

Clasificación: medios de transmisión cerrados <u>no</u> homogéneos $\sigma = \infty$ Medio multidieléctrico (=dieléctrico no homogéneo) v multiconductor cerrado por condiciones de conductor perfecto Ecuaciones de Maxwell para cada una μ_1, ε_1 de las regiones dieléctricas (i) que componen el medio de transmisión: \mathbf{C}_{σ} μ_2, \mathcal{E}_2 $\nabla \cdot \vec{D}_i(\vec{r},\omega) = \boldsymbol{\theta}$ $\nabla \cdot \vec{B}_{i}(\vec{r},\omega) = \boldsymbol{\theta}$ $\nabla \times \vec{E}_{i}(\vec{r},\omega) = -j\omega\mu_{i}\vec{H}_{i}(\vec{r},\omega)$ $\nabla \times \vec{H}_{i}(\vec{r},\omega) = j\omega\varepsilon_{i}\vec{E}_{i}(\vec{r},\omega)$ C_D $\forall i = \mathbf{1}, N$ Siendo N el número de regiones con dieléctrico distinto 7 ACAF (2007-08) IV. Dispositivos en guía de onda ver. 0 J.A.R.C, J.R.M.G, J.R.

 Clasificación: medios de transmisión cerrados <u>no</u> homogéneos $\vec{E}_{ti} = \frac{\gamma}{\gamma_{ci}^2} \nabla_t E_{zi} - \frac{j\omega\mu_i}{\gamma_{ci}^2} \hat{z} \times \nabla_t H_{zi}$ Para cada región i del medio de transmisión, se puede demostrar que los campos transversales se pueden obtener a partir de los $\vec{H}_{ii} = \frac{j\omega\varepsilon_i}{\gamma_{ii}^2} \hat{z} \times \nabla_t E_{zi} + \frac{\gamma}{\gamma_{ii}^2} \nabla_t H_{zi}$ longitudinales en dicha región. - Estos son los únicos campos linealmente independientes. - La constante de propagación y las amplitudes de estos campos se obtienen imponiendo las condiciones de contorno en el interfaz entre regiones - La forma general de la onda guiada es un modo híbrido Hib Ondas guiadas (solución de campo EM que puede existir en la estructura) IV. Dispositivos en guía de onda 8 ACAF (2007-08) ver. 0 J.A.R.C, J.R.M.G, J.R.

1. Clasificación: medios de transmisión cerrados homogéneos

Modo:	TEM	TM	TE -
E_z	0	$E_z = F^{(e)} e^{-\gamma z}$ $\Delta_t F^{(e)} - \gamma_c^2 F^{(e)} = 0$	0
H_{z}	0	0	$H_z = F^{(h)} e^{-\gamma z}$ $\Delta_t F^{(h)} - \gamma_c^2 F^{(h)} = 0$
\vec{E}_t	$\nabla_t \phi e^{-\gamma_0 z}$ $\Delta_t \phi = 0, \phi \big _{C_i} = cte_i$	$\frac{\gamma}{\gamma_c^2} \nabla_t E_z$	$Z_{TE}\vec{H}_{t} imes \hat{z}$
\vec{H}_t	$\frac{1}{\eta}\hat{z}\times\vec{E}_{t}$	$rac{l}{Z_{TM}}\hat{z} imesec{E}_t$	$\frac{\gamma}{\gamma_c^2} \nabla_t H_z$
Constante de propagación γ	$\gamma_0 = \sqrt{-\omega^2 \mu \varepsilon}$	$\gamma^2 = \gamma_0^2 - \gamma_c^2$	$\gamma^2 = \gamma_0^2 - \gamma_c^2$
Empedancia le onda Z	$Z_{TEM} = \eta = \sqrt{\frac{\mu}{\varepsilon}}$	$Z_{TM} = \frac{\gamma}{i\omega\varepsilon}$	$Z_{TE} = \frac{j\omega\mu}{\gamma}$

2. Propagación en una guía de onda

> A partir de ahora se estudiarán más en detalle la propagación por medios de transmisión cerrados por conductor perfecto y con dieléctrico homogéneo:

> - Se estudiarán los diagramas de dispersión: constante de propagación, frecuencia de corte, impedancia del modo, ancho de banda monomodo.

