
run, can be saved by including fine-by-fine comments while the
intent is fresh in your mind.

,--THE GUIDELINE: .. -~
] Aim to comment [
I every single line of code I

Let's reiterate the guidelines, in case you were asleep:

#10.

#9.

#8.

#7.

#6.

#5.

#4.

#3.

#2.

#1.

Avoid looping whenever possible.

Don't waste your time trying to find
obscure (and unreaclable) non-looping
solutions.

Use nested arrays to keep related
things together.

Don't go ape over each (") .

Don't be afraid of files.

Document in writing every component
of every file.

Spend ten percent of your APL time
learning more APL.

Aim to have no global variables in your
workspace, and minimize the passing of
globals between functions.

Include comments at the b e g i n n i n g of
every function that document intent,
syntax, and assumptions.

Aim to comment every single line of
code.

Follow these guidelines and you will improve APL's reputat ion--
as well as your own.

Gary A. Bergquist, A.S.A. is president o/ Zark 1nco~orated, an APL
consultingfirm that wor~ mainly on insurance applications. Among
the products supported by Zarl~ are: the Zark APL Tutor, the Zark
Library of Utility Functions, the quarterly publication Zark APL
Tutor.brews, and the Variable Products Admlnisbration (VPA) system.
Gary can be reached at GABergquist@,5~fET.net or at 860-872-7806.

Programming Cellular Automata in APL2
--by Man=el Al~onseca

Madrid, Spain

Universidad Autonoma de Madrid
Dept. Ingenieria Infulrmatica
Manud.Alfonseca@ii.uam.es

Acknowledgment: This paper has been sponsored ~ the Spanish
Interdepar6mental Commission of Sdence and Technol~Tgy
(CICYT), project numbers TIC-96-0723-C02-01 and TEL97-
0306.

T
HIS PAPER REVIEWS THE CONCEPT OF CELLULAR AUTOMATA
and describes a simple way to implement them in APL2.
T w o cellular automata are programmed: the well-known

Conway's game of life, and one that simulates an ecosystem and
displays a behaviour similar to that represented by the Voherra
differential equations. Cellular automata are shown to be a pow-
erful simulation tool for this kind of systems.

We shall start with a few definitions:

Finite automata
A determlnlstlcfinite automaton [1] consists essentially of three
elements:

• A finite set of input symbols.
• A finite set ofstates.
• A transition function defining the next state of the automaton

given its input and its state. This function is deterministic
(there is a single next state for every combination of input and
current state) and is usually described as a transition table.
A fourth element usually considered is the initlalstate of the

automaton, a distinguished member of the set of states.
Aprobabilisticfinlte automaton consists of the same dements

as a deterministic finite automaton s but the transition function is
probabilisfic; i.e., for every combination of input and current
state there are several possible next states, each with a given
probability.

Cellular automata
A estt=~r a=to,,aton [2-~] is a regular grid of points, to each of
which is associated a finite automaton, which may differ from
other automata in the grid only in its initial state.

T h e input to the automaton associated to a given point is the
set of states of the automata associated to the neighboring
points in the grid.

SEP'rSMBER 1999 -- VoLcr~E 30, NUMBER Z 2 7

Cellular automata may differ in the following:

• The shape and size of the grid, usually square, rectangular or
triangular, which may be infinite.

• The definition of the set of neighbors to a given grid point.
• The actual finite automaton associated to each point in the

grid. If this automaton is deterministic/probabilistic, the
cellular automaton is determinisfic/probabilistic.

• The set of initial states of all the automata.

In cellular automata, spedally those that use an infinite grid,
the set of states of the finite automaton associated to the grid
points usually includes a special symbol (the erupt 7 state). The
number of automata not initially in the empty state is assumed to
be finite.

The game of Life
Introduced by John Conway [6], it is a very simple cellular au-
tomaton that may give rise to extremely complicated behaviors
and has been proved to be computafionally complete; i.e., it is
able to perform any computation which may be performed by a
digital computer, a Turing machine, a genetic algorithm or a
neural network.

The cellular automaton associated to the game of Life is de-
fined thus:

• The grid is rectangular and potentially infinite.

Each finite automaton has two states: empty (also called dead,
represented by a zero or a space character) and full (also
called alive, represented by a one or a star symbol, *). The
set of states is thus represented by the two boolean numbers
{0,1} or by the two characters ' *

• The transition function is defined by the following simple
rules:

• I f the automaton associated to a cell is in the empty state,
it goes into the full state if and only if the number of its
neighbors in the full state is exactly three.

• I f the automaton associated to a cell is in the full state, it
goes into the empty state if and only if the number of its
neighbors in the full state is less than two or more than
three.

