APL Berlin 2000 Proceedings

Artificial Life Evolution in a Simplified APL2 Environment

Manuel Alfonseca
Universidad Auténoma de Madrid, Dept. Ingenieria Informatica
Manuel.Alfonseca@ii.uam.es
Main topic: Artificial Life

Acknowledgment:

This paper has been sponsored by the Spanish
Interdepartmental Commission of Science and
Technology (CICYT), project numbers TEL1999-
0181 and TEL97-0306.

Abstract

Artificial life based on simulation evolution is a
flourishing field. One of its most publicized
achievements of the nineties was TIERRA, by
T.S.Ray. APL2 has been wused successfully to
implement a similar simpler artificial life application
that shows most of the interesting features of
TIERRA in an efficient way, providing a modifiable
environment whete it is easy to experiment.

Introduction

The simulation on a computer of artificial life
subject to Darwinian evolution has been an important
matter of research for a long time [4]. During the
1970s, this line of thought gave rise to the genetic
algorithms (1, 3, 5, 8], which became an important area
on its own right, which has given rise to interesting
commetdial applications.

In 1991, Thomas S. Ray made news in the general
press with his TIERRA artificial life system.
Essentially, what he did [6] was design and emulate a
special virtual machine with 32 instructions, most of
which are typical machine instructions (incrementing a
register, adding or subtracting two registers, shifting
bits, and so forth) with a few interesting changes and
additions:

Jump and call addressing by template: these
instructions are followed by a template of no-op
instructions (of which there are two kinds). Control is
passed to the nearest section of the program preceded
by the complementary template.

e A memory allocation instruction, which returns
space where the artificial life individuals (cells)
may copy themselves. This instruction can be
considered as a call to the operating system.

® A divide instruction, that creates an independent
daughter cell using the space where the mother
cell has written a copy of itself.

Every instructon is a five-bit combination.
Numeric constants and instruction operands are not
allowed in memory (but they may exist in the registers
associated to each individual). Every possible 5-bit

combination has a meaning.

Each individual acts as a parallel machine which
tries to copy itself in another memory block. The
operating system slices titne between them. Mutations
(bit flips) are performed with some frequency so that
there is a certain probability that the daughter cell will
not be exactly equal to the mother cell, thus evolution
may act. Thete is also a "death" routine that uses a
stack of otganisms to determine which of them should
be destroyed at a given time.

After being subject to the execution of billions of
instructions, the TIERRA environment generated
many different creatures: shotter equivalents of the
initial ancestor, parasites, super-parasites, cheaters,
symbionts, and othets.

In later years, Ray has started working on
extensions of TIERRA based on the evoluton of
multi-threaded (multi-cellular) otganisms coexisting in

Permission to make digital or hard coples of all or part of
this work for personal or classroom use Is granted without fee
provided that copies are not made or distributed for profit ar
commerclal advantage, and that copies bear this notice and
the full citation on the first page. To copy otherwlse, to
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

APLO0O, 07/00, Berlin, Germany

© 2001 ACM 1-58113-182-8 / 01/0007 5.00

APL Berlin 2000 Proceedings

different machines [7]. The "treproductive cells" ate
more or less equivalent to the old ancestors, while the
basic instruction set has been extended to 64
instructions to allow for the "sensotial" capabilities of
a new cell type.

A Simplified Artificial Life
Environment

The system presented hete allows for the
evolution of one-cell virtual organisms in a way similar
but simpler than the TIERRA environment. Each
otganism is defined by a very small set of 13
"instructions", has an associated value (which depends
on its performance) and tties to reproduce itself on
some available fixed-size space (for 10 instructions.)
The set of instructions is:

0: Stop

1l: No operation

2: Load index register 1 (irl) with the
starting address of the organism in
control

3: Allocate space for a child organism.
Address is returned at index register 2
(ir2)

4: Load nmext instruction into the
counter register (cr)

5: Load index register 1 (irl) with the
starting address of the organism being
executed

6: Jump to the start of the previous
organism in memory

7: Jump to the start of the next
organism in memory

8: Increment the value of the organism
in control

9: Decrement the value of the organism
in control

10: Load the contents of the memory
address pointed by irl into the
accumulator (ac) and increment irl

