
December 2007, Volume 35, Number 4 21

Automatic
Generation of APL

Programs
Manuel Alfonseca

Abstract

This paper describes the use of grammatical

evolution to generate APL programs which perform

some pre-required function.

Introduction
Genetic algorithms are optimization tools that

simulate the principles of natural evolution and
search for the minimum of an objective function.
They operate on a population of chromosomes. A
goal function (termed the fitness function) provides a
mechanism to evaluate each element in the
population. Starting from the current population, the
next population is generated by means of several
probabilistic genetic operators: selection, crossover,
mutation, elision and fusion.

• Selection: The best elements in the population
are selected according to their fitness. Solutions
with better fitness have more chance to survive
in the next generation.

• Crossover: this operator combines the genotypes
of two members of the population to generate
new members by exchanging parts of the
parental genotypes.

• Mutation: some components in the progeny
genotypes are modified randomly.

• Elision: some components in the progeny
genotype are randomly deleted.

• Fusion: some components in the progeny
genotype are randomly replicated.

Evolutionary programming is a computer
science branch whose goal is the automatic
generation of computer programs that solve a
particular problem or perform a given pre-defined
function.

The first approach to evolutionary programming
[Koza 1992] was genetic programming (GP),
originated in the nineties, which uses genetic
algorithms to generate the desired programs, written
in a selected computer language. This technique has
proved to be an effective and efficient generic search
and optimization method in a wide variety of
situations, but presents an important problem: the
syntactic correction of the generated programs is not
guaranteed.

A more modern technique [ONeill 2001],
grammatical evolution (GE), has been elegantly
applied to automatic programming [O’Neill and
Conor 2003]. This is a special case of genetic
algorithms whose similarity to biological evolution
is even greater, for a distinction is made between
genotypes (strings of integers, the targets for the
genetic operators) and phenotypes (programs written
in a computer language). The translation between
genotype and phenotype (the equivalent to embryo
development in biology) is mediated by the grammar
of the chosen computer language, usually described
in Backus-Naur Form (BNF). In this way, the
algorithms become independent of the language.
One advantage of this method is the fact that all
generated programs are syntactically correct (for
they have been generated according to the grammar
of the language). This allows GE to avoid one of the
main difficulties in automatic evolutionary
programming and reduces significantly the size of
the search space.

Grammatical evolution
The following scheme shows the way in which

GE combines traditional genetic algorithms with
genotype to phenotype mapping:
1) Generate randomly an initial population of

genotypes: strings of integers, usually with

values between 0 and 255.

2) Translate each member of the current population
of genotypes into the corresponding phenotype.

3) Compute the fitness of every phenotype in the
population.

4) Sort the genotype population by the fitness of
the genotypes.

5) If the best individual in the population is the
required solution, the algorithm ends.

6) Replace the worst individuals in the population

22 APL Quote Quad

by the genetically modified offspring of the best

individuals. The four genetic operators

mentioned above (crossover, mutation, elision

and fusion) may be applied, although mutation is

usually most effective for grammatical

evolution.

7) Go to step 2.

Step 2, the translation of the integer genotypes
into their equivalent phenotypes, is deterministically
performed by means of the following process:
1) Initialize a string with the axiom (root non-

terminal symbol) of the programming language

grammar (usually <Program>, <Function>, or

something similar).

2) Get the next integer number (codon) in the
current genotype. If there are no more codons

available, start again at the left end of the

genotype. This biologically inspired wrapping

mechanism is similar to the gene-overlapping

phenomenon observed in many organisms in

nature.

3) Choose the leftmost non-terminal symbol in the
current string. Locate all the rules in the

grammar whose left hand side is that symbol.

Let their number be n. Number them in zero

origin, in the order they appear in the grammar.

4) Select the rule to be applied as n | codon. This
mapping introduces genetic code degeneracy,

another biologically imitated feature, which

means that different codons in the genotype

generate the same phenotype.

5) Derive the next string by replacing the current
non-terminal symbol by the right hand side of

the selected rule.

6) If the new string contains no non-terminal
symbols, the process is ended. Otherwise, go to

step 2.

Automatic program generation in
APL

I have used the grammatical evolution technique
to automatically generate APL functions written in a
subset of the APL2 language, by means of
grammatical evolution, with the following
modification:

• Rather than generating a fully general APL
function, I decided to simplify the procedure, by
restricting to functions with the same header:

Z½F X, made of a certain number of
instructions with the same syntax:

''÷EA'Z½<Expr>'.

• The number of instructions to be generated from
a given genotype (a number between 0 and 255),
is represented by the first integer in the
genotype.

• The BNF following grammar was used:

<Expr>::=<Opd><Opr><Opd>
<Expr>::=<Opr><Opd>
<Expr>::=<Opd>

<Opr>::=+

<Opr>::=-

<Opr>::=õ

<Opr>::=*

<Opr>::=ö

<Opr>::=ê

<Opr>::=©

<Opr>::=¾

<Opr>::=µ

<Opr>::=!

