Accuracy Assessment Methods for Likelihood-Ratio-based Evidence Evaluation

Daniel Ramos and Joaquin Gonzalez-Rodriguez ATVS – Biometric Recognition Group Universidad Autónoma de Madrid <u>http://atvs.ii.uam.es</u>

Jose-Juan Lucena-Molina Statistics Department, Criminalistics Service Dirección General de la Policía y de la Guardia Civil Ministerio del Interior, Spain

Outline

Assessment of evidence evaluation methods

- Motivation
- Likelihood ratios for evidence evaluation and interpretation
- Assessment of likelihood-ratio-based evidence evaluation
 - Empirical approach
 - Assessment methods
 - Rates of misleading evidence
 - Tippett plots
 - Empirical Cross-Entropy
 - Limit Tippett plots (novel assessment methodology)
- Experiment with speaker recognition systems
- Conclusions

Assessment of Evidence Evaluation Methods

EAFS 2009. Daniel Ramos et al. 10 September.

Assessment of Performance: Motivation

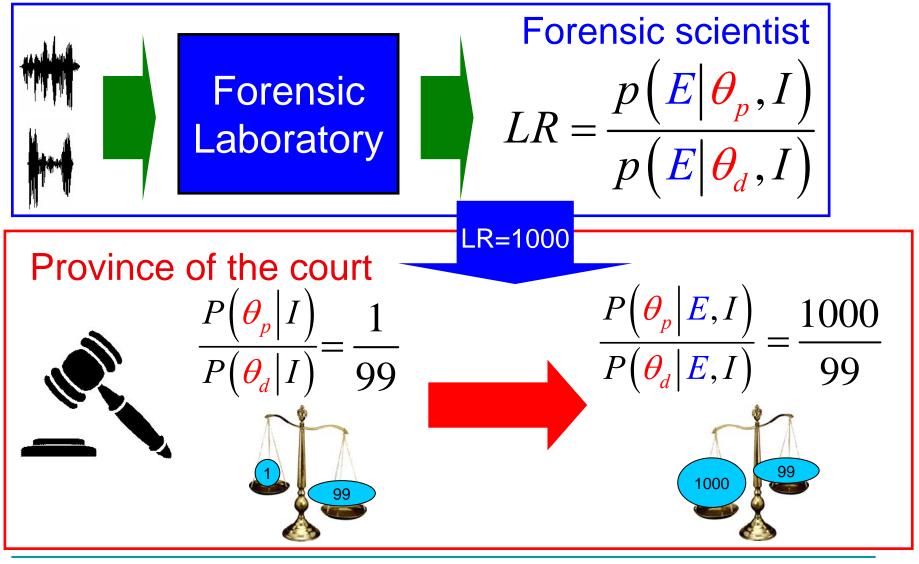
- Increasing interest for the scientific assessment of any processes involved in forensic science
 - The effect of Daubert rules
 - Two recent and important references found in the literature

Committee on Identifying the Needs of the Forensic Sciences Community, "Strengthening Forensic Science in the United States: A Path Forward, National Research Council, National Academy of Sciences, 2009.

The Law Comission, The admissibility of Expert Evidence in Criminal Proceedings in England and Wales. A New Approach to the Determination of Evidentiary Reliability. Consultation paper no. 190, 2009.

 Assessment of evidence evaluation methods is a key point towards this aim

Evidence Evaluation with Likelihood Ratios

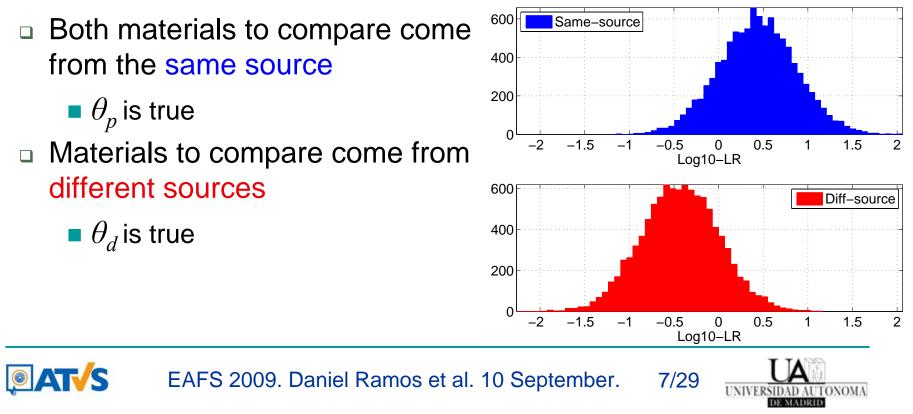


EAFS 2009. Daniel Ramos et al. 10 September.

