
OBJECT ORIENTED GRAPHICS IN APL2

Manuel Alfonseca
IBM SotTec Lab

Paseo de la Castellana, 4
28046 Madrid (SPAIN)

Abstract

The paper describes a general and extensive graphic
system in two or three dimensions, built in APL 2 by
means of the object-oriented programming g paradigm,
The system fully demonstrates the appropriateness of
the language to develop real-life applications using the
most advanced techniques of computer science.

Introduction

In some previous papers (see references 1-5), the
appropriateness of the APL 2 language for object-or-
iented progr amming (OOP) in general, has been dis-
cussed. This paper considers the special application
of both AFL 2 and OOP to a graphics environment.

Although this is not the place to include a full
description of the 00P paradi~, the following para-
graphs provide a very short introduction.

In current computer science, we can fmd three very
different programrnin g paradigms:

●

●

●

Procedural programming, where the programs
make up a hierarchy, while data are essentially
appendices to the programs,

Logic programmin~, where both programs and
data are essentially unorganized.

Obiect-orienled womammin~, where data and vro-
gr&M are enc~psu~ated as”Objects, which make
up a hierarchy independent of the programs.

The basic elements and properties of OOP are (see
references 6-8):

● Objects, a complex of data (properties) and pro-
grams (behavior) related to each other by means

Permissionlo copy withoul fee all or pan of this material is granted provided that the
cooies are not made ordistribtkd lor dkect commercia:adventa fla, the ACM copyright

notlca and the title of tk publication and its data appear, 84 notice is given that

C9pYiKI is by permlesion of tha Association for Computing Machinaty, To copy
otherwise, or to repub fish, requires a fee andlor specific permission

@l 992 ACM 0+3979t -478-392/0007-OOOt $1.50

of relations. In the terminology of OOP, pro-
grams are called methods.

Classes, or collections of objects related to the
class they belong to by the is-a relation. Classes
may be considered as special cases of objects, or
as a completely different entity. The set of all
classes forms a hierarchy.

Inheritance, or the ability of an object to inherit
properties and methods from the classes it belongs
to.

Messages, or requests from one object to another
(possibly the sfie) object to activate a method.

Additional fundamental properties of 00P are the
following:

●

✎

●

Encapsulation: all the information related to a
given object (its properties) is hidden from other
objects and is accessible only through the object
behavior (its methods).

Polymorphism: methods and properties may be
made local to certain objects and their descend-
ants. The same names can be used at different
objects to perform related, but different proce-
dures.

Dynamic binding, or the ability to defer until exe-
cution time the decision on the program (method)
to be executed in answer to a message. This
usually means using an interpretive language, but
a partial dynamic binding can also be attained
with compiled languages by the use of cefiain
techniques.

The graphic system

Graphic systems have always been one of the standard
applications of object-oriented progr amtning, and they
are used frequently as easy-to-understand OOP exam-

ples.

The graphic system described here is written in
APL 2 /PC (see reference 9), using the 00P exten-

APL Quote Quad Manuel Alfonseca

sions described in reference 3 and the universal
graphics processor (AP 207), which is a part of the
APL 2 /PC product.

A graphic object can belong to one of the following
classes:

.

.

●

✎

All

Simple graphics (class name S’GRA PHI C)

Text graphics (class name TGRA PHIC)

Composite graphics (class name CGRAPHIC)

Chart graphics (class name CHART)

of the preceding object classes are subclasses of a
single clas; called ‘GRA-PHI C. Each of them has a
single method defined which, in all cases, is called
DRAW (polymorphism), the function of which is to
draw the corresponding graphic on the screen, using
AP207.

To each of these methods corresponds a different
APL 2 function, whose name is the catenation of the
subclass name, to an under-bar, to the method name,
according to the rules used in the APL 2 -OOP
system. For example, the version of method DRAW
applicable to class S GRA PHI C will be embodied in
function SGRAPHIC_DRAW.

Inheritance is also useful to build a family of related
graphics that differ only in specitlc properties. They
can be made descendants of a single object, where all
the common mor)erties are defined. while each obiect
in the family ~as’
erties.

to define only its own specflc proP-

Simple graphics

A simple graphic (class name S’GRA PHI C) is the
description of an elementary drawing consisting of
straight lines. For example, a square can be described
with the following properties:

VISOI III
x 11-1-11
Y 1 -1-111

This object is represented as a two column general
array. The frost column contains the property names,
the second the property values. The value of a prop-
erty (Y, for instance) can be a vector (1 -1 – 1 1
1,as in the example).

