
APL'2002 Madrid Proceedings

17

.

Complex Systems in APL:
Fractals, Evolving Cellular
Automata and Artificial Life

Manuel Alfonseca

Alfonso Ortega
Universidad Autónoma de Madrid

e-mail: {Manuel.Alfonseca,
Alfonso.Ortega}@ii.uam.es

Marina de la Cruz

CIEMAT

e-mail: marina@ciemat.es

Abstract

We have been working for several years on the representation, study and simulation of complex
systems by means of formal methods. APL2 and other programming languages have been used
to develop our tools and experiments. This paper summarizes our APL2 works on fractal sets,
automatic programming of cellular automata and simulation of multi agent systems.

Acknowledgment

This paper has been sponsored by the Spanish Interdepartmental Commission of Science and
Technology (CICYT), project numbers TEL1999-0181 and TIC2001-4937-E.

1. Fractals

Fractal curves are well-known mathematical constructions [1] that occupy intermediate
positions between standard geometrical entities such as points and lines or lines and surfaces.
An appropriate extension of the concept of dimension makes it possible to describe fractals by
means of fractionary dimensions. In this way, Cantor's fractal set of points (see figure 1) has a
dimension of 1/3, von Koch's snowflake's cdimension (see figure 2) can be expressed as log
4/log 3 (or 1.26...) and Peano's plane filling curve (see figure 3) has a dimension of 2, quite
untypical for a curve.

In a previous paper [2, 3] we have described how this type of fractals can be represented in a
straightforward way by means of a special kind of grammars called L systems, originally
described by A.Lindenmayer in the nineteen sixties [4], and how to compute their dimension
from their grammar [5, 6]. All of them can be obtained from some initiator, by applying
iteratively a rule or iterator. The fractal curve is the limit of the generated curve when the
number of iterations tends to infinite.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or comercial advantage, and that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permision and/or a fee. APL02, 7/02, Madrid,
Spain. © 2002 ACM 1-58113-577-7....$5.00

APL'2002 Madrid Proceedings

18

• The initiator of Cantor’s fractal set is a straight segment. The iterator rule removes the
central third. Figure 1 shows the six first steps of this fractal set.

• Von Koch snowflake’s initiator is also a straight segment. The iterator rule replaces the
central third by the opposite sides of an equilateral triangle. Figure 2.a shows the iterator.
Figure 2.b shows an intermediate stage of the fractal curve obtained from an equilateral
triangle.

• Peano’s curve is continuous, but fills any arbitrary rectangular ball in R2. Figure 3.a shows
its initiator and iterator; figure 3.b shows an intermediate phase of this fractal.

Figure 1: Six steps in Cantor’s fractal set

Figure 2a: Iterator for Von Koch’s curve Figure 2b: Approximation to Von Koch’s
snowflake curve

Figure 3a: Iterator for Peano’s curve Figure 3b: Approximation to Peano’s curve

APL'2002 Madrid Proceedings

19

There are two other kinds of fractals, less amenable to be represented by means of grammars:

• Complex curves obtained as the boundary between the domains of convergence and
divergence of some mathematical function (Mandelbrot and Julia sets). A special case of
these curves are Pickover's biomorphs [7, 8].

• Curves obtained by random means, similar to those generated by brownian movements.

In a recent paper [9] we have proposed a way in which an extended definicion of Lindenmayer
grammars (parametric two-dimensional L systems) is capable of representing fractals of the first
type. In this paper we describe how this set of algorithms may be programmed in APL2 to
easily generate pictures showing selected sections of the Mandelbrot set, Julia sets, biomorphs
and other fractals in the same family.

Mandelbrot set

The Mandelbrot set is the boundary between the convergence and divergence domains of the
recursive complex function zn+1=f(zn)=zn2+c where c=cx+cyj is taken from a ball in the
complex plane and z0=0 [1].

