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Likelihood Ratio Framework
in Forensic Sciences



Likelihood Ratios (LR) in Forensic Science
 Given two materials to compare

 Evidence (E)
 E.g., biological samples in crime scene and from a suspect, 

speech from wire-tapping and from a suspect…

 Relevant hypotheses (at source level)
 Hypothesis θp : materials come from the same source
 Hypothesis θd : materials come from different sources

 Other information in the case (I)
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Likelihood Ratios in Forensic Science
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Assessing LR PerformanceAssessing LR Performance



Empirical Assessment of Performance
 Experimental test

 Database of data with known sources
 E.g., speech database with known identities of speakers

 Generate same-source comparisons (θp is known to be true)
 LR values should be higher than 1

 Generate different-source comparisons (θd is known to be true)
 LR values should be lower than 1

Different-source comparisons
(different-source LR values)

Same-source comparisons 
(same-source LR values)
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Discriminating Power of the Evidence
 Discriminating power (or simply discrimination) of the evidence is 

related to the separation (overlapping) among
 LR values for which θp is true

 Samples come from the same source

θ LR values for which θd is true
 Samples come from different sources

 Good discriminating power means Good discriminating power means
 Higher LR values for 

same-source comparisons

Same-sourceDifferent-source

p
 Lower LR values for 

different-source comparisons
 Measured by e.g. ROC and DET plots.
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Discrimination is not enough for LR
 Example: two LR sets with the same discrimination

 Second set is first set +3

g
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Discrimination is not enough for LR
 Example: two LR sets with the same discrimination

 Second set is first set +3

g

Strong support to the 
wrong hypothesis!
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Discrimination is not enough for LR
 Example: two LR sets with the same discrimination

 Second set is first set +3

g

 Not a discrimination problemp
 Same discrimination in both sets

 Calibration problem

Strong support to the 
wrong hypothesis!
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Performance of Posterior Probabilities
 Performance of a probabilistic opinion (forecast) 

 Classically measured by Strictly Proper Scoring Rules (SPSR) Classically measured by Strictly Proper Scoring Rules (SPSR)
 [deGroot82, Dawid07,Gneiting07]

 A SPSR rule assigns a penalty to a probabilistic opinion A SPSR rule assigns a penalty to a probabilistic opinion
 Depending on which hypothesis is actually true

I LR b d f i id l ti th f t i In LR-based forensic evidence evaluation, the forecast is 
expressed by the posterior probabilities

 pP E
I out from notation

(simplicity)

 Prior probabilities, province of the fact finder, are still needed…

 We will address this issue later
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Example: Logarithmic SPSR
 Assigns:

g
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Likelihood Ratios (LR) in Forensic Science

 Performance of a set of posterior probabilities (forecasts)
A f SPSR diff t i [d G t82 Average of a SPSR over different comparisons [deGroot82, 
Dawid07,Gneiting07]

 1 logLS P E  

 

2
same-source

1 log

log p i
iss

LS P E
N

P E










  2
diff-source

log d j
jds

P E
N




 

On the Calibration of Likelihood Ratios
WIC-BBfor2 Midwinter Meeting, Eindhoven, The Netherlands, 2011

14



Empirical Cross-Entropy (ECE)

 Prior-weighted average of the logarithmic SPSR
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Information theoretical interpretation [Ramos07]
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 Information-theoretical interpretation [Ramos07]
 “Average information needed to obtain certainty”

 Higher ECE means more information needed to know which Higher ECE means more information needed to know which 
hypothesis is actually true

 Using the LR values computed by the forensic scientist
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Calibration of LR ValuesCalibration of LR Values



Calibration
 Given a set of posterior probabilities about hypothesis θp, 

calibration meanscalibration means
 Posterior probabilities of θp approximate actual proportions of 

occurrence of θoccurrence of θp
 Calibrated probabilities have been dubbed reliable

[deGroot82][deGroot82]

 Calibration improves performance of forecasts
 Because the average of any SPSR is decomposed [deGroot82]
 A refinement loss component

M f di i i ti [B 06] Measure of discrimination [Brummer06]
 A calibration loss component
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Calibration
E l i t l t f t i b biliti Example: experimental set of posterior probabilities
 LR values computed by a forensic scientist

F t fi d i P(θ ) 0 5 Fact finder assigns P(θp)=0.5

Uncalibrated
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Calibration
E l th t f lik lih d ti Example: other set of likelihood ratios 
presenting the same discrimination as before

R t f th diti h d Rest of the conditions unchanged

Calibrated
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Obtaining calibrated probabilities

 Computing proportions of cases implies binning posterior p g p p p g p
probabilities
 How many bins? What bin size?