11: Save the accumulator at the memory
address pointed by ir2 and increment ir2

12: Decrement the counter register. If
it is not zero, jump back as many
instructions as indicated by the next
instruction. Otherwise, skip the next
instruction

The ancestor organism is defined as the following

program:
4 cr = 10

10

2 load initial address of organism

in control into irl
3 set ir2 = space for a child
organism

Artificial life evolution in a simplified APL2 environment

10 ac = [irl]. irl++

11 [ir2] = ac. ir2++

12 cr--. If 0, jump back 2
instructions; otherwise skip 1

2

0 stop

0 stop

There are two unnecessary instructions in the
code of the ancestor otrganism: the initial address of
the organism in control is pre-loaded by the operating
system into irl befote an otganism is given control.
The second stop instruction is unreachable. This
means that the ancestor organism could have been
programmed in just 8 instructions and is capable of
copying itself into the space allocated by instruction 3.
These two instructions have been put there on
putpose, to sec how they arc used by evolution.

APL2 implementation

The implementation consists of a single function
with 51 lines:
(0] NT ALIFE N;A:0r0;50;:;81:82;52:82
0:NA:Q;COP
[11] dro+«o
L2] +((oz20Nc 'T')ao0=0NC 'NT')/L
[3] 2 (0=00NC 'NT')/'NT«1000'
[u4] I+«TOTAL<«G+0
[51] P<NTph4 10 2 3 10 11 12 2 0 O
el AB«10x1 | NT+10
[7] VB<(pAB)?pAB
[al L:>(IT=20)/L00
[9] VB«<VB-L/VB ¢ (20p'-') ¢ OUT 'G

ENERATION' G (0 CLASSIFY
(101 ->(N=0)/LOO

£11] G+~G+1

[12] A<«(pAB)?pAB

[13] T«,(T<(((pT)+10),10)pT)[A:]
C14] VB<«VBLA]

[15] LOO:+(0>N<N+NA<«—1)/0
[16] TOTAL<«TOTAL+1

1731 A«ABLI]

[18] S1<+AB{I]

[19] S2<«ABLVB1L/VB]

[20] S0+S5Z0«SZ<COP+0
[21] Q«50x50+«1

[22] L1:+(0=@+Q@-1)/I00

[23] ~+»(TLA4]1>12)/11

L2431 +(ro,r1,12,7I3,I4,I5,16,17,I8,I
9,710,I11,I12)CTC(A]]

[25] 100:VBLIJ<«0O

[26] IO0:=2((N4=—1)vCOP=0)/'+I0B,VBLTI]
0!
[27] COP<«COPL10 ¢
2(S5Z0=0)/"VBLAB1\NAJ«L.1x(COPxV
BLI1)+(10-COP)xVBLAB1NA]'

[28] VBLI]«VBLI1+COP-+/TLAB[I]1+1COP
J=TLNA+1COP]

[29] IOB:I+«I+1

APL Beriin 2000 Proceedings

[30] 2(I=pAB)/'I+0"

[31]1 =L

[32]1 I1:>ITuB,A<A+1

[33] I2:>I1,81<«AB[CTI]

[3au] I3:82«AB[VB1L/VB]

[3as5] TLS2+9]<«0

L36] +7T1 ,NA<«~S?2

[37] I4:8Z+3Z0«T[A+1]

[38] IT4A:A«A+2

[39] IT4B:2(A2pT)/'A<A-pT'

C40] I5:»71,81«10xLA+10

[41] I6:>L1,A<(~1bAB)LT]

Cu42] I7:>L1,4A«(16AB)CT]

Cu3] I8:>IT1,VBLI1<VBLI1+1

Cyu] I9:->T1,VBLI]<«VBLT]1-1

[45] I10:50«T(S1] ¢ S1+S1+1 ¢ 2(S1=p

T)/'81«0' (¢ ->I1

Cue] I11:+(NA<0)/I1

[u7] COP<«COP+1 0 T[S52]+2(5>?21000)>"

S0' '?213' § S2«S2+1 ¢
e(82=pT)/'82+0"

