
 1

User Interfaces with Object-Oriented
Programming in APL2

Manuel Alfonseca

Escuela de Ingenieria Informatica,Universidad Auton oma de Madrid
Ciudad Universitaria de Cantoblanco, 28049 Madrid S PAIN

Telephone: (34) 1 397 4467; FAX: (34) 1 397 5277
Manuel.Alfonseca@ii.uam.es

The power of general arrays is used to
provide APL2 with object-oriented
capabilities, which are used to generate user
interface object classes such as windows,
menus, dialog boxes and messages, among
others, all of which can be created as
persistent objects. This makes very
straightforward the development of user
interfaces for real applications.

The two OOP paradigms

According to Peter Wegner [Weg 95], there
are three steps towards Object-Oriented
Programming (OOP in short):

• Objects: the ability to represent data and

programs as chunked pieces isolated
from their environment.

• Classes: the capacity to classify objects
into sets. Mathematically, this
corresponds to the belong relationship.

• Inheritance: the fact that classes may be
divided into subclasses that inherit the
behavior and properties of their
superclass. Mathematically, this
corresponds to the subset relationship.

Systems that only provide the first step are
called object-based. Those that also
provide the second step are called class-
based. Inheritance is required for an object-
oriented system. Thus, the Microsoft COM
standard is object-based, while the CORBA
standard is object-oriented.

OOP systems provide three important
characteristics:

• Encapsulation: complete isolation of
objects from their environment, except
for a subset of its behavior, which
constitutes its public interface.

• Polimorphism: the fact that different
objects may have behaviors (programs
or methods) with the same name, but
with different code, according to the
class of the object.

• Message passing: Objects collaborate
with each other by means of messages
with the following structure:

 Object Method Parameters

 If messages are the only means for object
collaboration, we have pure OOP or
programming without call.

There are currently two different Object-
Oriented paradigms:

• The class-instance paradigm, which

differentiates explicitly between the
classes and the objects that belong to
them (instances). Objects inherit the
methods and properties of their class or
its superclasses, but not necessarily the
values of the properties, which should be
inicialized by a suitable constructor.
This paradigm has two variants:

• The declarative approach:

classes are declarations; objects
are data structures declared to
belong to a class. In this variant,
no class is an object. This is the
C++ approach.

• The all-object approach: classes
are special cases of objects, and
as such they also belong to a

 2

metaclass. In this variant, every
class is an object, but not all
objects are classes. This is the
Smalltalk approach.

• The prototype-instance paradigm, which

does not differentiate between classes
and the objects that belong to them
(instances). Every object may be used as
a prototype for the construction of new
objects, and as such may be considered
as a class. Therefore, in this paradigm,
every object is a class. Objects inherit,
not only the methods and properties of
their prototype, but also the values of the
properties, which prevents the need of
initialization. This special kind of
inheritance is usually called delegation.
OOP systems that work according to this
paradigm are CMU Amulet [McD 95],
based in C++, and OOPI [Alf 92], based
in C and developed by the author.

A prototype-instance OOP
system based in APL2

The system proposed here applies the
prototype-instance paradigm to the
construction of user interfaces in APL2, and
is a complete remake of a previous work by
the author [Alf 89].

Objects are represented in APL2 by
matrices of two columns. The first column
defines the name of a slot, the second
contains its value. There are four kinds of
slots:

• PARENT slot: its value is the name of

the object that served as a prototype for
this object.

• CHILD slot: its value is a vector of the
names of the objects that have been
generated using this object as a
prototype.

• Method slots: their value is the string
"METHOD". The code for each method
is an APL2 function whose name is the
name of the object, catenated with an
underline and with the name of the
method slot.

• Attribute slots: they may have any
value.

The first two slots (which are unique) allow
us to reconstruct the object hierarchy,
whose root is a special object, named
OBJECT, whose PARENT slot has an
empty value, and which contains 10
methods for general use, since they will be
automatically inherited by every object:

• METHOD: creates a new slot method

for the object that receives this message.
• CREATE: creates a new object using as

a prototype the object that receives this
message.

• ERASE: erases the object that receives
this message.

• PARENTS: returns the list of names of
the prototypes of the object that receives
this message, up to the top of the
hierarchy.

• CHILDREN: returns the list of names
of those objects for which the object that
receives this message is a prototype.

• METHODS: returns the list of methods
available for the object that receives this
message, both those defined for the
object itself, and those inherited from its
prototypes.

