e l l .  

• A predator in the a s rate goes into the b state if there are at 
least two prey individuals in the same cell. In this case, 
one of the prey individuals dies (is eaten). 

• Apredator in the b state goes into the a state if there is no 
prey in the same cell. 

• A predator in the b state becomes two predators in the a 
state (reproduces) if there are at least two prey individuals 
in the same cell. In this case, one of the prey individuals 
is consumed. The new predator is generated only if there 
is an empty orientation in the a state in the cell. The 
actual orientation is chosen at random. 

After all the possible collisions have taken place, all the indi- 
viduals in each cell move to the neighboring cell in the direc- 
tion they are oriented. The grid is assumed to be a plane 
torus (i.e., the upper and lower rows are contiguous, as well 
as the right and left colunms). 

Listing 2 on the next page shows the APL2 program that 
implements the cellular automaton. It may be observed that, as 
in the game oflif% there is a single loop for the generations (this 
loop is unavoidable), while all the collisions and movements at a 
given step are performed at the same time for all the cells, by 
using rnatricial operations. 

O ' ' ' ' ' ' ' ' ] D O  ' ' ' ' tetO " ' ' " 200 

Figure 2 

It is curious to observe how the evolution of this cellular 
automaton mimics the Volterra differential equations that regu- 
late the predator/prey interaction, without making use of any of 
the tools usually associated to continuous simulation. Figure 2 
shows the evolution of the predator/prey populations along time 
for one execution of the program. The similarity ofthe curves to 
the solution of the Volterra equations is obvious: the predator 
population follows the ups and downs in the prey population 
with a certain phase delay and a lower absolute amplitude fluctu- 
ation. 
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[0] ~ ECO~OG~ E;A1;X1;~IO 
[1] . Simulation o f  a n  ecological system with a cellular automaton 

[2] ~0~1 
[3] ~((O=~NC r~v)Ao~EC 'A')/~O 

[ql GE/'/~I 
[51 C~B*~O 
[5] A-12 1o 2090 
[7] A[tW;;]*(W,I~pA)9(O 0 0 1][?(*/W,l~pA)p4] 
[g] A[5 6 7 g;;]~(4,1&pA1p(O 0 0 0 0 0 0 0 0 I)[2(./4,1~pA)910] 

[9] ~E0 
[101L:'Generation ',(TGEN),' Population ',v+/,A 

[11] R*H,+/.A[tq;;] 
[121 C-C,+/.A[4+t8;;] 
[13] 'Herbivores ',(T-IpS),' Carnivmres I,T-IpC 
[ l q ]  Xl~v /A[14; ; ] )+ (2~v/A[5  6 7 8 ; i ] ) + 4 ~ v / A [ 9  10 11 12; ;1 
[15] ' - ' , ' - ' , [ 1 ] (  ~ x a a b b b b ' [ X l + l ] , [ 1 ] ' - ' ] , ' - '  
[ 1 6 1 L O : - ( ^ / , A = 0 ) / 0  
[17] ~[N~GEN)/O 
[18] GEN*GEN+I 
[191 A CoZllsluns: a+0x~ 
[2fl] n a+2x~b+x 
[21] ~ b+Ox~a 
[22] a b+2x~2a+x 
[23] a 2x ~3x 
[243 AI~A 
[25] ACS; ; ] ~A I [ 51~ ]Av~A I [ t q ; ; ]  ~ a+0x~ 
C26] A [ S l ; ] * A _ [ 6 ; ; ] ^ v / A - . [ t q ; ; ]  
[27] A E 7 ; ; ] * A l [ 7 ; ; ] ^ v / , ~ . [ t ~ ; ; ]  
[25] A[f;;]*~I[~;~]Av~AI[%~;;] 
[29] X l ~ A . I [ 5 ; ; ] ^ I < + ~ A I [ t g ; ; ]  ~ a+2x*b+x 
[30] A[5 ; ; ] *AES; ; ]A~X1 
[31] A[9 10 11 12; ; ]~X1 SET A[9 10 11 1 2 ; ; ]  
[323 AEt~;;1~X1 RESET A [ t 4 ; ; ]  
[33] XI~.A... .E6;;]Ai<+~AI[ lg;;]  
[34] A [ 6 ; ; 1 * A [ 5 ; ; ] ^ - E 1  
[351 A[9 10 11 12; ; ]~X1 SET A[9 lO 11 12; ;1 
[35] ACt~ ; ; ]~Xl  BESET A[~;;] 
[37] X~-AI[7;;]^I<+MAJ_[%4;;] 
[38] A[7;~]-A[7;;]^-Xi 
[3S] A[9 10 11 12; ; ]~X1 SET ^ I S  10 11 1 2 ; ; ]  
[40] g [ t 4 ; ; ] ~ X 1  ~ S E T  A[~ ; ; ]  
[41] EI+AI[B;;]^I<+/AI[tW;;] 
[q2] A [ f ; ; ] ~ A [ B ; ; ] ^ - X 1  
[~3] A[9 10 11 12| ; ]~X1 SEE A[9 10 11 1 2 ; ; ]  
[4q] A [ t4 ; ; ] ~ l  RESET AE~q;;] 
[~5] A[9;;]~A[S;i]^-EI+Ai[9;;]A-VMA.~[LW;;] g b+Ox~a 