The property VIS (visibility) controls the movement
of the pen on the screen. A value of O indicates that
the pen must move, without leaving any trace, to the
point whose coordinates are the corresponding values
of the properties X and Y. A value of 1 indicates that
a visible line must be drawn from the present position
to the indicated point.

Of course, the fact that the object belongs to a hier-
archy, implies that this is not the only information it
contains: additional rows must be added to the two
column matrix, This is done automatically if the
object is created using the APL2/OOP functions
described in reference 3:

MESSAGE ‘S GRAPHIC’ t CREATE1 ‘. SQUAREt
ASSIGN ‘SQUARE’ ‘VIS’ (O 1 1 1 1)
ASSIGN ‘, SQUAREt ?Xt (1 1 ‘1 ‘I 1)
ASSIGN ‘SQUARE’ ‘Yt (1 ‘1 ‘1 1 1)

where SQUARE is the name of the object containing
the deftition of the simple graphic (which can be
either an APL 2 variable or a record in an AP211
fde, depending on the position of object GRAPHIC
in the 00P hierarchy), and MES’SA GE and
ASSIGN are two of the APL 2 -OOP functions
described in reference 3. The arguments of
kfES’SA GE are: object, method and parameters. The
arguments of ASSIGN are: object, property and
value.

Additional properties for simple graphics are:

8

●

●

●

Z: the third coordinate, for three-dimensional
graphics. Its default value is zero,

COLOR: the color in which each straight segment
will be drawn. A value of zero represents the
default color (white), Other positive integers rep-
resent the different colors, according to the out-
standing palette.

PATTERN: a value of zero (the default) indicates
that the drawing is ~ransparent (or wiry). Other
positive integer values indicate that the lines being
drawn make a closed polygon that should be fded
with the indicated pattern,

STYLE: a value of zero (the default) indicates
that the corresponding se~ent must be drawn in
full. Other positive integer values select different
line styles, like dashed, dotted, broken, and so
forth.

All the properties of a simple graphic should have the
same number of elements, or be absent, in which case
the default value is applied to every segment,

Text graphics

A text graphic (class name T GRA PHI C) consists of
nothing but texts. The following is an example:

TEXT TITLE TEXTI TEXT2 TEXT3
x

l’EXT~
-2.4 -7 4.6 -7 4.6

Y 7 2 2 -3 -3
s Cx 2 1 1 i i
SCY 1 1
COLOR 1:

1 1
14 14 14 Iu

Text graphics are represented in the same way as
simple objects, by a two column general array, The
preceding object would be created in the following

Object Oriented Graphics in APL2 2

way:

APL 92

MESSAGE
ASSIGN

ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN

! TCRAPHIC 1 * CREATE 9 f SAh’PLE-TEXT r
‘SAMPLE_ TEXTf ‘TEXT! (‘TITLE’ !TEXTI ~
*TEx T2~ !TL’X!7’3! 12’EXT4 t)
~,SAMPLIJ_TEXT1 1X! (-2.k ‘7 1+26 ‘7 4.6)
!SAMPLE_TEXTt ~Yf (7 2 2 ‘3 3)
‘SAMPLE_2’EX2’! !SCXt (2 1 1 1 1)
‘SAMPLE_TEX2’! ‘SCY1 (2 1 1 1 1)
!SAMPLF_Tl?XTf ‘COLOR! (12 14 14 14 14)

Theproperties X and Ygivethepo sitionofthe lower
handcornerofeach text;SCXandS CYaresizemul-
tipliers for each axis; and COLOR defmesthe colorin
which each text will be drawn, as in the simple
graphics.

Addhional properties for text ~aphics are:

● Z: the third coordinate, for three-dimensional
graphics. Its default value is zero.

● A lfG: the angle in degrees of the rotation to be
applied to the text around the Z axis. This makes
it possible to draw texts on the screen in any
direction. Positive and negative values correspond
to counterclockwise and clockwise rotations,
respectively.

● WIDTH: a value of zero (the default) indicates
that the text will be drawn with narrow charac-
ters. Other positive integer values (1-99) indicate
that wider characters should be used. The values
of 10 10 T WIDTH indicate the width along
the Y and the X axis, respectively.