• PROPERTIES: returns the list of
attributes available for the object that
receives this message, both those
defined for the object itself, and those
inherited from its prototypes.

• VALUE: returns the value of an
attribute of the object that receives this
message, either a slot in the object itself,
or inherited. This method has a
parameter: the name of the desired
attribute.

• MOVE: changes the prototype
(PARENT) of the object that receives
this message. This method has a
parameter: the name of the new
prototype.

• LIST: returns the names of all the
objects available in the workspace.

Four additional APL2 functions are
applicable to every object:

• MESSAGE: A monadic function

whose right argument is a single string
or a higher depth vector. In the first
case, the string should contain the name
of the object which will receive the

 3

method, followed by the name of the
method to be executed and the
parameters (which must be literal),
separated by spaces. Example:

 MESSAGE 'OBJECT VALUE MUSIC'

 In the second case, the vector should
contain the same information as individual
elements. Example:

 MESSAGE 'OBJECT' 'VALUE'
'MUSIC'

• ASSIGN: A monadic function whose

right argument is a vector of three
elements: the name of one object, the
name of an attribute, and a value for the
attribute. It assigns the value to the
attribute. A slot for the attribute is
created if needed. Example:

 ASSIGN 'OBJECT' 'MUSIC' 'CDEFGAB'

• INSERT: A monadic function whose

right argument is a vector of three
elements: the name of one object, the
name of an attribute, and a value for the
attribute. It adds the value to the
attribute. A slot for the attribute is
created if needed.

• ERASE: A monadic function whose

right argument is a vector of two or
three elements: the name of one object,
the name of an attribute, and (optionally)
a value for the attribute. If the value is
given, the attribute is assumed to be a
list, and the value is erased from the list.
If the value is not given, the attribute
slot is erased.

A message compiler

The syntax of the MESSAGE and related
functions is somewhat cumbersome.
Besides, MESSAGE acts as a message
interpreter, locating the requested method
either in the object that receives the
message or in one of its ancestors. This
interpretation slows the process, since it has
to be executed on top of another interpreter.
In general, a message compilation would
accelerate the applications, at the same time
allowing us to simplify the syntax.

For this reason, a message compiler has
been developed that translates simplified
messages into the appropriate APL2
function call. The only restriction
introduced is the fact that a message must
be the first operation to the left of a
function line. Its general syntax is:

 [label:] [variable assign]
 MESSAGE object method

[parameters]

If the compiler has enough information
about the objects to deduce the appropriate
function call, the preceding line is replaced
by

 [label:]
 [variable assign | quadWA assign
]
 object object_method
[parameters]

where object_method is the name of the
APL2 function, which may be defined for
the same object or for one of its ancestors.

If the compiler cannot resolve the message
into a function call, it generates a call to the
message interpreter (function MESSAGE).

The compiler also accepts instructions with
the following syntax:

 [label:] [variable assign]
 ASSIGN object attribute value

and converts them appropriately.

Finally, the compiler accepts two kinds of
simplified conditional instructions and
replaces them by their APL2 equivalents.
Those two instructions are of the form:

• Conditional GOTO:

 ¸label IF condition

 which is compiled into:

 ¸(condition)/label

• Conditional execution:

 instruction IF condition

 which is compiled into:

 ¯(condition)/'instruction'

 4

The compiler replaces the function being
compiled by a new copy where it has
included the appropriate changes, as
indicated above. A decompiler makes it
possible to recover the original function. In
fact, a full-screen editor is provided (a
modification of function EDIT in the EDIT
workspace, which comes with APL2/PC for
DOS), that automatically decompiles a
function when invoked and compiles it
again at the end, so that the user may forget
about the existence of the compiler and
write OOP functions with the simplified
syntax.

Persistent objects

In many applications it is important to have
persistent objects, i.e. objects that remain in
existence after the application is closed
and/or the machine is shutdown. In this
system, persistent objects are stored inside
apl2 object files (managed by the AP211
auxiliary processor) and can be created
using any object as a prototype, by means
of the general use method CREATE,
whose syntax is:

MESSAGE 'OBJECT1 CREATE OBJECT2

[FILE filename]'

where OBJECT1 is the object to be used as
a prototype and OBJECT2 is the object to
be created. If the FILE filename
parameters are omitted, the object is created
in the workspace and is not persistent.
Otherwise, the object is persistent and is
added to the indicated object file. If the file
did not exist, it is created.

