
E m u l a % i n g P r o l o g i n a n
I B M P C A P L E n v i r o n m e n t

Maria J. Tobar and M. Alfonseca

I n t r o d u c t i o n

Since PROLOG is a highly used language in Artificial
Intelligence applications, it has been our aim to test the APL
capabilities to emulate it, in this way combining the proper-
ties of both languages in a single system, where APL would
provide its number-crunching and file handling facilities,
while PROLOG-like APL functions would make it possible to
perform logical inferences in a non-procedural environment.
All the work took place in a Personal Computer, using IBM
PC APL as the basis syst, em.

PROLOG operates with the so-called Horn's clauses
formed by u conjunction of affirmative propositions. The
answer to a certain goal is obtained by using Robinson's
Resolution Principle, i.e. checking tha t the set formed by the
premises in the negation of the goal is inconsistent. It can be
proved tha t this process is complete and correct.

The fact tha t a generally accepted PROLOG standard
does not exist has the consequence that almost each PRO-
LOG system available is unique and incompatible with the
others. On the one hand, this is a setback for the current
applications of the language, but on the other it means that
this language has not yet at tained its final form, and finds
itself in the process of being designed. This gives us the free-
dom of introducing changes in the syntax, so as to fit better
with our A.PL environment.

The syntax we have implemented is not exactly the
same as PROLOG uses, but it 's quite similar and closer to
the natural language. It is really an extension of Horn's
clauses, since it allows conjunctions and disjunctions of both
affirmative and negative propositions, making data entry and
processing easier.

To illustrate this we have implemented a toy expert
system, capable of answering questions on the genealogy and
family relations of a certain number of the gods in the Greek
mythology.

K n o w l e d g e Base S t r u c t u r e

Knowledge base systems contain two different types of
information:

AXIOMS (or facts) are simple propositions tha t the
system assumes to be true. Their syntax can be
defined by the following grammar in Backus Normal
Form (BNF):

Axiom : : : Clause

Clause ::= Assertion]NOT Assertion

Assertion ::= Term Verb Term

Verb ::= word

Term ::= variable]word

Vanabies and words are the terminal symbols of the
g r a m m a r Both are literal strings not including spaces. Vari-
ables are distinguished from words: variable names begin
with an AI?L delta. In actual fact, variables are not allowed
within axioms.

Examples of axioms are:

ZEUS IS MALE
GEA IS FEMALE
HYPERION IS-FATHER-OF AURORA
GEA IS-MOTHER-OF IAPETUS

RULES tha t the system will use to deduce new facts
from them. They consist of two parts premises and
conclusions, joined by the IF particle. Their syntax is
the following (in BNF):

Rule

Conclusions

Premises

:= Conclusions IF Premises

:= Clausel
Clause AND Conclusions[

Clause OR Conclusions

:= Clausel

Clause AND Premisesl

Clause OR Premises

Basically the rules are formal logic implications. A=>B
is equivalent to B I F A,
where A and B are assertive or negative propositions con-

taining variables capable of being replaced by one or several
words.

Examples of rules are:

AX IS-SON-OF AT IF
AX IS MALE AND
~Y IS-PARENT-OF ~X

AX IS-PARENT-OF AT IF
AX IS-FATHER-OF AT OR
~X IS-MOTHER-OF ~

As the examples show, both axioms and rules are accepted by
the system in a way very similar to natural language.

S t r u c t u r e of t h e K n o w l e d g e Base

Words are kept in a literal matrix which we call word
table. This table will have as many rows as there are words
known by the system, and as many columns as the length of
the longest word.

A reference to a word is defined by its row index posi-
tion in the word table.

Axioms and rules are codified into five column numeri-
cal matrices.

An axiom is a codified into a 1 row 5 column matrix
containing the following information:

The first element is i 0 0 if the proposition is affirma-
tive, 0 if it is negative. The next three elements are the
references to the three words making up the axiom. The
fifth element is always zero and is included for compatibili ty

M a r c h 1986
A P L Q u o t e Q u a d 16 3 13

with the rules.

Function FF converts an axiom into
representation.

FF I HERMES IS A~ALE ~
100 1 2 3 0

its internal

FF w NOT ZEUS IS FEMALE ~
014 2 5 0

The set of all axioms is stored as a matrix with 5
columns and as many rows as axioms have been defined.

A rule is internally represented as a five column matrix
with as many rows as the number of clauses it contains. The
first element in each row indicates whether the corresponding
clause is affirmative (100) or negative (0). Words in the
clauses are represented by their references to the word table.
Variables are converted into negative numbers starting at
-10, in decreasing order, and are considered local to the rule.
Columns 2, 3 and 4 in the matrix contain the information
about the three terms in each clause. Finally, the fifth
column indicates the conn~ective between each clause and the
next, according to the following translation rules:

IF becomes -1.

AND becomes -2.

OR becomes -3.

A zero indicates the end of the rule.

Funct ion FF will also convert a rule into its internal
form.

FF 'hX IS-SISTER-OF AY IF
AX IS FEMALE AND
BX SAME-PARENTS hY AND
NOT BX IS-SAME-AS ~yt

will become the matrix:

100 - 1 1 6 - 1 2 - 1
100 - 1 1 2 5 - 2
100 - 1 1 7 - 1 2 - 2

0 - 1 1 8 - 1 2 0

R u n n i n g t he S y s t e m

Once the data have been introduced, the system is
ready to answer questions about them by means of the infer-
ence method it contains.