The following APL2 function generates the well-known Mandelbrot set in the form of a bit map
(see figure 4):

>�@ =�0$1'(/� 1�$�%�&�:�'�)�)��)��)��)��)��)��)��)��$��$��'��'�

>�@ Æ 7+5(6+2/'� 5(62/87,21� ,1,7,$/ &225'6�� /(1*+76 2) =220 $5($

>�@ $���� ��� ��� ß��� ß��� ��� ���

>�@ :�$>� �@È�

>�@ &��$>�@��-�×$>�@����Î$>�@�×$>�@Ø$>�@�Ú���-�×�Î$>�@�×$>�@Ø$>�@

>�@ $��$>� �@È$���

>�@ /�)�$>�@�_%�&�:×:

>�@)���$� $��A�$�Õ����A)

>�@)���$� $��A�$�!����A�$�Õ����A)

>�@)���$� $��A�$�!����A�$�Õ����A)

>��@)���$� $��A�$�!����A�$�Õ����A)

>��@)���$� $��A�$�!����A�$�Õ����A)

>��@)���$� $��A�$�!����A�$�Õ����A)

>��@)��$�Ö$�

>��@)��a)�Í)�Í)�Í)�Í)�Í)�Í)�

>��@ $��$���

>��@ $���)�×$������a)��×$�

>��@ :��)�×%���a)��×:

>��@ ����1�1����/

>��@ &��r$)
%0
���Ê���� ��� ��� ���z�����È�%����È���Ê��� ��� ��� ���

z����

>��@ &�&��� � � ���Ê��� ��� ��� ���z$>�@���Ê��� ��� ��� ���z$>�@��� �

>��@ &�&�� �����È��

>��@ '������� ���Ø���×��Î��������È���

>��@ '������¨'���������� ��� ��� ��� �������È���

>��@ $�����×��¨È$��Ø����©È$��¨$�

>��@ &�&���'��'��'��>���@����ËÏ$�

>��@ �r$) &��)9
0$1'(/�%03

APL'2002 Madrid Proceedings

20

Figure 4: Mandelbrot set

To change the resolution in the preceding picture or to zoom in selected parts of the Mandelbrot
set, it is only necessary to change the data in line [2]. Figure 5, for instance, shows the result of
changing the line to:

>�@ $���� ��� ��� ß������� ���������È�������

Figure 5: A part of the Mandelbrot set with higher resolution

Julia sets

The Julia set is the boundary between the convergence and divergence domains of the recursive
complex function zn+1=f(zn)=zn2+c, where c=cx+cyj is a fixed complex point and z0 is taken
from a ball in the complex plane [1].

The following APL2 function generates a Julia set in the form of a bit map (see figure 6):

APL'2002 Madrid Proceedings

21

>�@ =�-8/,$� 1�$�%�&�:�'�)��)��'��'�

>�@ Æ 7+5(6+2/'� 5(62/87,21� ,1,7,$/ &225'6�� /(1*+76� &

>�@ $��� ��� ��� ß��� ß��� � � ß����� �����

>�@ &�$>�@��-�×$>�@

>�@ :��$>�@��-�×$>�@����Î$>�@�×$>�@Ø$>�@�Ú���-�×�Î$>�@�×$>�@Ø$>�@

>�@ /�)��$>�@�_%�&�:×:

>�@)��a)�

>�@ :��)�×:��)�×%

>�@ ����1�1����/

>�@ &��r$)
%0
���Ê���� ��� ��� ���z�����È�%����È���Ê��� ��� ��� ���

z����

>��@ &�&��� � � ���Ê��� ��� ��� ���z$>�@���Ê��� ��� ��� ���z$>�@��� �

>��@ &�&�� �����È��

>��@ %����×��¨È%�Ø����©È%�¨%

>��@ &�&����Ê��Î��������Î��������Î�����>���@��� ����__ËÏ%

>��@ �r$) &��)9
-8/,$��%03

Figure 6: A Julia set

Pickover's biomorphs

“Biomorph” is the name that Clifford A. Pickover [7, 8] gave to the shapes he discovered as a
result of a programming bug when studying fractal properties of several complex functions.
They can be considered as a particular case of Julia sets, with a divergence condition slightly
different.

The following APL2 function generates a Pickover biomorph in the form of a bit map (see
figure 7):

>�@ =�%,20� 1�$�%�&�:�'�)��)��'��'��$��$�

>�@ Æ 7+5(6+2/'� 5(62/87,21� ,1,7,$/ &225'6�� 67(36� &2/256

>�@ $��� ��� ��� ß� ß� � � ���� ����

>�@ &�$>�@��-�×$>�@

>�@ :��$>�@��-�×$>�@����Î$>�@�×$>�@Ø$>�@�Ú���-�×�Î$>�@�×$>�@Ø$>�@

>�@ '�$>� �@È�

>�@ $��$>� �@È$���

>�@ /�)���$� $��A��$>�@!_�Ì%�Í$>�@!_��Ì%�A$>�@Õ_%�&�:�

>�@)���$� $��A��$>�@Õ_�Ì%�Í$>�@Õ_��Ì%�A$>�@Õ_%�&�:�

>�@)��$�Ö$�

>��@)��a)�Í)�Í)�

>��@ '���$>�@!_�Ì%�Í�$>�@Õ_��Ì%�Í$>�@!_%

>��@ '���

>��@ '��)�×'����a)��×'�

>��@ :��)�×%���a)��×:

>��@ $��$���

>��@ $���)�×$������)�×ß����)�Í)��×$�

>��@ ���Õ1�1����/

>��@ &��r$)
%0
���Ê���� ��� ��� ���z�����È�%����È���Ê��� ��� ��� ���

z����

>��@ &�&��� � � ���Ê��� ��� ��� ���z$>�@���Ê��� ��� ��� ���z$>�@��� �

>��@ &�&�� �����È��

>��@ '�����¨� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ���

>��@ '�����¨� � �� � ��� ��� ��� �� �� ��� �� ���

>��@ '�����¨� ��� ��� ��� � ��� �� ��� ��� ��� ��� ���

>��@ &�&���'��'��'��>���@����ËÏ$���

>��@ �r$) &��)9
%,20��%03

APL'2002 Madrid Proceedings

22

Figure 7: A Pickover’s biomorph

General quadratic map basins

This kind of fractals can be described as the boundary between the convergence and divergence
domains of a family of recursive complex functions whose real (x) and imaginary (y)
components are defined as follows [10]:

Xn+1=a+bxn+cxn2+dxnyn+ey+fyn2

yn+1=g+hxn+ixn2+jxnyn+kyn+lyn2

where a through l are real numbers that define each member of the family.

The following APL2 function generates one of these maps, that looks like a smiling mouth, in
the form of a bit map. (see figure 8):

>�@ =�/,36 1�D�$�$��$��&�:�)��)��;�<

>�@ Æ 7+5(6+2/'� 5(62/87,21� ,1,7,$/ &225'6�� /(1*7+6� &

>�@ $�������� ��� ��� ß������ ß������ ������ ������

>�@ D���� ß��� ��� ß��� ß��� ��� ß��� ß��� ß��� ß� ß��� ß���

>�@ $��$>� �@È$���

>�@ :��$>�@��-�×$>�@����Î$>�@�×$>�@Ø$>�@�Ú���-�×�Î$>�@�×$>�@Ø$>�@

>�@ /�)��$>�@�_:×:

>�@)���$�Ö$��Í)�

>�@ $���)�×$����a)��×$���

>�@ $��$���

>��@ ;��Ì:

>��@ <���Ì:

>��@ &�D>�@��;×D>�@��D>�@×;��D>�@×<��<×D>�@�D>�@×<

>��@ &�&��-�×D>�@��;×D>�@��D>�@×;��D>��@×<��<×D>��@�D>��@×<

>��@ :��)�×:���a)��×&

>��@ ����1�1����/

>��@ &��r$)
%0
���Ê���� ��� ��� ���z�����È�$�����È���Ê��� ��� ��� ���

z����

>��@ &�&��� � � ���Ê��� ��� ��� ���z$>�@���Ê��� ��� ��� ���z$>�@��� �

>��@ &�&�� �����È��

>��@ $�����×��¨È$��Ø����©È$��¨$�

>��@ ;����È��������È���� ��������×���Î���Ø������������×�Î���Ø�����È���

>��@ <����È��������È���� �������×���Î���Ø������������×�Î���Ø�����È���

>��@)�����È��������È����� �������×���Î���Ø�����������×�Î���Ø�����È���

>��@ &�&���;�<�)��>���@��� ����__ËÏ$� Æ %*5

>��@ �r$) &��)9
/,36�%03

APL'2002 Madrid Proceedings

23

Figure 8: A fractal similar to a smiling mouth

2. Evolving Cellular Automata

Introduced by John Conway [11], the game of Life is a very simple cellular automaton that
gives rise to extremely complicated behavior, and has been proved to be computationally
complete, being able (in principle) to perform any computation which can be done by equivalent
devices, such as digital computers, Turing machines or artificial neural networks.

The cellular automaton associated to the game of Life is defined thus:

• The grid is rectangular and potentially infinite.

• The set of neighbors to a point in the grid consists of the point itself plus the eight adjacent
points in the eight main directions in the compass (Moore's neighborhood).

• Each finite automaton has two states: empty (also called dead, represented by a zero or a
space character) and full (also called alive, represented by a one or a star symbol *). The set
of states is thus represented by the two Boolean numbers {0,1} or the two characters ' *'.