[u8]) I12:+(SZ=0)/1Tu44

0 +L1

¢ »I1

491 B8Z+SZ-1
[501 +(SZ=0)/Tud
(511 -+L1,A4<«0TA-T[A+1]

Listing 1: An APL program implementing an
environmment for artificial life

The left argument of this function is the size of
the circular memory space where the simulated
organisms will evolve. If not given, 1000 is taken as
the default, or the previous etnulation will continue
until N organisms are given control

Lines 3-7 generate the environment, which
essentially is made of three APL vadables: T (the
memory), which is initially filled with copies of the
ancestor organism (100 copies in the default case); AB
(the address set), a vector of the initial addresses of all
the organisms; and VB (the value set), a vector of the
values associated to all the organisms. These variables,
as well as three scalar counters (I, G, TOTAL), are
global, making it possible to continue the emulation in
several successive executions of the ALIFE function.

Lines 8-51 make up the emulation system. In
applications of this type, where the result of a step
depends on the results of all the previous steps, loops
are unavoidable. The emulator is made of two
embedded loops: the inner one (lines 22-51) gives
control to an organism, which executes its instructions
and ttes to generate a copy of itself; it will tnaintain
control until instruction "stop" is executed, or until the
operating system recovers control after a certain
number of executed instructions (arbitratily set to 50)
to prevent endless execution. Labels I0-I112 execute
the thirteen different virtual machine instructons,
many of which can be implemented by means of a
single APL instruction. Vatdables SO, S1, S2, SZ

represent the internal registers of the virtual machine:
the accumulator (ac), index registers irl and ir2, and
the counter (ct), respectively.

Instruction 3 (allocate space for a daughter cell)
selects the space associated to the organism with the
minimum current value, in that way eliminating the
less adapted organisms. When a new organism is
generated, it is assigned an initial value which is a
functon of the value of its mother, the value of the
otganism previously occupying the space, and the
number of instructions copied by the mother. The
mothet's value is also changed depending on the
number of instructions it was able to copy to the
daughter organism. In this way, the ability to copy
itself is positively selected.

Instruction 11, which copies an instruction from
the mother to the daughter organism, is subject to
"mutations”, in the sense that, with a cettain
probability, the instruction being copied is replaced by
a random instruction. The mutation rate has been set
to the low value of five instructions changed out of
1000 instructions copied.

Lines 8-21 make up the outer loop, the operating
system of the artificial life envitonment, which counts
otganisms and generations and produces output snaps
of the situation by means of auxiliary functions OUT
(which writes on the scteen or to a file) and
CLASSIFY, which generates statistics of the currently

existing organisms, such as the following:
GENERATION 5

2 10 2 3 10 11 12 2 8 O 1
1 111 1 1 1111 3
4 10 2 3 10 11 12 2 0 O 13
4 10 2 3 10 11 12 2 8 0 a3

MAXTMUM VALUE: 16
BELONGS TO 1 COPY OF
4 10 2 3 10 11 12 2 B8 O
After each pgeneration, the positions of the
organisms in memory are shuffled to prevent localized
effects, in this way making them mobile.

Results

The results presented here have been obtained by
executing the artificial life environment for 500
generations (which corresponds to 50000 organism
reproductions, ot about 2 million wvirtual machine
instructions). The total time taken by the execution
(including file output) was about ten minutes in a
Pentium-2 at 400 MH:z.

Different emulations atre obtained by changing the
random seed, which affects when the mutations

Manuel Alfonseca

APL Berlin 2000 Proceedings

happen, the instruction insetted at a mutation, and the
shuffling of the otganisms after each generation.

It may be seen that, after just 5 generations, the
ancestor organism has been replaced by a mutant that
has substituted the first "stop” insttuction by an
"increase-my-value" insttuction, which, evidently,
provides it with a clear advantage. There are also three
organisms which can be considered parasitic, as they
have replaced there whole instruction set by no
opetations, in this way passing the control (and the
copying cffort) to the next organism in memory.
Remember that instruction 2 loads ir1 with the address
of the organism in control, which means that the
organism under control of a parasite will copy the
parasite instructions into the allocated daughter space.
However, when the parasitized organism next receives
control, it will copy itself with the same instructions
previously used to copy the parasite. This means that
parasites are actually comensals, as the other organism
is not damaged by the use the parasite makes of it.