 A solution: Pool Adjacent Violators Algorithm (PAV) 
[Brummer06,vanLeeuwen07][ , ]
 Computation of proportions over the experimental set of 

probabilities (where true answers are known)
 Monotonically rising (isotonic regression)

 Preserves discrimination
O l lib ti i i d Only calibration is improved
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1

PAV: example
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1

PAV: example
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PAV: example
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1

PAV: example
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Calibration and ECE

 Improving calibration improves (reduces) ECEp g p ( )
 Because ECE decomposes into discrimination + calibration
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 However ECE still needs the prior probability

same source diff sourcei js dss  

 However, ECE still needs the prior probability…
 The forensic scientist cannot compute its value in general

S l ti th ECE l t Solution: the ECE plot
 Computing ECE for a wide range of priors
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ECE plots: LR performance
 ECE of 3 LR sets are represented

p p

 LR values actually obtained (solid) LR values actually obtained (solid)
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ECE plots: LR performance
 ECE of 3 LR sets are represented

p p

 LR values actually obtained (solid) LR values actually obtained (solid)
 Always LR=1 (dotted)
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ECE plots: LR performance
 ECE of 3 LR sets are represented

p p

 LR values actually obtained (solid) LR values actually obtained (solid)
 Always LR=1 (dotted)
 Calibrated LR values (dashed) Calibrated LR values (dashed)

 LR values after PAV
 True answers are needed 
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ECE plots: LR performance  
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 ECE of 3 LR sets are represented
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 LR values actually obtained (solid)

  10dP I

 LR values actually obtained (solid)
 Always LR=1 (dotted)
 Calibrated LR values (dashed) Calibrated LR values (dashed)

 LR values after PAV
 True answers are needed 

 Separation of roles
 Forensic scientist: ECE computation for a wide range of priors

 Because the scientist cannot set the prior…
 Fact finder: prior establishment and measurement of ECE
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ECE plots: LR performance  
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 LR values actually obtained (solid)
 Always LR=1 (dotted)
 Calibrated LR values (dashed) Calibrated LR values (dashed)

 LR values after PAV
 True answers are needed 

Cllr

minC
 Cllr: ECE at prior 0.5 [Brummer06]

 minCllr: after PAV

minCllr

 Separation of roles
 Forensic scientist: ECE computation for a wide range of priors

 Because the scientist cannot set the prior…
 Fact finder: prior establishment and measurement of ECE
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Case studiesCase studies



Forensic Automatic Speaker Recognition

D t b d t l NIST S k R iti Database and protocol: NIST Speaker Recognition 
Evaluation (SRE) 2008

T l h l b t Telephone-only subset

 Comparison of different LR computation methods 
[Ramos07,Gonzalez07]
 Gaussian modelling
 Kernel density functions (KDF)
 Logistic regression
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NIST SRE 2008, telephone-only data

SRE08 Tel−Tel Calibrated Gaussian SRE08 Tel−Tel Calibrated KDF SRE08 Tel−Tel Calibrated LogReg

Gaussian KDF Logistic regression
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Forensic glass analysis

 Database collected by the Institute of Forensic ResearchDatabase collected by the Institute of Forensic Research 
(Krakow, Poland)
 7 variables (Log of Na, Si, Ca, Al, K, Fe and Mg normalized to O)( g , , , , , g )

 Performance degradation due to population selection
 [Zadora10] [Zadora10]
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Mismatching background
degrades performance
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Conclusions
 Importance of Calibration

 Improves performance of LR values
 “Reliable” probabilistic interpretation of the LR [deGroot82]

 Measuring calibration: Empirical Cross-Entropy / Cllrg p py llr
 Information-theoretical interpretation

 ECE / C can be applied to any LR-based forensic ECE / Cllr can be applied to any LR-based forensic 
discipline
Some challenges still remain Some challenges still remain…
 Highly discriminating techniques such as DNA analysis

 Empirical approach may not be robust or feasible Empirical approach may not be robust or feasible
 Behavior at extreme values of the prior odds

 Small-sized experimental sets of LR values may not be robust
On the Calibration of Likelihood Ratios

WIC-BBfor2 Midwinter Meeting, Eindhoven, The Netherlands, 2011

p y

40



Software for Calibration and Assessment

F C l t lkit (Nik B ü ) FoCal toolkit (Niko Brümmer)
 Tools for assessment

C Cllr
 Other useful representations such as APE plots [Brummer06]

 Tools for calibration
 http://sites.google.com/site/nikobrummer/focal

 Software for drawing ECE plots (Daniel Ramos) Software for drawing ECE plots (Daniel Ramos)
 http://arantxa.ii.uam.es/~dramos/software.html
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