Assessing Performance of Likelihood-Ratio-Based Evidence Evaluation Methods

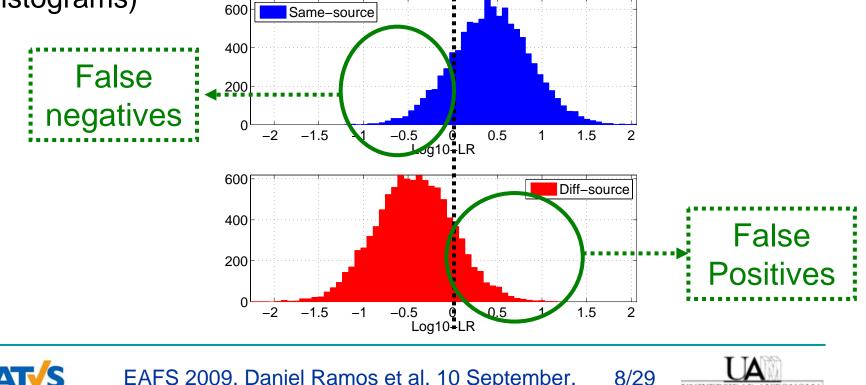
Empirically Measuring Performance

- Experimental test
 - Database of materials with known sources
 - □ E.g., speech utterances of known origin
- Generate comparisons (LR values) where:



False Positive and False Negative Rates

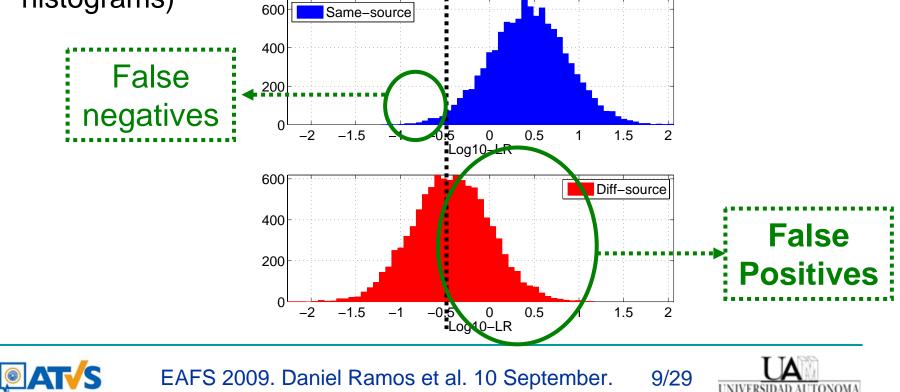
- Classical measure of performance
- For a given decision threshold, percentage of false positive and false negative cases
 - They depend on the decision threshold (typically LR=1)
- Measure of discriminating power (separation among both histograms)



EAFS 2009. Daniel Ramos et al. 10 September.

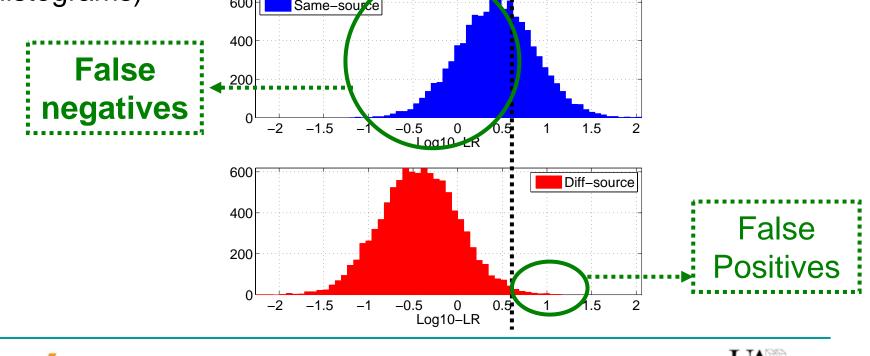
False Positive and False Negative Rates

- Classical measure of performance
- For a given decision threshold, percentage of false positive and false negative cases
 - □ They depend on the decision threshold (typically LR=1)
- Measure of discriminating power (separation among both histograms)