- Constante de propagación del modo: γ

- Constante de propagación de una onda plana en el medio dieléctrico de la guía: γ_0

- Constante de separación: γ_c
- Número de onda de corte: k_c
- Se puede demostrar que: $k_c^2 = -\gamma_c^2 \Longrightarrow real$ $k_c^2 = -\gamma_c^2 > 0$

- Impedancia de onda del modo: Z

$$\chi^2 = -\omega^2 \mu s$$

 $\gamma^2 = \gamma_0^2 - \gamma_c^2$

$$\gamma_0^2 = -\omega^2 \mu \varepsilon$$

Dependiendo del $k_0^2 \equiv -\gamma_0^2$ libro a veces se utiliza la notación: $k_c^2 \equiv -\gamma_c^2$

 $k_c^2 \equiv -\gamma_c^2$

ACAF (2007-08)

J.A.R.C, J.R.M.G, J.R.

3. Guía de onda coaxial confocal elíptico	UA
➤ Modos TEM (<i>O</i>), TE (<i>H</i>) y TM (<i>E</i>) de la guía coaxial elíptica:	Ercuela Politécnica Superior
$(TEM) \phi = (N^{(o)})^{\frac{1}{2}} (\varrho - \varrho_a), N^{(o)} = 2\pi(\varrho_a - \varrho_c) ^{-1}, Z_c = \frac{\eta(\varrho_a - \varrho_c)}{2\pi} = \frac{\eta}{2\pi} \ln \frac{a + \sqrt{a^2 - d_f^2}}{c + \sqrt{c^2 - d_f^2}},$ $(TEc_{pr}) F_{pr}^{(hc)} = (N_{pr}^{(hc)})^{\frac{1}{2}} R_p^{(hc)}(\varrho, q'_{cpr}) \operatorname{ce}_p(\vartheta, q'_{cpr}) p = 0, 1, \dots, r = 1, 2, \dots$ $(TEs_{pr}) F_{pr}^{(hs)} = (N_{pr}^{(hs)})^{\frac{1}{2}} R_p^{(hs)}(\varrho, q'_{spr}) \operatorname{se}_p(\vartheta, q'_{spr}) p = 1, 2, \dots, r = 1, 2, \dots$ $(TMc_{pr}) F_{pr}^{(ec)} = (N_{pr}^{(ec)})^{\frac{1}{2}} R_p^{(ec)}(\varrho, q_{cpr}) \operatorname{ce}_p(\vartheta, q_{cpr}) p = 0, 1, \dots, r = 1, 2, \dots$	$= \operatorname{acosh} c/d_f$
$(TMs_{pr}) F_{pr}^{(co)} = (N_{pr}^{(co)})^2 R_p^{(co)}(\varrho, q_{spr}) \operatorname{se}_p(\vartheta, q_{spr}) p = 1, 2, \dots r = 1, 2, \dots$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $))))
$N_{pr}^{(h)} = \epsilon_{p0}\frac{\pi}{2}((\xi_{pr}^{\prime 2} - p^{2})R_{pr}^{(h)2}(\xi_{pr}^{\prime \prime}) - ((\xi_{pr}\frac{c}{a})^{2} - p^{2})R_{pr}^{(h)2}(\xi_{pr}\frac{c}{a})) ^{-1}$ $N_{pr}^{(e)} = \epsilon_{p0}\frac{\pi}{2}(\xi_{pr}^{2}R_{pr}^{(e)\prime 2}(\xi_{pr}) - (\xi_{pr}\frac{c}{a})^{2}R_{pr}^{(e)\prime 2}(\xi_{pr}\frac{c}{a})) ^{-1}.$ $R_{p}^{\prime(hc)}(\varrho_{a}, q_{cpr}^{\prime}) = 0, R_{p}^{(ec)}(\varrho_{a}, q_{cpr}) = 0$ $R_{p}^{\prime(hs)}(\varrho_{a}, q_{spr}^{\prime}) = 0, R_{p}^{(es)}(\varrho_{a}, q_{spr}) = 0, k_{c} = \frac{2}{d_{f}}\sqrt{q_{0}} = \frac{2}{a}\sqrt{q_{0}}\cosh\varrho_{a}.$	
ACAF (2007-08) IV. Dispositivos en guía de onda	28 ver.

5. Filtros y multiplexores

Comparación cualitativa de algunos tipos de filtros usados en frecuencias de microondas-milimétricas:

Resonator realization	Size	Unloaded Q	Spurious free response	Power handling	Single/Dual mode resonators	Bandwidth
Dielectric loaded	small/medium	very high	very poor	poor	both	very small
Combline/ Interdigital	small	medium	good	medium	single	$\mathrm{small}/\mathrm{medium}$
Printed Microstrip	very small	very low	good	very poor	both	medium/high
Ridge waveguide	small	medium/high	very good	good	single	medium/high
Rectangular waveguide	medium/high	medium	medium	very good	both	small
Circular/Elliptical waveguide	medium/high	high	medium	very good	both	very small

Además de las características anteriores, a la hora de elegir una estructura hay que tener también muy en cuenta el tipo de respuesta que se persigue (Chebychev, elíptica,...)