Looking at the tesult after 15 generations, it may
be seen that dominance has passed again to a new
mutant that has replaced the two unnecessary
instructions by two "increase-my-value" instructions, a
predictable development. The no-operation parasite
has also increased its population to 17 individuals, two
of which happen to have teached the maximum value
(remember that parasites also use the "increase-my-
value" instructions of the organisms they control).

GENERATION 15

4 18 31011 12 28 0 1
4101 3 10 11 12 2 8 0 = 1
4 10 8 12 10 11 12 2 8 0 : 2
1 11 1 1 1 1111: 17
4 108 3 10 11 12 2 8 O 79

MAXIMUM VALUE: 24
BELONGS TO 2
1111111111

After 25 generations, the no-operation patasite has
disappeared, but a new type of patasite has taken its
place: one whose first instruction is a jump to the
preceding otganism, which takes much less execution
time to attain the same results.

GENERATION 25

4 0 8 310 11 12 2 8 0 1
410 8 3 10 11 12 1 8 0 : 1
4 10 10 3 10 11 12 2 8 O 1
110 8 310 11 12 28 0 = 1
1010 3 101112 2801 : 1
6 10 8 3 10 11 12 2 8 0 : 2
4 10 8 3 10 11 12 2 8 0O : 93

MAXTMUM VALUE: 20
BELONGS TO 1

Artificial life evolution in a simplified APL2 environment

4 10 8 3 10 11 12 2 B O

After 35 generations, a third parasite has replaced
the two previous ones. In this case, the jump to the
preceding organism has been delayed until after an
"increase-my-value" instruction has been executed by
the parasite which, added to the two normally added
by the conttolled otganism, ptovide the patasite with
an additional selective advantage.

GENERATION 35

4 586101112280 : 4
4 10 86 10 11 12 2 8 0 : 5
4 10 8 3 10 11 12 2 8 0 : 91
MAXIMUM VALUE: 16

BELONGS TO 2

4 10 8 3 10 11 12 2 8 O

After 45 penerations, this type of parasite has
increased its number to 34 individuals, 27 of which
have reduced their instructions to two: "increase-my-
value" and "jump-to-the-previous-organism". This is,
however, about the maximum number of parasites the
envitonment may support. If parasites became
dominant, they would not be able to find the normal
organism they need to control, and theit numbers
would dectease immediately. This gives rise to
Volterra-like[9,2] fluctuations between the populations
of the parasites and the dominant notmal organisms.

GENERATION 45

2 61011 7 2 B 0 10O 1
4 10 8 3 1011 82 8O0 1
8 6101111 2 8 0 10 O 4
4 10 8 6 10 11 12 2 8 0 7
8 61011 7 2 8 0 10 O© 23
4 10 8 31011122 8 0 64

MAXIMUM VALUE: 41

BELONGS TO 2
8 6 10117 2 80 10 0

Thus, after 65 generations, the number of

parasites has gone down to three, two of which belong
to a new class, similar to the first "no-operation" one.
In this case, instruction 4 is executed 5 timnes to load a
value of 4 in the counter repister. Actually, these
instructions are another form of no-operation, as the
counter register will normally be reloaded with the
appropriate value of 10 by the first instruction of the
controlled organism.

GENERATION 65

6 10 11 7 2 10 0 4 0 4 1
4 10 98 3 10 11 12 1 8 0 1
4 4 44 4 4 4 4 4 4 2
4 10 8 3 10 11 12 2 8 O 96

After 95 generations, we find a new effect: 2 new
kind of otganism that start like a2 normal mother cell,
but in their first back jump in the copy loop, jump into

APL Berlin 2000 Proceedings

the same position of the preceding organism, in this
way sharing the copy work between two different
organisms. This may be considered as still another
form of comensalism.