<Opd>::=0
<Opd>::=1
<Opd>::=2
<Opd>::=3
<Opd>::=4
<Opd>::=5
<Opd>::=6
<Opd>::=7
<Opd>::=8

<Opd>::=9

<Opd>::=X (three identical rules)

<Opd>::=Z (seven identical rules)

<Opd>::=(<Expr>) (ten identical rules)

Let us see what this means:

• Only monadic APL functions are generated
made of a random number of similar instructions
which will be executed successively, for no go
to instructions changing the order of execution
are allowed.

December 2007, Volume 35, Number 4 23

• Every instruction is protected by the ÷EA
system function, so that no errors may occur
during the execution of the generated function.
Grammatical evolution guarantees that syntax
errors may not happen, but semantic and
execution errors (such as divisions by zero)
could still occur.

• The three rules for the axiom of the grammar

(<Expr>) indicate that an expression may be
either the result of a dyadic operation, the result
of a monadic operation, or a single operand.

• APL primitive functions are restricted to ten:

+-õ*öê©¾µ!. All of them may be either
monadic or dyadic.

• Constants are restricted to one digit positive
integers (numbers from 0 to 9).

• Variables are restricted to X (the function right
argument) and Z (the function result).

• An operand may be an integer constant (with

33.3% probability), variable X (10%

probability), variable Z (23.3% probability), or a
new expression (33.3% probability). These
probabilities are the automatic result of the
number of rules for the <Opd> non-terminal
symbol, e.g. in 10 rules out of 30 the right hand
side is an integer constant, and therefore its
probability is 1/3.

• Two samples of APL expressions which can be
generated by means of this grammar are:

 (X+1)õ(X-3)

 Z+(X*(6¾2))

The following APL2 function implements the
genetic algorithm associated to the grammatical
evolution procedure described above:

[0] Z½FIT EVOL OBJ;I;F;G;G1;O1;O2;÷IO

[1] ÷IO½0

[2] G½?(100+?100)æ256 ä Generates the initial genotype

[3] I½0 ä Initial counter

[4] O1½îOBJ TEST G ä Translates genotype-phenotype, computes fitness

[5] L:¸(O1óFIT)/FIN ä Test for end of process

[6] G1½G ä Prepare new generation

[7] ¸(1=?2)/L0 ä Apply mutation/elision with 50% probability

[8] G1½((?æG1)è0,(ý1+æG1)æ1)/G1 ä This performs elision of one element

[9] ¸L1

[10] L0:G1[?æG1]½?256 ä This performs mutation of one random element

[11] L1:O2½îOBJ TEST G1 ä Compute fitness of new genotype

[12] ¸(O2>O1)/L2 ä Is it better than the previous one?

[13] G½G1ØO1½O2 ä Yes, replace old genotype by new

[14] L2:¸(10000òI½I+1)/Lä Loop back and try again

[15] FIN:Z½G O1(÷CR 'F')ä End of the process:

 return genotype, fitness and generated function

Notice that:

1. The population is made of a single genotype.

2. Function TEST translates the genotype into
the corresponding phenotype and computes its
fitness.

3. The left argument FIT is the minimum fitness
value acceptable as a final result. The optimal
fitness is assumed to be zero.

4. The right argument OBJ describes the target
function to be generated by means of a two
row matrix: the first row contains a set of
values for the independent argument of the

function (variable X), the second row the

24 APL Quote Quad

values that the function must generate

(variable Z). Fitness is computed by a least-
square method.

5. The procedure is repeated 10000 times, or
until a genotype is generated with the required
minimum fitness.

6. Functions generated in this way may contain
lots of garbage code, instructions which do
nothing (dead assignments to variables which
are never used). In the results shown later, all

the garbage code, as well as the ÷EA
protection, has been eliminated manually.

Function TEST is shown next:

[0] Z½V TEST X;N;÷IO;E;I;P;K;Q

[1] ÷IO½I½0

[2] Z½'Z½F X' 'Z½X' ä Generates function header

[3] N½ÆX ä Nr. of lines to generate

[4] X½1ÇX ä Remainder of genome

[5] L:¸(N=0)/FIN ä No more lines to be generated?