Two additional functions are required to
make available one or more sets of
persistent objects to the application. They
are:

• FILE_USE: A dyadic function whose

right argument is the name of a file of
persistent objects. The workspace is
made "conscious" of the existence of the
objects stored in the file, which will be
copied into the workspace the first time
they are used. If the left argument is not
given, the file is opened for read-only
use. In this case, the objects copied into
the workspace can be modified, but the
changes are not persistent. If the left

argument exists, the file is opened for
read/write use. In this case, any changes
to the objects copied into the workspace
will be automatically saved in the file.

• FILE_RELEASE: A monadic function
whose right argument is the name of a
file of persistent objects. The workspace
"forgets" about the existence of the
persistent objects in the file.

User interface objects

The system has been used to define
different object prototypes that may be used
to develop user interfaces. These objects
are:

WINDOW: defines a general text window
object. This object owns two methods and
five attributes. The methods are:

• OPEN: draws a window at the
screen.

• ACTIVATE: draws a window
at the screen and activates it for
user action. Returns information
about the key pressed and the
cursor position.

• CLOSE: removes a window
from the screen, recovering what
appeared below.

 The attributes are:

• POSITION in character rows
and columns from the top-left
corner of the screen.

• SIZE in rows and columns.
• COLOR for text and

background.
• TEXT to be shown in the

window, either as a vector of
strings or a character matrix.

• OPTIONS: a vector of strings
including 'R/W' if the user can
modify the text on the window,
and 'FRAME' if the window
must be drawn with a frame
around it.

MENU: defines a menu or a list box. This
object owns two methods and five
attributes. The methods are:

 5

• OPEN: activates the menu for user
action. Returns the option selected
and the key pressed.

• CLOSE: removes the menu from
the screen.

 The attributes are:

• POSITION in character rows
and columns from the top-left
corner of the screen.

• SIZE in rows and columns.
• COLOR for text and

background.
• LIST: The list of options to be

selected.
• OPTIONS: a vector of strings

including 'NOFRAME' if the
menu must be drawn without a
frame around it.

MENUBAR: defines a horizontal menu or
action bar. This object owns two methods
and three attributes. The methods are:

• OPEN: activates the action bar
for user action. Returns the
option selected and the key
pressed.

• CLOSE: removes the action bar
from the screen.

 The attributes are:

• POSITION in character rows
and columns from the top-left
corner of the screen.

• COLOR for text and
background.

• LIST: The list of options to be
selected.

PANEL: defines a panel or a dialog box.
This object owns one method and six
attributes. The method is:

• OPEN: activates a panel for
user action. Returns the texts
typed by the user in the panel
fields.

 The attributes are:

• POSITION in character rows
and columns from the top-left
corner of the screen.

• SIZE in rows and columns.
• COLOR for text and

background of the panel itself.
• ACOLOR for text and

background of the active field.
• TEXT: The text to appear in the

panel, outside the fields.
• FIELDS: a matrix of six

columns defining the text entry
fields. The first two columns
give the field position, the next
is the field size, the next two are
the field colors (text and
background) when not active,
the sixth is the field type (0:
read/write, 1: numeric, 3:
read/only).

BUTTONBOX: defines a special type of
panel: a message box with buttons. This
object has PANEL as a prototype and owns
one method and six attributes. The method
is:

• OPEN: activates a button box
for user action. Returns the
number of the button selected.

 The attributes are:

• MESSAGE: The text to appear
in the box, outside the buttons.

• BUTTONS: a vector of strings
with the text to appear at each
button.

As a spectacular proof of the power of OOP
for the development of reusable, extensible,
easily adjustable and modifiable
applications, two complete different
interface systems have been developed:

• A text screen system, based on the

AP124 auxiliary processor.
• A graphic screen system, based on the

AP207 auxiliary processor.

Both systems are completely equivalent and
allow the same application to work with a
text or a graphic user interface with no
change at all. The interesting thing is that

 6

only four methods (APL functions) had to
be reprogrammed to perform such a drastic
change. Those methods were:

• OPEN, ACTIVATE and CLOSE for

the WINDOW object prototype.

• OPEN for the PANEL object prototype.

All other methods, including those that
belong to the remaining user interface
objects, are exactly the same for both the
text and the graphic versions. This is due to
the fact that menus and button boxes (and,
to a certain extent, panels too), make use of
windows to represent themselves on the
screen, which makes them screen mode
independent.