● STYLE: a value of zero (the default) indicates
that the default font (Roman) should be used to
draw the text. other positive integer values select
dflerent fonts, like italics, and so forth.

● DE V (deviation): a value of zero indicates that the
font deftition should be used as it is. Other
integer values indicate that a deviation should be
applied to each character in the font. Positive
values select deviations to the right, negative
values to the left. Using deviations, a Roman font
can be converted into italics.

AU the properties of a text graphic should have the
same number of elements, or be absent, in which case
the default value is applied to every text.

Composite graphics

Composite graphics (class name CGRA PHI C’)
contain references to other graphics of any type,
together with geometrical and other transformations
to be applied to the referenced graphics. Since the
latter can also be composite, the deftition of a com-
posite graphic is recursive. The following is an
example of a composite graphic;

IMAGE TDIA3 AXIS ~fUARE SQUARE SQUARE
x o 0 0 3

0 0 -5 -1 3.82

ZCx 1 2 3 2

SCY : 1 2 2 2

ANZ o 0 0 0 $5
COLOR 14 0 10 12 11

Again, composite graphics are represented by a two
column ge~eral array. The preceding object would be
created in the following way:

MESSAGE ‘ c6ffAPHIC’ * CREATE * f DIA3’
ASSIGN lD.1A3 1 lIMAGEt (‘A XISt ‘. SQUAREt

$. SQUARE? fSQUAREt)
ASSIGN 10IA3 ‘ ‘x’ (o o :5 0 3)
ASSIGN ‘DIA3’ ‘Y’ (O O 5 ‘1 3.82)
ASSIGN 101.43’ ‘SCX’ (i 1 2 3 2)
ASSIGN *DIA31 ‘SCYf (1 1 2 2 2)
ASSIGN lDIA3t lANZf (O O 0 0 45)
ASSIGN ‘DIA3* ‘COLOR’ (14 O 10 12 11)

Property IMAGE is the name of another graphic
object (simple, text or composite); X and Y define a
translation; SCX and SCY a scale change; ANZ a
rotation around the Z axis; and COLOR a color
change to be applied to each image.

Additional properties for composite graphics are:

●

9

●

.

●

9

All
the

Z: the translation along the third coordinate, for
three-dimensional ~aphics. Its default value is
zero.

S’CZ: the scale change along the third coordinate,
for three-dimensional graphics, Its default value is
1.

A iVX: the angle in degrees of the rotation to be
applied to the image around the X axis. It is used
in three-dimensional graphics. Positive and nega-
tive values correspond to counterclockwise and
clockwise rotations, respectively.

,4NY: the angle in degrees of the rotation to be
applied to the image around the Y axis. It is used
in three-dimensional graphics. Positive and nega-
tive values correspond to counterclockwise and
clockwise rotations, respectively.

PATTERN: an overriding pattern value to be
applied to the corresponding (simple or com-
posite) image. A value of zero (the default) indi-
cates that the PA TTERI!J property of the
corresponding image is in effect.

STYLE: an overriding style value to be applied
to the corresponding image. If the corresponding
image is a text graphic, this parameter is assumed
to select a font, if it is a simple graphic, it repres-
ents a line style. A value of zero (the default)
indicates that the STYLE property of the corre-
sponding image is in effect.

the properties of a composite graphic should have
same number of elements, or be absent, in which

case the default value is applied to every text.

In the example given above, the following images are
invoked:

“ SQUARE is the same as the simple graphic
example given above.

● TDIA 3 is the following text graphic:

APL Quote Quad 3 Manuel Alfonseca

TEXT gOMpOSITE sLIDE
x U.4
1’ 7

● AXIS isthefoLlowing simple graphic:

VIS 0101
x -7 -7 -3 7

-3 -7 -7
;TYLE :333

The screen image corresponding to the composite
graphic DIA 3 is obtained by executing:

MESSAGE ‘ DIA 3 ‘ ‘ DRAW ‘

The result of the execution of this message is shown
in the following figure:

● Conic over oriented glass

● General perspective deftition

The following are two examples of images obtained
using the three-dimensional capabilities of the
APL 2 -OOP graphic system:

● Image DIA 17: It is defined as follows:

IMAGE TDIAI 7 ~;BE TETRA 2’ETRA
x o -4 -3
Y o 2 -4 -1
s Cx 1 2 2.5 4

SCY 1 2 2.5 4
Scz 1 2 2.5 b
ANZ o -5 30
COLOR 1 ! 13 10 lb

and drawn on the screen as in the following
figure:

I

CCINPQSITE SLIDE

Three-dimensional graphics

From the above description, it will be evident how the
preceding graphic classes are sufficient to support a
three-dimensional graphic system. However, an addi-
tional property is required, namely the perspective
procedure to be used while drawing the images, which
should affect the whole system, not only each indl-
vidua.1 object. Therefore, this property should be
defined at class CRA PHI C, the root of the graphic
system.