False Positive and False Negative Rates

- Classical measure of performance
- For a given decision threshold, percentage of false positive and false negative cases
 - □ They depend on the decision threshold (typically LR=1)
- Measure of discriminating power (separation among both histograms)

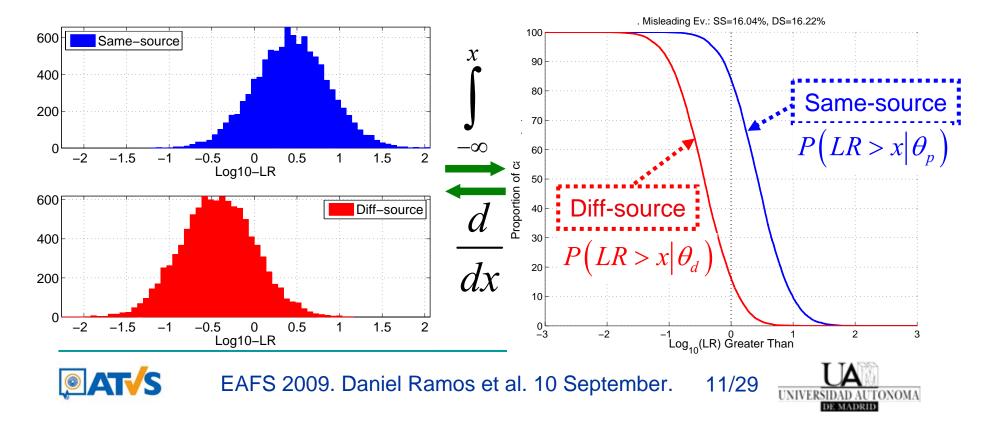


EAFS 2009. Daniel Ramos et al. 10 September. 10/29

Tippett Plots

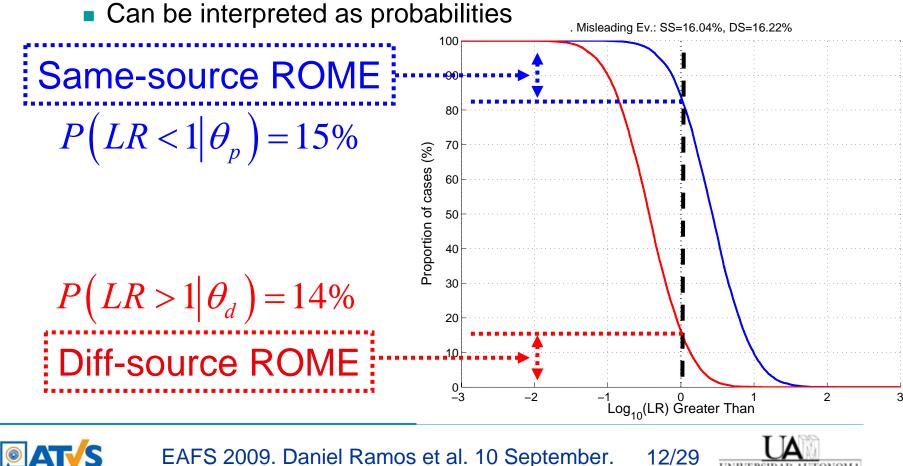
Cumulative histograms of same-source and different-source LR values

- Interpretable as probabilities
 - Probability of finding LR values greater than... (value in the x-axis)
- Equivalent to plot false positive and (the complementary of) false negative rates for any threshold in the x-axis