The answers the system gives may be different
depending on what we have requested:

- If we ask a question of a fact, the answer will be affirmative
or negative:

ASK w ZEUS IS MALE l
YES

ASK ' HELIOS IS-SON-OF OURANOS'
NO

- If the question contains a variable, the answer will consist
of all the words with which the variable may be unified, if
there is no answer, the resu!t wil] be NO.

Examples:

ASK ~ &X IS-FATHER-OF AURORA
H~IPERION

ASK ~ dX IS-SOI~-OF GEA
IAPETUS HYPERION CEO CRONOS OCEANO

ASK ~ GEA IS-~OTHER~OF AX
IAPETUS HYPERION CEO CRONOS

iqHEA OCEANO TETHIS

Questions including two different variables ure not allowed at
this time.

The answer may "De obtained directly (if the request is
an axiom, or may be unified with one), or by inference, if it is
deducible from the rules. Applicable rules will be tried suc-
cessively until one of them provides one or several answers.
All remaining rules are then ignored. The process is recur-
sire, i.e. trying to apply one rule produces subgoals that may
require the inference process to be applied again.

E x p l a i n i n g the A n s w e r s

While the inference procedure is taking place, the sys-
tem builds a global numeric matrix containing information
about all the steps performed to obtain the solution. This
explanation may be offered to the questioner if required.

Function WHY takes this global variable generated by
the last question, and produces an explanation in natural-like
language to a depth chosen by the questioner. The informa-
tion appears indented according to the current depth and, in
this way, the level may be known.

ASK IZEUS IS MALES
YES

WHY
BECAUSE IT'S ANAXIOM

ASK IGEA IS hX'
FEMALE

WHY
BECAUSE ITIS AM AXIOM

ASK 'HYPERION IS-SON-OF OURANOS'
YES

WIIZ
HYPERION IS MaLE AND
OURANOS IS-PARENT-OF HYPERION
GAVE ME THE ANSWER:
YES
DO YOU WANT MORE INFORMATION? (YES~NO)
YES

HYPERION IS YALE
GAVE HE THE ANSWER:
YES
AND BESIDES
OURANOS IS-PARENT-OF HYPERION
GAVE ME THE ANSWER:
YES
DO YOU WANT MORE INFOPJ&ITION?
YES

APL Quo te Q u a d 16 3 14 M a r c h 1986

OURANO$ I$-MOTHgR-OF HIPEHION
OR OURz~IOS IS-FATHER-OF HYPERION
GAVE ME THE ~JqSIVER:
YES
DO YOU MANT MORE INFOPJ4ATIOM?
YES

OUIfANOS IS-IdOTHER-OF H•PERI'ON
GAVE ME THE A21SWER:
NO
AND BESIDES
OURANOS IS-FATHER-OF HYPERION
GAVE ME THE ANSWER
YES

Conclus ion

As described before, the system is now complete and
performs logic inferences according to expectations. The syn-
tax is more compact than PROLOG's, and the number of
rules and axioms for a given system is somewhat smaller. In
the case of our example, a total of 24 rules and 174 axioms
contain all the information. Quite complicated questions on
genealogy and relationship of the Greek gods may be
requested.

At the point this system has been developed, it does
not include concerns as the probability of application of the
rule. This is~ obviously, an open field of implementation.
The speed, as compared to non-emulated PROLOG inter-
preters, is, of course, slower by about one order of magni-
tude. Different techniques could be applied to make it faster,
and will be the object of a further communication.

Refe rences

11] Clocksin, W F . and Mellish, C.S., Programming in
Prolog. Springer-Verlag, Berlin, Heidelberg, New York

(1981).
I2] Bittlestone, Robert, XPL: An expert system frame-

work in APL. Vector. 1 no. 2 (October 1984), 65-72.

[31 Clark, K.L., Ennals, J.R. and McCabe, F.G., A micro-
PROLOG primer. Logic Programming Associates

Ltd., London (1982).
I41 McCabe, F G . and Clark, K.L., Simple PROLOG and

MICRO extensions. Logic Programming Associates

Ltd., London (1983).

IBM Madrid Scientific Center
Paseo de la Castellana, 4
28046 Madrid, Spain

T r e e s a n d N e t w o r k s
U s i n g A P L 2

Z. K Ji zba

Nested arrays in APL together with other enhance-
ments make it possible to build LISP-like (and PROLOG-
like) applications. This paper describes some of the tech-
niques for dealing with structures such as TREES and NET-
WORKS. Examples illustrate possible applications in the
field of artificial intelligence.

T R E E S
A vector can be thought of as a rooted tree (for defini-

tions of these terms, see a textbook on graph theory such as
[11). For example, the vector of integers could be represented
by a tree diagram:

VECTOR: 1 2 3 4

TREE:

The circles and square in the above diagram are called
nodes. The lines connecting pairs of nodes are called links.
The node shown as a square is called the root node. It is
implied by the vector, and therefore cannot contain data. A
nested vector of integers can be also represented by a tree
graph. For each nested element of the vector there is an
implied node as shown on the following diagram:

VECTOR: (1 2)(3 4)

TREE:

In the diagrams above, a distinction is made between
terminal nodes (called leaves), and nodes of degree greater
than one. The isomorphism between nested vectors and tree
graphs is inadequate for many applications. There are two
problems: First, implicit nodes cannot contain useful infor-
mation. Second, there is no way to define a leaf node other
than as a simple scalar. Consider the following diagram:

A P L Quo te Q u a d 16 3
15 March 1986