• In any other case, the automaton remains in the same
state.

Each time step is called a"generation." The set of all the ceils
alive at a given time step is called the "population."

The fact that the grid is potentially infinite makes the game of
life difficult m implement. However, restricted versions, associ-
ated to a grid offinite dimensions, are very simple, at the cost of

losing computational completeness. The implementation is
almost trivial in APL, since the states of all the automata in the
grid may be represented by a boolean matrix. Listing I shows a

program that implements the game of Life.

[o] Z ~IFE N; Xl ; ~IO
[1] ~ The game of life
[2] 010~1
[3] -~((0=[3NC 'Y')^O#~NC 'A')I~
[4] G~-I
[5] A÷2=720 20p2
[6] L:'Generat~on ',(vG),' Population ',~+/,A
[7] '-','-',[I](' *'[A+I],[I]'-'),'-'
[8] -~(^I,A=0)/0
[9] -(N_<G)IO
[10] G÷Cr+I
[11] XI÷0,0, [1](A, [1]0),0
[12] Xl÷(1@X1)+(-1~X1)+(isXl)+(-lSXl)+(1¢1SXl)+

(-l~bleXl)+(1¢-1eX1)+-l~b-leXl
[13] X1~-1 1~-1 -1~X1
[14] A~(Xi=3)vAAXle2 3
[15] -~L,m

Listing I: An APL program implement ing the game o f Life

The cellular automata for all the nodes in the grid are
implemented simultaneously injus t four sentences (11 - 14), with
no loops. The first three compute for every cell the number of
neighbors in the full state, while sentence 14 performs the change
ofstate by applying the thr'ee rules indicated above.

This program performs subsequent generations of the game
of Life up to generation number N. Two global variables are
used: A (the boolean matrix defining the initial states of a.ll the
automata in the grid) and G (the initial number ofgenerations).

The program is written in such a way that it is possible to stop
the execution of a run and continue it later from the point at

which it was IeR. If the global variables do not exist, the program

ii .. !

t

i * l * * t t
t ~ s t ~r 1 f i r * 4 r

- t * * t * -

~,!,~ ~ .[APL! ..
Figure I

2 8 APL Quote Quad

generates a random boolean matrix and starts a new generation
count. This may also be done simply by spedfying any value for
the optional left argument of the function.

Figure I shows a classical situation in the game of life: a glider
throwing cannon.

Ecosystem simulation by cellular automata
Cellular automata similar to the game of fife, but more compli-
cated, have been defined in the literature [7]. Some of these
automata are able to model complicated systems, such as gas
diffusion, usually represented by differential equations and
simulated by means of continuous simulation languages [8].

In a previous paper [9] we have used an extension of the
Volterra differential equations [10] to model different complex
ecosystems. The result of this work can be seen at the following
W W W address:

http://www.ii.uam.es/-epulido/ecology/simul.htm

The work presented here models the same system by means
of a specially designed cellular automaton with the following
characteristics:

• Each cell may contain up to four individuals of the prey (x),
each pointing in a different direction.

Each cell may also contain up to eight predators, which may
exist in two different states (a, b) and point in one of the four
main directions.

The state of the automaton associated to each cell is defined
by the individuals (up to twelve) currently occupying the cell
and may be represented by a 12 bit boolean vector.

The total cellular automaton state at a given time step may be
represented by a 12xNxM boolean APL object, where N and
M is the size of the rectangular grid.

The next state of each automaton is the result of applying two

successive transition operations: a set of collisions and a set
of movements.

The transition function for the collisions is defined by the
following rules:

• The prey reproduces ffthere are at least two and at most
three individuals in the same cell. The new individual
generated takes one of the available (empty) orientations
with the same probability.

• A predator in the a state dies if there is no prey in the
s a m e c e l l .

• A predator in the a s rate goes into the b state if there are at
least two prey individuals in the same cell. In this case,
one of the prey individuals dies (is eaten).

• Apredator in the b state goes into the a state if there is no
prey in the same cell.

• A predator in the b state becomes two predators in the a
state (reproduces) if there are at least two prey individuals
in the same cell. In this case, one of the prey individuals
is consumed. The new predator is generated only if there
is an empty orientation in the a state in the cell. The
actual orientation is chosen at random.

After all the possible collisions have taken place, all the indi-
viduals in each cell move to the neighboring cell in the direc-
tion they are oriented. The grid is assumed to be a plane
torus (i.e., the upper and lower rows are contiguous, as well
as the right and left colunms).

Listing 2 on the next page shows the APL2 program that
implements the cellular automaton. It may be observed that, as
in the game oflif% there is a single loop for the generations (this
loop is unavoidable), while all the collisions and movements at a
given step are performed at the same time for all the cells, by
using rnatricial operations.