Performance in Tippett Plots: ROME

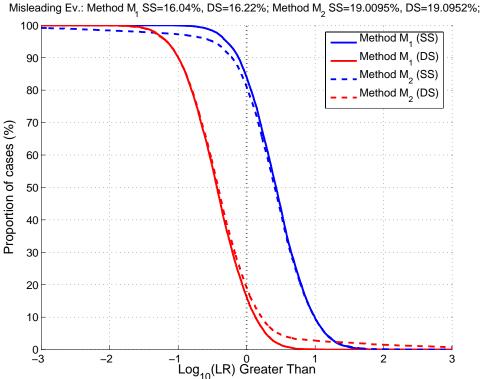
- Rates of Misleading Evidence (ROME)
 - "Proportion of LR values that will give support to the wrong" hypothesis"



EAFS 2009. Daniel Ramos et al. 10 September.

Problems with Tippett Plots

- ROME is far from enough to determine performance by itself
 - Strong misleading evidence is also very important
- Methods M₁ and M₂ have very similar ROME
 - But M₂ presents much higher strong misleading evidence
 - M₁ should be much better
 - ROME do not highlight this
 - And Tippett plots do not numerically measure that

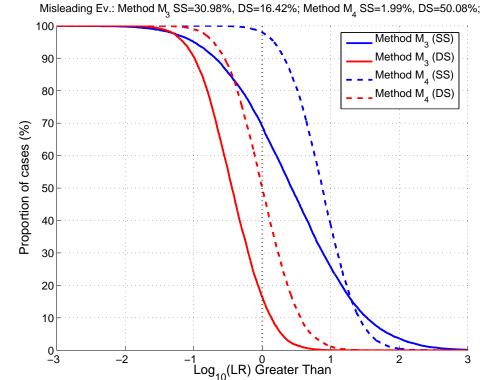


13/29

EAFS 2009. Daniel Ramos et al. 10 September.

Problems with Tippett Plots Performance with Tippett plots is not numerically measured

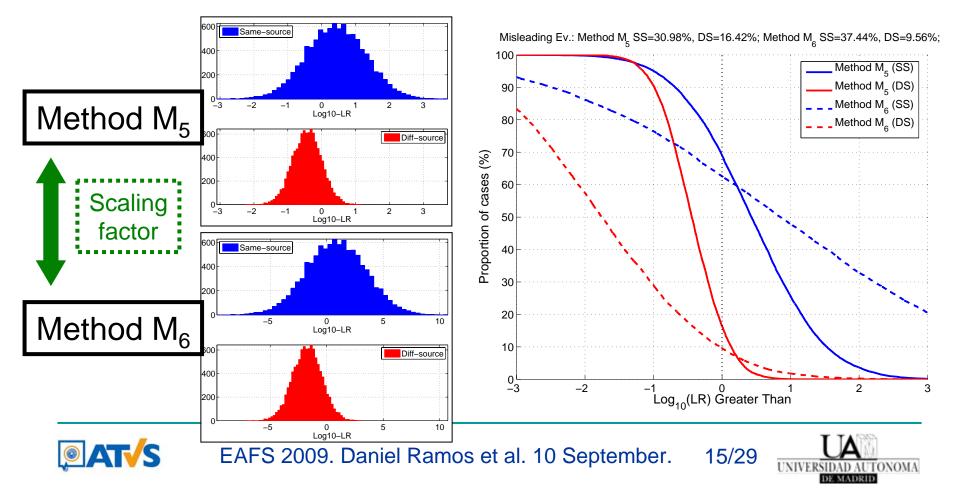
- Sometimes their interpretation is subjective
- And sometimes it is difficult to identify the best method
- Which method is better among M₃ and M₄?
 - ROME is not conclusive
 - M₃: same-source is worse
 - M₄: different-source is worse
 - Strong misleading evidence is not conclusive
 - M₃: same-source is stronger
 - M₄: different-source is stronger



EAFS 2009. Daniel Ramos et al. 10 September. 14/29

Problems with Tippett Plots

- Discriminating power is not easily comparable
 - Methods M_5 and M_6 have the same discriminating power
 - They have very different Tippett plots