GENERATION 95

4 1083 611 12 28 0 : 1
4 1083 31112 280 : 1
1108 3 10 11 12 2 8 0 : 1
4 10 8 3 10 11 12 12 8 0 : 6
4 10 8 3 10 11 12 2 8 0 : 91

MAXIMUM VALUE: 18
BELONGS TO 2
4 10 8 3 10 11 12 2 8 ©

After 125 pgenerations we find another new
development: an organism that copies only its first
cight insttuctions, leaving the remaining two of the
organism that previously occupied the space allocated
to the daughter cell. In this way, a form of genetic
recombination (sexual reproduction) is achieved.
GENERATION 125

4 8 8 3 10 11 12 2 8 O 1
4 10 8 3 10 11 12180 : 1
4 4 44 4 4 4 4 4 2 3
4 10 8 3 10 11 12 2 8 0 : 95

MAXIMUM VALUE: 20
BELONGS TO 1
4 10 8 3 10 11 12 2 8 O
After 150 generations, the situation has changed:
the species dominant since generation 15 has achieved
total dominance, although new mutations will soon
break the equilibsium again.
GENERATION 150
4 10 8 3 10 11 12 2 8 O
MAXIMUM VALUE: 20
BELONGS TO 2
4 10 8 3 10 11 12 2 8 O
At generation 179, the parasites have appeared
again in theit most advantageous form, making a new
maximum of the Voltetra equations. This situation is

maintained for a long time.
GENERATION 179

100

8 6 10 11 11 2 8 0 4 4 : 25
4 10 8 3 10 11 12 2 8 O 75
MAXIMUM VALUE: 34

BELONGS TO 1
8 6 10 11 11 2 8 0 4 4

At generation 287, a new interesting species
appears to break the equilibrium, which acts as a
parasite to the parasites. This is achieved by replacing
one of the two "increase-my-value” instructions by
instruction 5 ("load-irl-with-my-own-address".) In this
way, if a parasite tries to use this organism to generate
its own copy, the controlled organism copies itself
instead, and will copy itself again when it receives

10

control directly. This super-parasite thus copies itself
twice in every generation, in this way achieving a large
advantage that more than compensates the slight loss
due to the eliminaton of one of the "increase-my-
value" instructions. At generation 288, the supet-
parasite has reached a population of 22 individuals,
larger than that of the parasites. At generation 289, it
becomes the dominant species.

GENERATION 288
0 6 11 12
10 11 11 12
1 1 1 1
10 6 11 3
10 6 11 2
10 6 11 12
10 10 11 12
10 10 11 12

VALUE:

BELONGS TO 2
4 10 83 6 11 12
4 10 5 3 10 11 12

GENERATION 289
1 111 1 1 1
4 10 83 6 11 2
4 10 83 6 11 12
4 10 8 3 10 11 12
4 10 S 3 10 11 12
MAXTMUM VALUE: 1
BELONGS TO 1
4 10 5 3 10 11 12 2 8 O

At generation 291, the parasites are practically
extinct. However, when this happens, the super-
patasite automnatically loses its advantage (it cannot
teproduce twice unless it finds an adjacent parasite),
and the previous dominant species becomes again
advantageous (with its two "increase-my-value"
insttuctions.) This effect is visible in the next few
generations. At 294, the super-parasite has lost
dominance, and in the next generation it disappears. A
few generations later, the parasites reappear.

GENERATION 291

BB R

= 22
: 52

T N N R NS
OUoooOoEEomaoem
WLWwwwRrww
BNNNNNRNN
DONNNENN
ocoooNKHOO

:
:

NN
® N

[S IV
O0QOQOoOR
Bobh oW

ONNNNPR
nw

4 10 9 3 10 11 12 2 8 0 : 1
4 10 8 3 6 11 12 2 2 0 : &5
4 10 8 3 10 11 12 2 B8 0 : 13
4 10 5 3 10 11 12 2 8 0 : 81
MAXTMUM VALUE: 14
BELONGS TO 1
4 10 5 3 10 11 12 2 8 O
GENERATION 294
4 12 8 3 10 11 12 2 8 0 : 2
4 10 5 3 10 11 12 2 8 0 : 15
4 10 8 3 10 11 12 2 8 0 : 83