APERSPEC k a function that has been provided to
allow the interactive selection of the appropriate per-
spective system for three-dimensional images, The fol-
lowing perspective systems are supported:

● Isometric Axonometric

● Cavalier

● Conic over Z = O

3-D IMAGES

P
● Image ESP29 represents an opaque icosahedron,

which is drawn as indicated by the following
figure:

● Conic over vertical glass

Object Oriented Graphics in APL2 APL 92

Chart graphics

Chart graphics (class name CHART) are simple time
series that can be represented on the screen as a chart
of ditkrcnt types. For example, the following object
is called CHART 1 and is an instance of class CHART:

LIST 10 20 30 40
1’EXT Case 1 Case 2 Case 3 Case 4
TITLE SAMPLE CHART Just for Demo

An additional property, COLOR, allows the pro-
grammer to select the desired colors for the charts.

To obtain a line chart of object CHART1, it is
enough to execute the following message:

MESSAGE,’ ‘ CHARTI ‘ ‘ DRAW 1

However, this message has one parameter that allows
us to change the type of chart we want to obtain,
either to a vertical-bar-chart or to a pie-chart, as in
the following examples:

MESSAGE * CHART I t t DRAW1 ~VBAR1
MESSAGE ‘ CHARTI q ‘ DRAhT * t PIE*

The corresponding images can be seen in the next
page.

Conclusion

The usefulness of A FL 2 for object-oriented program-
ming has been proved before (see references). This
paper strengthens the case by describing the imple-
mentation of a classical OOP application: graphics,
The graphic system described in the paper is very
simple (there are only four subclasses of graphic
objects), but also extremely general (it even supports
three-dimensional graphics in many perspective
systems) and should be considered as a real applica-
tion, which has been used to produce many slides for
presentations. Using the APL 2 -OOP routines, the
graphics can even be kept in a data base, and created
and modfied very easily. The 00P environment
makes ftiher extensions to the system natural and
straightforward,

The application had been previously developed in
plain APL. The introduction of the OOP paradigm
made the design much easier, simplified the code
(through straightforward reuse of the APL2-OOP
support described in reference 3) and made testing and
debugging simpler. Of course, something had to be
paid as regards performance, but the loss is negligible
for this kind of applications, and perfectly acceptable,

References

1. AMonseca, M. Object Oriented Programming in
APL2 APL Quote Quad, Vol. 19, No. 4, p.6- 11,
1989.

2,

3,

4.

5<

6,

7,

8.

9,

Gfeller, M. Object Oriented Programming in
AIDA APL APL Quote Quad, Vol. 19, No. 4,
p.164-168, 1989.

Alfonseca, M. Frames, Semantic Networks and
Object-Oriented Programming in APL2 H3h4
Journal of Research and Development, 33:5, p,
502-510, Sep. 1989.

Alfonseca, M. Object Oriented Programming
Tutorial APL Quote Quad, Vol. 20, No. 4, p.9,
1990.

Pantziarka, P. Object Oriented Database using
Frames in Second Genera(ion APL APL Quote
Quad, Vol. 20, No. 4, p.284-287, 1990,

Cox, Il. Objecl-Oriented Programming: an Evolu-
tionary Approach. Addison Wesley, 1986,

Meyer, B. Object-Oriented Sofmare Construction.
Prentice Ikdl, 1988.

Smalkalk- V User’s Guide. Digitalk Inc.

A PL2 for &he IBM Personal Computer, Program
Number 5799 -PGG, Part No. 6242036, IBM Cor-
poration.

APL Quote Quad 5 Manuel Alfonseca

S(IHPLECHMT

Just k-w Beiw

Case i Case 2 case 3 case 4

SAMPLEWWT

Just for i?imo

1

L.Me

!MHPLECHMT

Just for Demo (he 2

(kite se 1

Object Oriented Graphics in APL2 6 APL 92