[~6] A[5~;]*A[5;;IvXI 

[Wfl] A[f;i]*A[6;;]vXl 
[49] A [ l l ; ; ] - A [ l l ; ; ] ^ - X l ~ A l [ l l ; ; ] A - V ~ A _ l [ t ~ ; ; ]  
[50] A[7;;]~A[7;;]vX1 
[51] A[12;;]~A[12;;]A-X1~A1112;;]A-v~Al[t4:;] 
[52] AC~;;]~ACB;;]vX1 
[53] X l ~ A l [ 9 ; ; ] ^ 1 < + / ~ - [ ~ 4 ; ; ]  . b+2x~aa+x 
[5q] A [ ~ ; ; ] * A C g ; ; ] A - E 1  
[55] A[5 6 7 5;;]~E1 SET A[5 6 7 S;;] 
[56] A[5 6 7 B;;]*Xl SET A[5 6 7 8;;] 
[57] A[~;;]-X1 RESET A[t4;;] 
[58] XI~AI[IO;;]AI<+MAI[t~;;] 
[59] ACIO;; ] -A[IO;; ]^-X1 
[60] A[5 5 7 5;;]~X1 SET A[5 6 7 8;;] 
[61] A[5 5 7 8;;]~E1 SET A[5 5 7 fl;;] 
[62] A[tW;;]~XI HES~II A[t4;;] 
[63] XI~AI[ll;;]AI<+M,~_[t4;;] 
[6q] A[ll;;]~A[iI;;]^-XI 
[65] A[5 5 7 5 ; ; ] ~ X l  EEl" A[5 6 7 8 ; ;1  
[65] AC6 5 7 g ; ; ] - X l  SET ^IS 6 7 B ; ; ]  
[67] A[~;;]-E1 RESET A [ t ~ ; ; ]  
[68] XI~AI [12 ; ; ] ^ I<+ /A I [ t~ ; ; ]  
[69] A [ L 2 ; ; ] ~ A [ 1 2 ; ; ] ^ - X 1  
[7o] A[5 5 7 8;;]~X1 SET A[5 fi 7 ~ ; ; ]  
[71] A[5 6 7 8;;]-El SET A[5 6 7 B;;] 
[72] A[~;;]-XI RESET A[~;;] 
[73] XI~I<+MAi[~;;] . 2x~3x 

[7~] ~[~4;;]+X1 SET A[t4;;] 
[75] . Movements 
[75] A[1 ; ; ]~ leA [1 ; ; ]  , North_ 
[77] AE5;;]+leA[5;;] 
[7fl] A[B;;]-IeA[9;;] 
[79] A[2;;]~-lOA[2;;] a East 
[SO] A[5;;]*-IOA[5;;] 
[81] A C 1 0 ; ; ] * - I C A [ 1 0 ; ; ]  
[82] A[3;;]+-IeA[3;;] . South 
[83] ^[7;;]*-leA[7;;] 
[f14] A[ll;;]~-leA[11;;] 
[55] A [ 4 ; ; ] ~ l ~ A [ 4 ; ; ]  . West 

[85] A[B;;]~IOA[B;;] 
[87] A[12;;]~IOA[12;;] 
[591 +~,~ 

Listing 2: An APL program implementing an ecological system 

Two successive executions of the program are never identi- 
cal, even with the same initial conditions, as there are random 
effects during the collisions, which depend on the initial value of 
the random seed. This is different from the Volterra equations, 
but give this ecological simulation an even more realistic appear- 
a n c e .  

Conclusion 
The generality of cellular automata and their use to simulate 
systems usually modelled by means of continuous mathematical 
tools has been described. Other more complicated cellular 
automata have also been developed, that generate even more 
realistic simulations of complex ecosystems, including up to 
three different trophic levels. • 
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