MAXTMUM VALUE: 21
BELONGS TO 1
4 10 8 3 10 11 12 2 8 O

Manuel Alfonseca

GENERATION 295

4 10 8 3 10 11 12 2
4 10 8 3 10 11 12 8
4 10 8 3 10 11 12 2
MAXTMUM VALUE: 17
BELONGS TO 1

4 10 8 3 10 11 12 2

GENERATION 298

4 10 8 3 10 11 12
4 10 3 3 10 11 12
1 111 1 1 1
4 10 8 3 10 11 12
MAXIMUM VALUE: 1
BELONGS TO 1

4 10 8 3 10 11 12 2

oNR MO

@

- oo

OoOr OO

0

APL Berlin 2000 Proceedings

13
82

The last interesting effect takes place at generation
340, when a fifth dominant species appears, which
incteases the number of bytes copied to 12. In this
way, after copying itself on the space allocated to its
daughter cell, it copies two extra instructions (with the

mutation) into the contiguous space, thus infecting the
next organism with its own mutation. In this way, it
reproduces very quickly, at generation 346 becomes
dominant, at 350 the old dominant species is extinct,
while at 491 the new species achieves total dominiance.

GENERATION 340

41083 71112 28 0 1
41083 611 102 80 4
4 108 3 71112 2 0 0 4
1 111 1 1 1111 5
4 12 83101112 2 80 11
4 1083 611 12 2 8 0 16
4 10 8 3 10 11 12 2 8 0 59
MAXTMUM VALUE: 22

BELONGS TO 1
41083 71112200
A new Volterra fluctuation is established between
the new dominant and the different parasitic spedes,
with sporadic recutrences of the super-parasite.

40

20

W

GRAPHPAK

| ‘ |

w‘
| i
!

Artificial life evolution in a simplified APL2 environment

1

APL Berlin 2000 Proceedings

GENERATION 500

4 12 5 3 10 11 12 2 8 0 1l av
4 08 3 10 11 12 2 8 O 2
4 12 8 3 10 11 12 2 8 O 97 D4

MAXTMUM VALUE: 20

BELONGS TO 1

4 12 8 3 10 11 12 2 B O

Figure 1 shows the fluctuations of the dominant

versus the parasitic and super-parasitic species. The
black upper cutve shows the sum of all the dominant
notrmal spedies; the black lower cutve is the sum of all
the parasites; the gray curve shows the single super-
parasitic species.

Conclusion
APL2 has proved to be an appropriate language to
implement artificial life applications. The one

described here, based on TIERRA (by T.S.Ray),
displays in a simpler environment most of the features
of the older application, including the replacing of
dominant species and the emergence of different
parasites and super-parasites. Our APL2 function is
simple enough to make adjustments and experiments
easy and affordable.

References

(1]
2

Bl

[4]

5]

el

(8]

&)

Alfonseca, M. Genetic algorithms. APL Quote Quad
(ACM SIGAPL), Vol. 21:4, 1-6, Jul. 1991.

M.Alfonseca, de Lara, J., and Pulido, E. Educational
simulation of complex ecosystems in the World-Wide
Web. Proc. ESS'98, SCS Int., .248-252, 1998.

Booker, L.B., Goldberg, D.E., and Holland, J.H. Classi-
fietr Systems and Genetic Algotithms. The Univ. of
Michigan Cognitive Science and Machine Intelligence
Laboratory Technical Report 8, 1987.

Fogel, L.]., Owens, A.J., and Walsh, M_]. Artificial
intellipence through a simulation of evolution, in bio-
physics and cybernetics systems. Proceedings of the
Second Cybetnetics Sciences Symposium, ed. by M.
Mavifield, A. Callahan, and 1..]. Fogel, Spartan Books,
Washington, 1965.

Goldbetg, D_E. Genetic Algotithms in Search, Optimi-
zation, and Machine Learning. Addison-Wesley, Read-
ing, Mass., 1989. ISBN: 0-201-15767-5.

Ray, T'.S. Evolution, ecology and optimization of digital
organisms. Santa Fe Institute Working Paper 92-08-
042, 1992,

Ray, T'S. and Hart, J. Evolution of differentiated
multi-threaded digital otganisms. Artificial Life VI Pro-
ceedings, ed. C.Adami et al., pp. 295-304, The MIT
Press, Cambridge, 1998.

Skomorokhov, A. O. Genetic algotithms: APL2
implementation and a real life application. APL Quote
Quad (ACM SIGAPL), Vel. 26:4, 97-106, 1996.
Volterra, V. Legons sur la Théotrie Mathématique de la
Lutte pour la Vie. Gauthier-Villars, Pans, 1931.

Manuel Alfonseca

