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Abstract 
 

This paper describes the use of grammatical 

evolution to generate APL programs which perform 

some pre-required function.   

 

Introduction 
Genetic algorithms are optimization tools that 

simulate the principles of natural evolution and 
search for the minimum of an objective function. 
They operate on a population of chromosomes. A 
goal function (termed the fitness function) provides a 
mechanism to evaluate each element in the 
population. Starting from the current population, the 
next population is generated by means of several 
probabilistic genetic operators: selection, crossover, 
mutation, elision and fusion. 

• Selection: The best elements in the population 
are selected according to their fitness. Solutions 
with better fitness have more chance to survive 
in the next generation. 

• Crossover: this operator combines the genotypes 
of two members of the population to generate 
new members by exchanging parts of the 
parental genotypes. 

• Mutation: some components in the progeny 
genotypes are modified randomly. 

• Elision: some components in the progeny 
genotype are randomly deleted. 

• Fusion: some components in the progeny 
genotype are randomly replicated. 

Evolutionary programming is a computer 
science branch whose goal is the automatic 
generation of computer programs that solve a 
particular problem or perform a given pre-defined 
function.  

The first approach to evolutionary programming 
[Koza 1992] was genetic programming (GP), 
originated in the nineties, which uses genetic 
algorithms to generate the desired programs, written 
in a selected computer language. This technique has 
proved to be an effective and efficient generic search 
and optimization method in a wide variety of 
situations, but presents an important problem: the 
syntactic correction of the generated programs is not 
guaranteed. 

A more modern technique [ONeill 2001], 
grammatical evolution (GE), has been elegantly 
applied to automatic programming [O’Neill and 
Conor 2003]. This is a special case of genetic 
algorithms whose similarity to biological evolution 
is even greater, for a distinction is made between 
genotypes (strings of integers, the targets for the 
genetic operators) and phenotypes (programs written 
in a computer language). The translation between 
genotype and phenotype (the equivalent to embryo 
development in biology) is mediated by the grammar 
of the chosen computer language, usually described 
in Backus-Naur Form (BNF). In this way, the 
algorithms become independent of the language. 
One advantage of this method is the fact that all 
generated programs are syntactically correct (for 
they have been generated according to the grammar 
of the language). This allows GE to avoid one of the 
main difficulties in automatic evolutionary 
programming and reduces significantly the size of 
the search space. 

 

Grammatical evolution 
The following scheme shows the way in which 

GE combines traditional genetic algorithms with 
genotype to phenotype mapping: 
1) Generate randomly an initial population of 

genotypes: strings of integers, usually with 

values between 0 and 255. 

2) Translate each member of the current population 
of genotypes into the corresponding phenotype. 

3) Compute the fitness of every phenotype in the 
population. 

4) Sort the genotype population by the fitness of 
the genotypes. 

5) If the best individual in the population is the 
required solution, the algorithm ends. 

6) Replace the worst individuals in the population 
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by the genetically modified offspring of the best 

individuals. The four genetic operators 

mentioned above (crossover, mutation, elision 

and fusion) may be applied, although mutation is 

usually most effective for grammatical 

evolution. 

7) Go to step 2. 

Step 2, the translation of the integer genotypes 
into their equivalent phenotypes, is deterministically 
performed by means of the following process: 
1) Initialize a string with the axiom (root non-

terminal symbol) of the programming language 

grammar (usually <Program>, <Function>, or 

something similar). 

2) Get the next integer number (codon) in the 
current genotype. If there are no more codons 

available, start again at the left end of the 

genotype. This biologically inspired wrapping 

mechanism is similar to the gene-overlapping 

phenomenon observed in many organisms in 

nature. 

3) Choose the leftmost non-terminal symbol in the 
current string. Locate all the rules in the 

grammar whose left hand side is that symbol. 

Let their number be n. Number them in zero 

origin, in the order they appear in the grammar. 

4) Select the rule to be applied as n | codon. This 
mapping introduces genetic code degeneracy, 

another biologically imitated feature, which 

means that different codons in the genotype 

generate the same phenotype. 

5) Derive the next string by replacing the current 
non-terminal symbol by the right hand side of 

the selected rule. 

6) If the new string contains no non-terminal 
symbols, the process is ended. Otherwise, go to 

step 2. 

 

Automatic program generation in 
APL 

I have used the grammatical evolution technique 
to automatically generate APL functions written in a 
subset of the APL2 language, by means of 
grammatical evolution, with the following 
modification:  

• Rather than generating a fully general APL 
function, I decided to simplify the procedure, by 
restricting to functions with the same header: 

Z½F X, made of a certain number of 
instructions with the same syntax: 

''÷EA'Z½<Expr>'.  

• The number of instructions to be generated from 
a given genotype (a number between 0 and 255), 
is represented by the first integer in the 
genotype.  