ACAF (2007-08)	IV. Dispositivos en guía de onda	39
J.A.R.C, J.R.M.G, J.R.		ver. U

ACAF (2007-08)	IV. Dispositivos en guía de onda	42
		v

Polarización circular a izquierdas

Polarización circular a derechas

ACAF (2007-08) J.a.r.c, J.r.m.g, J.r. IV. Dispositivos en guía de onda

62

IV. Dispositivos en guía de onda

APÉNDICE II: DESCRIPCIÓN DEL CAMPO EN UNA GUÍA DE ONDA Y TENSIONES Y CORRIENTES EQUIVALENTES

> El campo EM de cada modo se puede descomponer en su parte longitudinal (una componente, según el eje de la guía) y su parte transversal (dos componentes). La variación según z es $exp(\pm \gamma z)$:

$$\vec{\mathbf{E}}_{n}^{+} = (\vec{\mathbf{e}}_{tn}^{+} + e_{zn}^{+}\hat{\mathbf{z}})e^{-\gamma_{n}z} \qquad \vec{\mathbf{E}}_{n}^{-} = (\vec{\mathbf{e}}_{tn}^{-} + e_{zn}^{-}\hat{\mathbf{z}})e^{+\gamma_{n}z}$$

$$\vec{\mathbf{H}}_{n}^{+} = (\vec{\mathbf{h}}_{tn}^{+} + h_{zn}^{+}\hat{\mathbf{z}})e^{-\gamma_{n}z} \qquad \vec{\mathbf{H}}_{n}^{-} = (\vec{\mathbf{h}}_{tn}^{-} + h_{zn}^{-}\hat{\mathbf{z}})e^{+\gamma_{n}z}.$$
Modo según +z
Modo según -z
Con esta descomposición, los campos
$$\begin{cases} \vec{\mathbf{e}}_{tn}^{+}, e_{zn}^{+}, \vec{\mathbf{e}}_{tn}^{-}, e_{zn}^{-} \\ \vec{\mathbf{h}}_{tn}^{+}, h_{zn}^{+}, \vec{\mathbf{h}}_{tn}^{-}, h_{zn}^{-} \end{cases}$$

se expresan con funciones matemáticas qué dependen del medio de la guía (ε, μ), de la frecuencia (f) y exclusivamente de las coordenadas transversales (no dependen de la coordenada z). (ver resumen de expresi

(ver resumen de expresiones en tr. 11 y sus valores para las guías canónicas en el punto 3)

ACAF (2007-08) IV. Dispositivos en guía de onda

ver. 0

Las componentes del modo n según +z están relacionadas con las componentes del modo viajando según -z:

 $\vec{\mathbf{e}}_{tn}^{-} = \vec{\mathbf{e}}_{tn}^{+}, \ e_{zn}^{-} = -e_{zn}^{+}$ $\vec{\mathbf{h}}_{tn}^{-} = -\vec{\mathbf{h}}_{tn}^{+}, \ h_{zn}^{-} = h_{zn}^{+}$

Notación: se toma como referencia el modo viajando según +z

 $\begin{cases} \vec{\mathbf{e}}_n \equiv \vec{\mathbf{e}}_{tn}^+, e_{zn} \equiv e_{zn}^+ \\ \vec{\mathbf{h}}_n \equiv \vec{\mathbf{h}}_{tn}^+, h_{zn} \equiv h_{zn}^+ \end{cases} \longrightarrow \vec{\mathbf{E}}_n^+ = (\vec{\mathbf{e}}_n + e_{zn}\hat{\mathbf{z}})e^{-\gamma_n z} \quad \vec{\mathbf{E}}_n^- = (\vec{\mathbf{e}}_n - e_{zn}\hat{\mathbf{z}})e^{+\gamma_n z} \\ \vec{\mathbf{H}}_n^+ = (\vec{\mathbf{h}}_n + h_{zn}\hat{\mathbf{z}})e^{-\gamma_n z} \quad \vec{\mathbf{H}}_n = (-\vec{\mathbf{h}}_n + h_{zn}\hat{\mathbf{z}})e^{+\gamma_n z}. \end{cases}$

Además, los campos transversales de los modos eléctrico y magnético están relacionados por la impedancia de onda:

J.A.R.C, J.R.M.G, J.R.

