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I n t r o d u c t i o n  

Since PROLOG is a highly used language in Artificial 
Intelligence applications, it has been our aim to test the APL 
capabilities to emulate it, in this way combining the proper- 
ties of both languages in a single system, where APL would 
provide its number-crunching and file handling facilities, 
while PROLOG-like APL functions would make it possible to 
perform logical inferences in a non-procedural environment. 
All the work took place in a Personal Computer, using IBM 
PC APL as the basis syst, em. 

PROLOG operates with the so-called Horn's clauses 
formed by u conjunction of affirmative propositions. The 
answer to a certain goal is obtained by using Robinson's 
Resolution Principle, i.e. checking tha t  the set formed by the 
premises in the negation of the goal is inconsistent. It can be 
proved tha t  this process is complete and correct. 

The fact tha t  a generally accepted PROLOG standard 
does not exist has the consequence that  almost each PRO- 
LOG system available is unique and incompatible with the 
others. On the one hand, this is a setback for the current 
applications of the language, but  on the other it means that  
this language has not  yet  at tained its final form, and finds 
itself in the process of being designed. This gives us the free- 
dom of introducing changes in the syntax, so as to fit better  
with our A.PL environment. 

The syntax we have implemented is not exactly the 
same as PROLOG uses, but  it 's quite similar and closer to 
the natural  language. It is really an extension of Horn's 
clauses, since it allows conjunctions and disjunctions of both 
affirmative and negative propositions, making data  entry and 
processing easier. 

To illustrate this we have implemented a toy expert 
system, capable of answering questions on the genealogy and 
family relations of a certain number of the gods in the Greek 
mythology. 

K n o w l e d g e  Base  S t r u c t u r e  

Knowledge base systems contain two different types of 
information: 

AXIOMS (or facts) are simple propositions tha t  the 
system assumes to be true. Their syntax can be 
defined by the following grammar in Backus Normal 
Form (BNF): 

Axiom : : :  Clause 

Clause ::= Assertion]NOT Assertion 

Assertion ::= Term Verb Term 

Verb ::= word 

Term ::= variable]word 

Vanabies and words are the terminal symbols of the 
g r a m m a r  Both are literal strings not including spaces. Vari- 
ables are distinguished from words: variable names begin 
with an AI?L delta. In actual fact, variables are not allowed 
within axioms. 

Examples of axioms are: 

ZEUS IS MALE 
GEA IS FEMALE 
HYPERION IS-FATHER-OF AURORA 
GEA IS-MOTHER-OF IAPETUS 

RULES tha t  the system will use to deduce new facts 
from them. They consist of two parts premises and 
conclusions, joined by the IF particle. Their syntax is 
the following (in BNF): 

Rule 

Conclusions 

Premises 

:= Conclusions IF Premises 

:= Clausel 
Clause AND Conclusions[ 

Clause OR Conclusions 

:= Clausel 

Clause AND Premisesl 

Clause OR Premises 

Basically the rules are formal logic implications. A=>B 
is equivalent to B I F  A, 
where A and B are assertive or negative propositions con- 

taining variables capable of being replaced by one or several 
words. 

Examples of rules are: 

AX IS-SON-OF AT IF 
AX IS MALE AND 
~Y IS-PARENT-OF ~X 

AX IS-PARENT-OF AT IF 
AX IS-FATHER-OF AT OR 
~X IS-MOTHER-OF ~ 

As the examples show, both axioms and rules are accepted by 
the system in a way very similar to natural  language. 

S t r u c t u r e  of  t h e  K n o w l e d g e  Base  

Words are kept in a literal matrix which we call word 
table. This table will have as many rows as there are words 
known by the system, and as many columns as the length of 
the longest word. 

A reference to a word is defined by its row index posi- 
tion in the word table. 

Axioms and rules are codified into five column numeri- 
cal matrices. 

An axiom is a codified into a 1 row 5 column matrix 
containing the following information: 

The first element is i 0 0  if the proposition is affirma- 
tive, 0 if it is negative. The next three elements are the 
references to the three words making up the axiom. The 
fifth element is always zero and is included for compatibili ty 
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with the rules. 

Function FF converts an axiom into 
representation. 

FF I HERMES IS A~ALE ~ 
100 1 2 3 0 

its internal 

FF w NOT ZEUS IS FEMALE ~ 
014 2 5 0 

The set of all axioms is stored as a matrix with 5 
columns and as many rows as axioms have been defined. 

A rule is internally represented as a five column matrix 
with as many rows as the number of clauses it contains. The 
first element in each row indicates whether the corresponding 
clause is affirmative (100) or negative (0). Words in the 
clauses are represented by their references to the word table. 
Variables are converted into negative numbers starting at 
-10, in decreasing order, and are considered local to the rule. 
Columns 2, 3 and 4 in the matrix contain the information 
about the three terms in each clause. Finally, the fifth 
column indicates the conn~ective between each clause and the 
next, according to the following translation rules: 

IF becomes -1. 

AND becomes -2. 

OR becomes -3. 

A zero indicates the end of the rule. 

Funct ion FF will also convert a rule into its internal 
form. 