O ' ' ' ' ' ' ' '] D O ' ' ' ' tetO " ' ' " 200

Figure 2

It is curious to observe how the evolution of this cellular
automaton mimics the Volterra differential equations that regu-
late the predator/prey interaction, without making use of any of
the tools usually associated to continuous simulation. Figure 2
shows the evolution of the predator/prey populations along time
for one execution of the program. The similarity ofthe curves to
the solution of the Volterra equations is obvious: the predator
population follows the ups and downs in the prey population
with a certain phase delay and a lower absolute amplitude fluctu-
ation.

S~'S~DER 1999 - - VOLUMS so, Ntr~BER 1 2

[0] ~ ECO~OG~ E;A1;X1;~IO
[1] . Simulation o f a n ecological system with a cellular automaton

[2] ~0~1
[3] ~((O=~NC r~v)Ao~EC 'A')/~O

[ql GE/'/~I
[51 C~B*~O
[5] A-12 1o 2090
[7] A[tW;;]*(W,I~pA)9(O 0 0 1][?(*/W,l~pA)p4]
[g] A[5 6 7 g;;]~(4,1&pA1p(O 0 0 0 0 0 0 0 0 I)[2(./4,1~pA)910]

[9] ~E0
[101L:'Generation ',(TGEN),' Population ',v+/,A

[11] R*H,+/.A[tq;;]
[121 C-C,+/.A[4+t8;;]
[13] 'Herbivores ',(T-IpS),' Carnivmres I,T-IpC
[l q] Xl~v /A[14; ;])+ (2~v/A[5 6 7 8 ; i]) + 4 ~ v / A [9 10 11 12; ;1
[15] ' - ' , ' - ' , [1] (~ x a a b b b b ' [X l + l] , [1] ' - '] , ' - '
[1 6 1 L O : - (^ / , A = 0) / 0
[17] ~[N~GEN)/O
[18] GEN*GEN+I
[191 A CoZllsluns: a+0x~
[2fl] n a+2x~b+x
[21] ~ b+Ox~a
[22] a b+2x~2a+x
[23] a 2x ~3x
[243 AI~A
[25] ACS; ;] ~A I [51~]Av~A I [t q ; ;] ~ a+0x~
C26] A [S l ;] * A _ [6 ; ;] ^ v / A - . [t q ; ;]
[27] A E 7 ; ;] * A l [7 ; ;] ^ v / , ~ . [t ~ ; ;]
[25] A[f;;]*~I[~;~]Av~AI[%~;;]
[29] X l ~ A . I [5 ; ;] ^ I < + ~ A I [t g ; ;] ~ a+2x*b+x
[30] A[5 ; ;] *AES; ;]A~X1
[31] A[9 10 11 12; ;]~X1 SET A[9 10 11 1 2 ; ;]
[323 AEt~;;1~X1 RESET A [t 4 ; ;]
[33] XI~.A... .E6;;]Ai<+~AI[lg;;]
[34] A [6 ; ; 1 * A [5 ; ;] ^ - E 1
[351 A[9 10 11 12; ;]~X1 SET A[9 lO 11 12; ;1
[35] ACt~ ; ;]~Xl BESET A[~;;]
[37] X~-AI[7;;]^I<+MAJ_[%4;;]
[38] A[7;~]-A[7;;]^-Xi
[3S] A[9 10 11 12; ;]~X1 SET ^ I S 10 11 1 2 ; ;]
[40] g [t 4 ; ;] ~ X 1 ~ S E T A[~ ; ;]
[41] EI+AI[B;;]^I<+/AI[tW;;]
[q2] A [f ; ;] ~ A [B ; ;] ^ - X 1
[~3] A[9 10 11 12| ;]~X1 SEE A[9 10 11 1 2 ; ;]
[4q] A [t4 ; ;] ~ l RESET AE~q;;]
[~5] A[9;;]~A[S;i]^-EI+Ai[9;;]A-VMA.~[LW;;] g b+Ox~a