• The transition function is defined by the following simple rules:

• If the automaton associated to a cell is in the empty state, it goes into the full state if and
only if the number of its neighbors in the full state is exactly three.

• If the automaton associated to a cell is in the full state, it goes into the empty state if and
only if the number of its neighbors in the full state is less than two or more than three.

• In any other case, the automaton remains in the same state.

The following APL2 program executes the game of life on a finite rectangular grid.

APL'2002 Madrid Proceedings

24

>�@ $�< /,)(1�;��*�r,2

>�@ Æ 7KH JDPH RI OLIH

>�@ *�r,2��

>�@ ��� r1&
<
��
<�� "� �È�

>�@ $�<

>�@ /���A��$ ����

>�@ ��1Õ*���

>�@ *�*��

>�@ ;������>�@�$�>�@����

>�@ ;����Ê;����ß�Ê;�����Ë;����ß�Ë;�����Ê�Ë;����ß�Ê�Ë;�����Êß�Ë;���

ß�Êß�Ë;�

>��@ ;��� �©ß� ß�©;�

>��@ $��;� ��Í$A;�Ð� �

>��@ �/

We define life-related cellular automata as the set of cellular automata that comply with the
following rules: the grid is rectangular; the set of neighbors to a point in the grid consists of the
point itself plus the eight adjacent points in the eight main directions in the compass (Moore's
neighborhood); each finite automaton has two states, represented by the Boolean numbers
{0,1}; the transition function of the finite automaton associated to every point is deterministic.

Life-related cellular automata differ in the transition functions of their finite automata. Since the
input to each automaton is made of the states of its neighbors (which are nine, including itself,
and may be ordered arbitrarily), each possible input n be represented by a nine-bit Boolean
vector or, alternatively, by a number in the [0,511] interval. Each member in the set of life-
related cellular automata may thus be represented by its associated transition function elements.
This means that the number of possible different transition functions is 2512, or approximately
10154, an unimaginably large number.

We have programmed in APL2 a genetic algorithm to obtain Conway's game of Life by
evolution from a random population of life-related cellular automata, taken arbitrarily from the
full set of 10154 members. The grid has been restricted to an 8x8 square matrix. Evolution is
fast, and reaches perfect target in a few tens of thousand steps or generations.

The algorithm can be described as follows:

1. Create 60 random life-related cellular automata.
2. Choose random initial conditions for the 64 automata in the 8x8 grid.
3. Compute the result of executing a step in Conway's game of Life with the chosen initial

conditions, using the implementation given above. This results in an 8x8 Boolean matrix.
4. Compute the result of executing a step in each of the 60 life-related cellular automata with

the chosen initial conditions. All the results are also 8x8 Boolean matrices.
5. Compare each of the results in step 4 with the result of step 3 and assign a fitness value to

each of the 60 life-related cellular automata. The fitness value (an integer in the [0,64]
interval) is the number of coincidences between the elements of the two 8x8 Boolean
matrices.

6. Order the 60 life-related cellular automata in the order of their fitness values.
7. The ten automata with top fitness values are paired two-by-two and reproduce, each pair

generating two new automata, which replace the ten automata with bottom fitness values.
The reproduction algorithm uses the two standard tools in genetic algorithms: mutation and
crossing-over at a random point (genetic recombination of the two 512 Boolean vectors that
represent the transition function of the two parent automata).

8. Go to step 2.

APL'2002 Madrid Proceedings

25

Initially, the average fitness values of the 60 automata compute around 32, the number of
coincidences expected from two 8x8 random Boolean matrices. As evolution proceeds, the
average fitness values increase towards 64.

The APL2 language is so concise and appropriate for this application, that each step in the
above description of the algorithm is implemented by a single instruction. Additional auxiliary
functions are used to implement the random density generator of initial conditions and the
execution of a life-related cellular automaton.

We have experimented with different mutation rates. In standard genetic algorithms, the
mutation rate is usually quite low, around 0.5 percent. However, higher mutation rates are used
when both parents have the same genotype, because in that case crossing-over does not have
any effect. In our case, a higher mutation rate was found to accelerate significantly the speed of
convergence.