• The BNF following grammar was used: 

 
<Expr>::=<Opd><Opr><Opd> 
<Expr>::=<Opr><Opd> 
<Expr>::=<Opd> 

<Opr>::=+ 

<Opr>::=- 

<Opr>::=õ 

<Opr>::=* 

<Opr>::=ö 

<Opr>::=ê 

<Opr>::=© 

<Opr>::=¾ 

<Opr>::=µ 

<Opr>::=! 

<Opd>::=0 
<Opd>::=1 
<Opd>::=2 
<Opd>::=3 
<Opd>::=4 
<Opd>::=5 
<Opd>::=6 
<Opd>::=7 
<Opd>::=8 

<Opd>::=9 

<Opd>::=X (three identical rules) 

<Opd>::=Z (seven identical rules) 

<Opd>::=(<Expr>) (ten identical rules) 

 

Let us see what this means:  

• Only monadic APL functions are generated 
made of a random number of similar instructions 
which will be executed successively, for no go 
to instructions changing the order of execution 
are allowed. 
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•  Every instruction is protected by the ÷EA 
system function, so that no errors may occur 
during the execution of the generated function. 
Grammatical evolution guarantees that syntax 
errors may not happen, but semantic and 
execution errors (such as divisions by zero) 
could still occur.  

• The three rules for the axiom of the grammar 

(<Expr>) indicate that an expression may be 
either the result of a dyadic operation, the result 
of a monadic operation, or a single operand. 

• APL primitive functions are restricted to ten: 

+-õ*öê©¾µ!. All of them may be either 
monadic or dyadic. 

• Constants are restricted to one digit positive 
integers (numbers from 0 to 9). 

• Variables are restricted to X (the function right 
argument) and Z (the function result). 

• An operand may be an integer constant (with 

33.3% probability), variable X (10% 

probability), variable Z (23.3% probability), or a 
new expression (33.3% probability). These 
probabilities are the automatic result of the 
number of rules for the <Opd> non-terminal 
symbol, e.g. in 10 rules out of 30 the right hand 
side is an integer constant, and therefore its 
probability is 1/3.  

• Two samples of APL expressions which can be 
generated by means of this grammar are: 

 (X+1)õ(X-3) 

 Z+(X*(6¾2)) 

The following APL2 function implements the 
genetic algorithm associated to the grammatical 
evolution procedure described above:

 

[0]   Z½FIT EVOL OBJ;I;F;G;G1;O1;O2;÷IO 

[1]   ÷IO½0 

[2]   G½?(100+?100)æ256 ä Generates the initial genotype 

[3]   I½0               ä Initial counter 

[4]   O1½îOBJ TEST G    ä Translates genotype-phenotype, computes fitness 

[5]  L:¸(O1óFIT)/FIN    ä Test for end of process 

[6]   G1½G              ä Prepare new generation 

[7]   ¸(1=?2)/L0        ä Apply mutation/elision with 50% probability 

[8]   G1½((?æG1)è0,(ý1+æG1)æ1)/G1 ä This performs elision of one element 

[9]   ¸L1 

[10] L0:G1[?æG1]½?256   ä This performs mutation of one random element 

[11] L1:O2½îOBJ TEST G1 ä Compute fitness of new genotype 

[12]  ¸(O2>O1)/L2       ä Is it better than the previous one? 

[13]  G½G1ØO1½O2        ä Yes, replace old genotype by new 

[14] L2:¸(10000òI½I+1)/Lä Loop back and try again 

[15] FIN:Z½G O1(÷CR 'F')ä End of the process:  

      return genotype, fitness and generated function 

 

Notice that: 

 

1. The population is made of a single genotype. 

2. Function TEST translates the genotype into 
the corresponding phenotype and computes its 
fitness. 

3. The left argument FIT is the minimum fitness 
value acceptable as a final result. The optimal 
fitness is assumed to be zero. 

4. The right argument OBJ describes the target 
function to be generated by means of a two 
row matrix: the first row contains a set of 
values for the independent argument of the 

function (variable X), the second row the 
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values that the function must generate 

(variable Z). Fitness is computed by a least-
square method. 

5. The procedure is repeated 10000 times, or 
until a genotype is generated with the required 
minimum fitness. 

6. Functions generated in this way may contain 
lots of garbage code, instructions which do 
nothing (dead assignments to variables which 
are never used). In the results shown later, all 

the garbage code, as well as the ÷EA 
protection, has been eliminated manually. 

 

Function TEST is shown next: 

 

[0]   Z½V TEST X;N;÷IO;E;I;P;K;Q 

[1]   ÷IO½I½0 

[2]   Z½'Z½F X' 'Z½X' ä Generates function header 

[3]   N½ÆX            ä Nr. of lines to generate 

[4]   X½1ÇX           ä Remainder of genome 

[5]  L:¸(N=0)/FIN     ä No more lines to be generated? 