FF 'hX IS-SISTER-OF AY IF 
AX IS FEMALE AND 
BX SAME-PARENTS hY AND 
NOT BX IS-SAME-AS ~yt 

will become the matrix: 

100 - 1 1  6 - 1 2  - 1  
100  - 1 1  2 5 - 2  
100  - 1 1  7 - 1 2  - 2  

0 - 1 1  8 - 1 2  0 

R u n n i n g  t he  S y s t e m  

Once the data  have been introduced, the system is 
ready to answer questions about them by means of the infer- 
ence method it contains. 

The answers the system gives may be different 
depending on what we have requested: 

- If we ask a question of a fact, the answer will be affirmative 
or negative: 

ASK w ZEUS IS MALE l 
YES 

ASK ' HELIOS IS-SON-OF OURANOS' 
NO 

- If the question contains a variable, the answer will consist 
of all the words with which the variable may be unified, if 
there is no answer, the resu!t wil] be NO. 

Examples: 

ASK ~ &X IS-FATHER-OF AURORA 
H~IPERION 

ASK ~ dX IS-SOI~-OF GEA 
IAPETUS HYPERION CEO CRONOS OCEANO 

ASK ~ GEA IS-~OTHER~OF AX 
IAPETUS HYPERION CEO CRONOS 

iqHEA OCEANO TETHIS 

Questions including two different variables ure not allowed at 
this time. 

The answer may "De obtained directly (if the request is 
an axiom, or may be unified with one), or by inference, if it is 
deducible from the rules. Applicable rules will be tried suc- 
cessively until  one of them provides one or several answers. 
All remaining rules are then ignored. The process is recur- 
sire, i.e. trying to apply one rule produces subgoals that  may 
require the inference process to be applied again. 

E x p l a i n i n g  the  A n s w e r s  

While the inference procedure is taking place, the sys- 
tem builds a global numeric matrix containing information 
about all the steps performed to obtain the solution. This 
explanation may be offered to the questioner if required. 

Function WHY takes this global variable generated by 
the last question, and produces an explanation in natural-like 
language to a depth chosen by the questioner. The informa- 
tion appears indented according to the current depth and, in 
this way, the level may be known. 

ASK IZEUS IS MALES 
YES 

WHY 
BECAUSE IT'S ANAXIOM 

ASK IGEA IS hX' 
FEMALE 

WHY 
BECAUSE ITIS AM AXIOM 

ASK 'HYPERION IS-SON-OF OURANOS' 
YES 

WIIZ 
HYPERION IS MaLE AND 
OURANOS IS-PARENT-OF HYPERION 
GAVE ME THE ANSWER: 
YES 
DO YOU WANT MORE INFORMATION? (YES~NO) 
YES 

HYPERION IS YALE 
GAVE HE THE ANSWER: 
YES 
AND BESIDES 
OURANOS IS-PARENT-OF HYPERION 
GAVE ME THE ANSWER: 
YES 
DO YOU WANT MORE INFOPJ&ITION? 
YES 
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OURANO$ I$-MOTHgR-OF HIPEHION 
OR OURz~IOS IS-FATHER-OF HYPERION 
GAVE ME THE ~JqSIVER: 
YES 
DO YOU MANT MORE INFOPJ4ATIOM? 
YES 

OUIfANOS IS-IdOTHER-OF H•PERI'ON 
GAVE ME THE A21SWER: 
NO 
AND BESIDES 
OURANOS IS-FATHER-OF HYPERION 
GAVE ME THE ANSWER 
YES 

Conclus ion  

As described before, the system is now complete and 
performs logic inferences according to expectations. The syn- 
tax is more compact than PROLOG's,  and the number of 
rules and axioms for a given system is somewhat smaller. In 
the case of our example, a total of 24 rules and 174 axioms 
contain all the information. Quite complicated questions on 
genealogy and relationship of the Greek gods may be 
requested. 

At the point this system has been developed, it does 
not include concerns as the probability of application of the 
rule. This is~ obviously, an open field of implementation. 
The speed, as compared to non-emulated PROLOG inter- 
preters, is, of course, slower by about one order of magni- 
tude. Different techniques could be applied to make it faster, 
and will be the object of a further communication. 
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T r e e s  a n d  N e t w o r k s  
U s i n g  A P L 2  

Z. K Ji zba 

Nested arrays in APL together with other enhance- 
ments make it possible to build LISP-like (and PROLOG- 
like) applications. This paper describes some of the tech- 
niques for dealing with structures such as TREES and NET- 
WORKS. Examples illustrate possible applications in the 
field of artificial intelligence. 

T R E E S  
A vector can be thought of as a rooted tree (for defini- 

tions of these terms, see a textbook on graph theory such as 
[11). For example, the vector of integers could be represented 
by a tree diagram: 

VECTOR: 1 2 3 4  

TREE: 

The circles and square in the above diagram are called 
nodes. The lines connecting pairs of nodes are called links. 
The node shown as a square is called the root node. It is 
implied by the vector, and therefore cannot contain data. A 
nested vector of integers can be also represented by a tree 
graph. For each nested element of the vector there is an 
implied node as shown on the following diagram: 

VECTOR: (1 2)(3 4) 

TREE: 

In the diagrams above, a distinction is made between 
terminal nodes (called leaves), and nodes of degree greater 
than one. The isomorphism between nested vectors and tree 
graphs is inadequate for many applications. There are two 
problems: First, implicit nodes cannot contain useful infor- 
mation. Second, there is no way to define a leaf node other 
than as a simple scalar. Consider the following diagram: 
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