[~6] A[5~;]*A[5;;IvXI

[Wfl] A[f;i]*A[6;;]vXl
[49] A [l l ; ;] - A [l l ; ;] ^ - X l ~ A l [l l ; ;] A - V ~ A _ l [t ~ ; ;]
[50] A[7;;]~A[7;;]vX1
[51] A[12;;]~A[12;;]A-X1~A1112;;]A-v~Al[t4:;]
[52] AC~;;]~ACB;;]vX1
[53] X l ~ A l [9 ; ;] ^ 1 < + / ~ - [~ 4 ; ;] . b+2x~aa+x
[5q] A [~ ; ;] * A C g ; ;] A - E 1
[55] A[5 6 7 5;;]~E1 SET A[5 6 7 S;;]
[56] A[5 6 7 B;;]*Xl SET A[5 6 7 8;;]
[57] A[~;;]-X1 RESET A[t4;;]
[58] XI~AI[IO;;]AI<+MAI[t~;;]
[59] ACIO;;] -A[IO;;]^-X1
[60] A[5 5 7 5;;]~X1 SET A[5 6 7 8;;]
[61] A[5 5 7 8;;]~E1 SET A[5 5 7 fl;;]
[62] A[tW;;]~XI HES~II A[t4;;]
[63] XI~AI[ll;;]AI<+M,~_[t4;;]
[6q] A[ll;;]~A[iI;;]^-XI
[65] A[5 5 7 5 ; ;] ~ X l EEl" A[5 6 7 8 ; ;1
[65] AC6 5 7 g ; ;] - X l SET ^IS 6 7 B ; ;]
[67] A[~;;]-E1 RESET A [t ~ ; ;]
[68] XI~AI [12 ; ;] ^ I<+ /A I [t~ ; ;]
[69] A [L 2 ; ;] ~ A [1 2 ; ;] ^ - X 1
[7o] A[5 5 7 8;;]~X1 SET A[5 fi 7 ~ ; ;]
[71] A[5 6 7 8;;]-El SET A[5 6 7 B;;]
[72] A[~;;]-XI RESET A[~;;]
[73] XI~I<+MAi[~;;] . 2x~3x

[7~] ~[~4;;]+X1 SET A[t4;;]
[75] . Movements
[75] A[1 ; ;]~ leA [1 ; ;] , North_
[77] AE5;;]+leA[5;;]
[7fl] A[B;;]-IeA[9;;]
[79] A[2;;]~-lOA[2;;] a East
[SO] A[5;;]*-IOA[5;;]
[81] A C 1 0 ; ;] * - I C A [1 0 ; ;]
[82] A[3;;]+-IeA[3;;] . South
[83] ^[7;;]*-leA[7;;]
[f14] A[ll;;]~-leA[11;;]
[55] A [4 ; ;] ~ l ~ A [4 ; ;] . West

[85] A[B;;]~IOA[B;;]
[87] A[12;;]~IOA[12;;]
[591 +~,~

Listing 2: An APL program implementing an ecological system

Two successive executions of the program are never identi-
cal, even with the same initial conditions, as there are random
effects during the collisions, which depend on the initial value of
the random seed. This is different from the Volterra equations,
but give this ecological simulation an even more realistic appear-
a n c e .

Conclusion
The generality of cellular automata and their use to simulate
systems usually modelled by means of continuous mathematical
tools has been described. Other more complicated cellular
automata have also been developed, that generate even more
realistic simulations of complex ecosystems, including up to
three different trophic levels. •

References
1. Linz, P.: "An introduction to Formal Languages and

Automata," D.C. Heath and Co., Lexington, 1990.

2. Von Neumann, J.: "Theory of Self-Reproducing Autom-
am," Univ. of IUinois Press, Urbana, 1966.

3. Burks, A.W., ed.: "Essays on Cellular Automata," Univ.
of Illinois Press, Urbana, 1970.

4. Wolfram, S.: "Theory and Application of Cellular Autom-
am," World Sci. Publ., Singapore, 1986.

. Kafi, J.: "Cellular Automata. An Introduction," in "Artifi-
cial Life: Grammatical Models," ed. by G. Paun, Black Sea
Univ. Press, Bucharest, 1995.

. Berlekamp, E.R.; Conway, J.H.; Guy, K.K.: "Winning
Ways for your Mathematical Plays," Academic Press,
1982.

7. Succi, S.: "Cellular Automata Modeling on IBM 3090/
VF," IBM European Scientific Center, ICE-0014, 1987.

8. Y.Monsef, "Modelling and Simulation of Complex Sys-
tems," SCS Int., Erlangen, 1997.

9. M.Alfonseca, J.de Lara, E. Pulido: "Educational shnula-
tion of complex ecosystems in the World-Wide Web,"
Proc. ESS'98, SCS Int., p.248-252, 1998.

10. Voherra, V.: "Lemons sur la Th4ofie Math4mafique de la
Lutte pour la Vie," Ganthier-Villars, Paris, 1931.

Manuel Alfonseca is the Subdirector of Research at Escuela
Tecnica Superior de Informatica, Universidad Autonoma de
Madrid, Spain. He can be reached at "Manuel.Alfonseca@
ii.uam.es". You can see more information about Manuel and
his work on his webslte, "~www.ii.uam.es/-alfo~sec".

3 0 arL O, a, O~a