A sample application

The application coded in figure 1 has been
written in the simplified OOP syntax
described in this paper. This application is
an object editor that uses the following user
interface objects:

• BG: a green background window.
• TW: a title/help window at the bottom

of the screen.
• NW: a window at the bottom of the

screen, superimposed on the preceding
window, where the name of the object
currently being edited is shown.

• MW1: a window that acts as the
background for the method list box.

• MW: a listbox (menu) without a frame,
where the methods available for the
object being edited are shown. Both the
methods owned by the object and those
inherited from its ancestors appear here.
A method may be executed by pressing
the ENTER key on top of its name.

• PW1: a dialog box to request the
parameters for the execution of a
method.

• RW: a window where the result of a
method execution is shown. If the
ENTER key is pressed on a given line of
the result, the line in question is
assumed to be the name of an object. If
this is the case, that object becomes the
current object being edited. Figures 2, 3,
and 4 show different instants during the

execution of the application, in the case
of the text interface. Figures 5, 6 and 7
show the equivalent situations for the
graphic interface. Figure 8 is a different
application (an educational program in
Chemistry to teach the periodic table).
The screen in the figure contains 112
different windows (one per element,
plus the background and two
information windows).

Conclusion

The prototype-instance object-oriented approach
is easy to implement in APL2, as demonstrated
by the application described in the paper. The
performance impact caused by double
interpretation may be compensated by means of
a partial precompilation.

Object-orientation has proved to be a proper
way of handling reusable user interfaces. Our
APL2 approach makes it very easy to program
them in such a way that the same interface may
be used for both text and graphic applications.

References

• [Alf 89] Alfonseca, M.: "Frames, semantic

networks and object-oriented programming
in APL2", IBM J. of Res. and Devel., Vol.
33:5, p. 502-510, Sep. 1989. Interface and
Integrated Development Environment", 3rd
European Symposium on Object-Oriented
Software Development, B”blingen, Oct.
1992.

• [Alf 92] Alfonseca, M.:

"OOPI/OOL/OODE: An Object-Oriented
Program Interface and Integrated
Development Environment", 3rd European
Symposium on Object-Oriented Software
Development, Böblingen, Oct. 1992.

• [McD 95] McDaniel, R.; Myers, B.A.: "A

Dynamic and Flexible Prototype-Instance
Object and Constraint System in C++",
Carnegie-Mellon University Technical
Report, 1995.

• [Weg 95] Wegner, P.: "Interactive

Foundations of Object-Based
Programming", Computer, pp.70-72, Oct.
1995.

 7

Figure 1

 VIEW;NAME;RESULT;METHODS;VALUE;PARM
 NAME½'OBJECT'
 FILE_USE 'VIEW.OOP'
 MESSAGE BG OPEN
 MESSAGE TW OPEN
 MESSAGE MW1 OPEN
 LOOP:NAME½'OBJECT' IF~EXIST NAME
 ASSIGN NW TEXT NAME
 MESSAGE NW OPEN
 METHODS½MESSAGE NAME METHODS
 ASSIGN MW LIST METHODS
 RESULT½MESSAGE MW OPEN
 ¸END IF 0=æRESULT
 ¸LOOP IF(ÆRESULT)>æMETHODS
 PARM½MESSAGE PW1 OPEN
 VALUE½MESSAGE NAME((ÆRESULT)ãMETHODS)(ÆPARM)
 ¸NEXT IF 0îæVALUE
 VALUE½ãVALUE IF 1<ÏVALUE
 ASSIGN RW TEXT VALUE
 RESULT½MESSAGE RW ACTIVATE
 MESSAGE RW CLOSE 'NR'
 NEXT:MESSAGE MW CLOSE 'NR'
 MESSAGE NW CLOSE
 ¸LOOP IF 0îæVALUE
 ¸LOOP IF 4 1Ï2ÆRESULT
 ¸LOOP IF RESULT[4]>ÆæVALUE
 VALUE½(VALUEô' ')/VALUE½VALUE[RESULT[4];]
 ¸LOOP IF~EXIST VALUE
 NAME½VALUE
 ¸LOOP
 END:MESSAGE MW CLOSE 'NR'
 MESSAGE NW CLOSE 'NR'
 MESSAGE MW1 CLOSE 'NR'
 MESSAGE TW CLOSE 'NR'
 MESSAGE BG CLOSE
 FILE_RELEASE 'VIEW.OOP'

 8

Figure 2

Figure 3

 9

Figure 4

Figure 5

 10

Figure 6

Figure 7

 11

Figure 8