[6] E½,'E' ä Axiom for one line (expression)

[7] L1:¸(^/~Eî'EOo')/L2 ä End if no more non-terminal symbols in string

[8] P½ÆIèX ä Get next genome element

[9] K½(3 10 30)['EoO'ìE[Q½¾/Eì'EoO']] ä Number of rules for this symbol

[10] ¸(K=3 10 30)/L11,L12,L13 ä Jump according to symbol

[11] L11:¸L14,æE½(QÆE),((K|P)ã'O' 'oO' 'OoO'),(Q+1)ÇE ä Expression

[12] L12:¸L14,æE½(QÆE),((K|P)ã'+-õ*öê©¾µ!'),(Q+1)ÇE ä Operator

[13] L13:¸L14,æE½(QÆE),((K|P)ã'0123456789XXXZZZZZZZ',10æâ'(E)'),(Q+1)ÇE

 ä Rules for operand

[14] L14:¸(5000<I½I+1)/FINØ¸L1 ä Loop back (or abandon if too many loops)

[15] L2:Z½Z,â''''' ÷EA ''Z½',E,'''' ä Add new line to generated function

[16] ¸L,N½N-1 ä Loop back to generate next line

[17] FIN:÷WA½÷FX Z ä Generation ends. Create generated function

[18] Z½FþV[0;] ä Execute function on provided arguments

[19] Z½'1000' ÷EA '((+/(|V[1;]-Z)*2)*0.5)õ(æX)ö100'

 ä Compare results with target, compute fitness

Results
The preceding procedure was executed ten times

with the following arguments and different random
seeds:

0.1 EVOL 2 5æ1 2 3 4 5 1 4 9 16 25

In nine out of the ten cases, a perfect fitness
solution was obtained. In five of them, the function
generated was the following:

[0] Z½F X

[1] Z½XõX

Another case gave the equivalent answer:

[0] Z½F X

[1] Z½(X)õ(X)

The seventh solution was also equivalent:

[0] Z½F X

[1] Z½X

[2] Z½ZõZ

The eighth gave a different equivalent answer:

[0] Z½F X

[1] Z½X*2

The ninth was more convoluted, but also correct:

[0] Z½F X

[1] Z½0

[2] Z½Z+(X*(6¾2))

The tenth was the most complicated, besides
being only approximate:

December 2007, Volume 35, Number 4 25

[0] Z½F X

[1] Z½¾X

[2] Z½ZõX

[3] Z½(¾X)

[4] ''÷EA'Z½ZêZ'

[5] Z½Z

In the next experiment, the following line was
executed ten times with different random seeds:

0.1 EVOL 2 5æ1 4 9 16 25 1 2 3 4 5

This is the inverse function to the former. With
the provided operators, it’s more difficult to find an
exact solution. The program ended in seven cases
with an approximate solution. Another case gave a
perfect fitness answer, valid for the arguments
provided, but which was not the answer that one

would have been foreseen: Z½X*÷2. The solution
found was:

[0] Z½F X

[1] Z½(ê2)µX

[2] Z½ê((Z))

[3] Z½¾Z

[4] ''÷EA'Z½Z÷0'

Try it! Surprisingly, it gives the correct answer.

In the future, the subset of the APL grammar
may be extended to let more complicated programs
be generated. Further experiments should also be
performed with different target functions.

References

[Koza 1992] Koza, J.R.: Genetic Programming: On
the Programming of Computers by Means of Natural

Selection, MIT Press, Cambridge, Massachusetts.
1992.

[ONei1l 2001] M. O'Neill and C. Ryan:
Grammatical Evolution, IEEE Trans. on
Evolutionary Computation, Vol. 5:4, p. 349–358,
2001.

[O’Neill and Conor 2003] O’Neill, M., Conor, R.:
Grammatical Evolution, evolutionary automatic

programming in an arbitrary language, Kluwer
Academic Publishers, 2003.

EXERCISES AND
PROBLEMS

By Ray Polivka

Solutions to the Diagonal

Sums on Spiral Matrices

The answer to the sums of the diagonals of a
1001 by 1001 spiral matrix is 669,171,001. More
interesting than the answer is the number of
responses and the variety of solutions. Beside
solutions from APL and J, I received solutions using
C++, RoboBasic, and EXCEL. Several submitters
used their observations to produce mathematical
solutions. Some of the mathematical solutions
resulted in different equations. I’ll try to summarize
all the submissions.

Peter Weidner produced the recurrence relation
S(N+2) = S(N) + 4N2 +10(N+1)

and solved it yielding
S(N) = 1/6(N+1)(4N2 – N +9)-3

or in APL, with
 N½1001
 ANS½ ý3+(ö6)õ(N+1)õ(4õN*2)+9-N
 ANS
669171001

Ralph Selfridge observed patterns going from
the number one up each of the four semi diagonals.
Going counter-clockwise starting at the top right
corner, the differences between successive numbers
on the diagonals were

4(N-1),4(N-1)-2,4(N-2) and 4(N-2)-2

where N is the number of items in the next square
edge. Thus going from 9 to 25 N is 5 and the
difference is 16. He derived the following function
which summed together each of the four semi
diagonals:

[0] Z½LP N;÷IO
[1] ÷IO½1
[2] Z½ý3++/+\4,ý12+32õì¾Nö2