3. Artificial Life

Finally, we have performed a simulation of artificial ants by means of the following APL2
function:

>�@ 6,08/�)B$17+�;0$;�<0$;�)22'�5$1*(�$176�5:�,:�,1)2�67(3

>�@)B$17+����

>�@ �;0$; <0$;���� ��

>�@ &5($7(B)22'

>�@ $176�$17à���È67(3��

>�@ VFUHHQBPRGH �

>�@ 5:�ZLQGRZ � ������×;0$;�<0$;��� �� �

>�@ ,:�ZLQGRZ � �� �� �� � ��

>�@ RSHQBZLQGRZV

>�@ /223�

>��@ 5$1*(�����×;0$;�<0$;�È

>��@ 6+2:à$176

>��@ 5$1*(>��;0$;�)22'>�@���<0$;�)22'>�@@�
)

>��@ 5$1*(>��;0$;���<0$;@�
$

>��@ 5: SXWBZLQGRZBLË5$1*(

>��@ ,1)2��
67(3�
��67(3��
)22'�
��)22'>�@�

>��@ ,1)2�,1)2��
.12:�
�����Åà$176��
%5,1*�
�����Åà$176�

>��@ ,: SXWBZLQGRZBL ��¨>�@Å,1)2

>��@ $176�029(à$176

>��@ 7(//à����Ö�Åà$176�Í�Ö�Åà$176�A�Åà$176��ÎÈ$176

>��@ �/223�67(3�67(3��

This artificial life system has the following properties:

• Things happen in a rectangular area of size 10x25.
• Ants belong to an anthill located in the center of the rectangular area.
• There is food somewhere in the territory.
• Ants go in search of food randomly.
• When an ant discovers food, it takes a piece to the anthill, rests for a time and goes back for

more. It remembers the position of the food and goes there directly.
• If an ant which knows where food is, meets another one who doesn't, it tells its mate the

location of the food.
• When the food source is depleted, another one appears in a different location, and ants start

looking randomly again.

Ants in this experiment are not trying to simulate the behavior of real insects. For instance, they
communicate directly, rather than at a distance, by means of pheromones.

APL'2002 Madrid Proceedings

26

4. Conclusions

The examples shown in this paper span many of the fields usually classified as complex
systems: representation of fractal curves, cellular automata, genetic algorithms and artificial life.

APL2 has been found a very appropriate language to simulate these types of complex systems
and experiment with them. Even when the execution speed is important, APL2 can still be used
to write a prototype, which can later be translated to a faster language, such as C++.

References

[1] Mandelbrot, B.: The Fractal Geometry of Nature, W.H.Freeman and Company, New York,
1977.
[2] Alfonseca, M.; Ortega, A.: "A study of the representation of fractal curves by L systems and
their equivalences", IBM Journal of Research and Development, Vol. 41:6, p. 727-736, Nov.
1997.
[3] Alfonseca, M.; Ortega, A.: "Representation of Fractal Curves by means of L Systems", APL
Quote Quad (ACM SIGAPL), Vol. 26:4, p. 13-21, Jun. 1996. (Pres. APL 96, Lancaster, Jul.
1996).
[4] Lindenmayer, A.; Rozenberg, A.; Herman, G.: Developmental systems and languages.
North-Holland/American Elsevier, Amsterdam, 1975
[5] Alfonseca, M.; Ortega, A.: "Using APL2 to Compute the Dimension of a Fractal
Represented as a Grammar", APL Quote Quad (ACM SIGAPL), Vol. 30:4, p. 13-23, Jul. 2000.
(Pres. APL Berlin 2000, Jul. 2000).
[6] Alfonseca, M.; Ortega, A.: Determination of fractal dimensions from equivalent L systems,
IBM Jr. of Res. and Dev., Vol. 45:6, p. 797-805 Nov. 2001.
[7] Pickover, C.A. "Biomorphs: Computer Displays of Biological Forms Generated from
Mathematical Feedback Loops". In Computer Graphics Forum, vol. 5, p. 313-316, 1986
[8] Pickover, C.A. "Computers, pattern, chaos, and beauty". New York: St. Marin’s Press, 1990
(reprinted by New York: Dover Publications, 2001)
[9] Ortega, A.; de la Cruz, M.; Alfonseca, M.: Parametric 2-dimensional L Systems and
recursive fractal images: Mandelbrot set, Julia sets and biomorphs, Computers and Graphics.
Pergamon Elsevier Science Ltd. ISSN 0097-8493, (2002) vol. 26:1, pp. 143-149
[10] Sprott, J. C.; Pickover, C. A.: "Automatic generation of general quadratic map basins",
Computers and Graphics. Elservier Science Ltd. (1995) vol. 19:2, pp. 309-313
[11] Berlekamp, E.R.; Conway, J.H.; Guy, R.K.: "Winning Ways for your Mathematical Plays",
Academic Press, 1982.