[6]   E½,'E'          ä Axiom for one line (expression) 

[7]  L1:¸(^/~Eî'EOo')/L2 ä End if no more non-terminal symbols in string 

[8]   P½ÆIèX          ä Get next genome element 

[9]   K½(3 10 30)['EoO'ìE[Q½¾/Eì'EoO']] ä Number of rules for this symbol 

[10]  ¸(K=3 10 30)/L11,L12,L13 ä Jump according to symbol 

[11] L11:¸L14,æE½(QÆE),((K|P)ã'O' 'oO' 'OoO'),(Q+1)ÇE ä Expression 

[12] L12:¸L14,æE½(QÆE),((K|P)ã'+-õ*öê©¾µ!'),(Q+1)ÇE ä Operator 

[13] L13:¸L14,æE½(QÆE),((K|P)ã'0123456789XXXZZZZZZZ',10æâ'(E)'),(Q+1)ÇE 

                      ä Rules for operand 

[14] L14:¸(5000<I½I+1)/FINØ¸L1 ä Loop back (or abandon if too many loops) 

[15] L2:Z½Z,â''''' ÷EA ''Z½',E,'''' ä Add new line to generated function 

[16]  ¸L,N½N-1        ä Loop back to generate next line 

[17] FIN:÷WA½÷FX Z    ä Generation ends. Create generated function  

[18]  Z½FþV[0;]       ä Execute function on provided arguments 

[19]  Z½'1000' ÷EA '((+/(|V[1;]-Z)*2)*0.5)õ(æX)ö100' 

                      ä Compare results with target, compute fitness 

 

Results 
The preceding procedure was executed ten times 

with the following arguments and different random 
seeds: 

0.1 EVOL 2 5æ1 2 3 4 5 1 4 9 16 25 

In nine out of the ten cases, a perfect fitness 
solution was obtained. In five of them, the function 
generated was the following: 

[0] Z½F X 

[1] Z½XõX 

Another case gave the equivalent answer: 

[0] Z½F X 

[1] Z½(X)õ(X) 

The seventh solution was also equivalent: 

[0] Z½F X 

[1] Z½X 

[2] Z½ZõZ 

The eighth gave a different equivalent answer: 

[0] Z½F X 

[1] Z½X*2 

The ninth was more convoluted, but also correct: 

[0] Z½F X 

[1] Z½0 

[2] Z½Z+(X*(6¾2)) 

The tenth was the most complicated, besides 
being only approximate: 
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[0] Z½F X 

[1] Z½¾X 

[2] Z½ZõX 

[3] Z½(¾X) 

[4] ''÷EA'Z½ZêZ' 

[5] Z½Z 

In the next experiment, the following line was 
executed ten times with different random seeds:  

0.1 EVOL 2 5æ1 4 9 16 25 1 2 3 4 5 

This is the inverse function to the former. With 
the provided operators, it’s more difficult to find an 
exact solution. The program ended in seven cases 
with an approximate solution. Another case gave a 
perfect fitness answer, valid for the arguments 
provided, but which was not the answer that one 

would have been foreseen: Z½X*÷2. The solution 
found was: 

[0] Z½F X 

[1] Z½(ê2)µX 

[2] Z½ê((Z)) 

[3] Z½¾Z 

[4] ''÷EA'Z½Z÷0' 

Try it! Surprisingly, it gives the correct answer. 

In the future, the subset of the APL grammar 
may be extended to let more complicated programs 
be generated. Further experiments should also be 
performed with different target functions. 
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EXERCISES AND 
PROBLEMS 
 

By Ray Polivka 

 

Solutions to the Diagonal 

Sums on Spiral Matrices 
 

The answer to the sums of the diagonals of a 
1001 by 1001 spiral matrix is 669,171,001.  More 
interesting than the answer is the number of 
responses and the variety of solutions.  Beside 
solutions from APL and J, I received solutions using 
C++, RoboBasic, and EXCEL.  Several submitters 
used their observations to produce mathematical 
solutions.  Some of the mathematical solutions 
resulted in different equations.  I’ll try to summarize 
all the submissions.   

Peter Weidner produced the recurrence relation  
S(N+2) = S(N) + 4N2 +10(N+1) 

and solved it yielding  
S(N) = 1/6(N+1)(4N2 – N +9)-3 

or in APL, with  
        N½1001 
     ANS½ ý3+(ö6)õ(N+1)õ(4õN*2)+9-N 
     ANS 
669171001 

Ralph Selfridge observed patterns going from 
the number one up each of the four semi diagonals.  
Going counter-clockwise starting at the top right 
corner, the differences between successive numbers 
on the diagonals were 

4(N-1),4(N-1)-2,4(N-2) and 4(N-2)-2 

where N is the number of items in the next square 
edge.  Thus going from 9 to 25 N is 5 and the 
difference is 16.  He derived the following function 
which summed together each of the four semi 
diagonals: 
 
[0]   Z½LP N;÷IO 
[1]   ÷IO½1 
[2]   Z½ý3++/+\4,ý12+32õì¾Nö2 