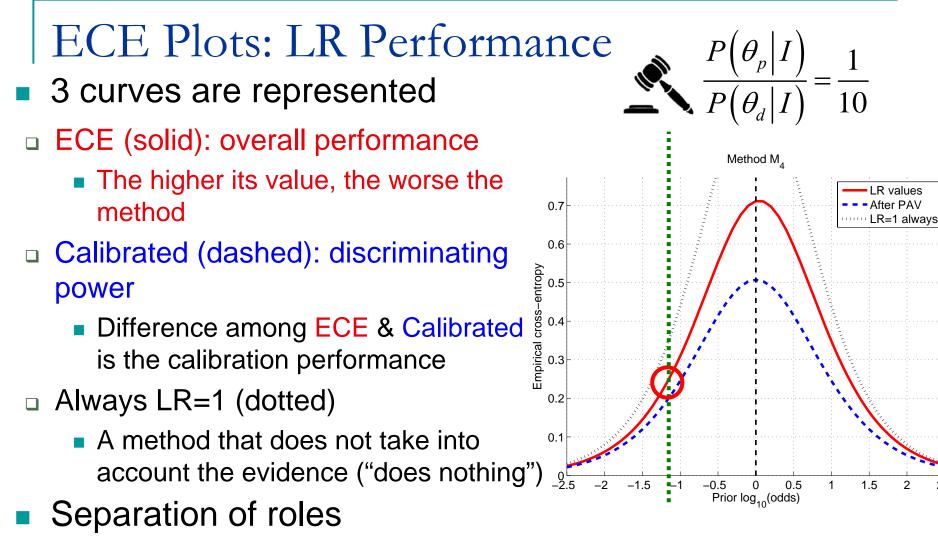
Empirical Cross-Entropy (ECE)

- Objective measure of performance: numerical value
 - The higher its value, the worse the evidence evaluation method
 - Allows easy comparison of methods
- Discriminating power is clearly stated
- Takes into account strong misleading evidence
- Based on the logarithmic scoring rule
- Information-theoretical interpretation
 - Intuitive and understandable

D. Ramos, J. Gonzalez-Rodriguez, G. Zadora, J. Zieba-Palus and C. G. G. Aitken (2007). "Information-theoretical comparison of likelihood ratio methods of forensicevidence evaluation". Proceedings of International Workshop on Computational Forensics (in IAS 2007), pp. 411-416.

D. Ramos (2007). "Forensic Evidence Evaluation Using Automatic Speaker Recognition Systems". Ph.D. Thesis, Dept. of Computer Science, Univ. Autonoma de Madrid.

EAFS 2009. Daniel Ramos et al. 10 September. 16/29



- Forensic scientist: ECE computation for a wide range of priors
- Fact finder: prior establishment (allows measuring ECE)

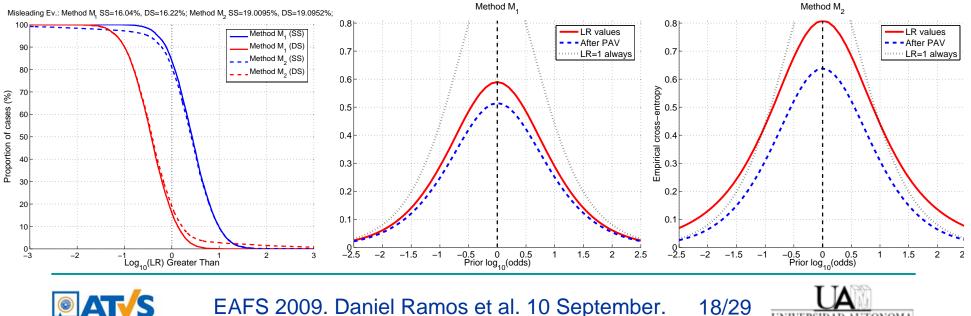
2.5

ECE Plots vs. Tippett Plots

ECE plots solve many problems of Tippett plots

- Takes into account strong misleading evidence
 - Strong misleading evidence in M₂ makes ECE (solid curve) grow
 - In fact, using M₂ is even worse than not evaluating the evidence (dotted curve) at extreme prior probabilities
 - It also degrades calibration performance for M₂

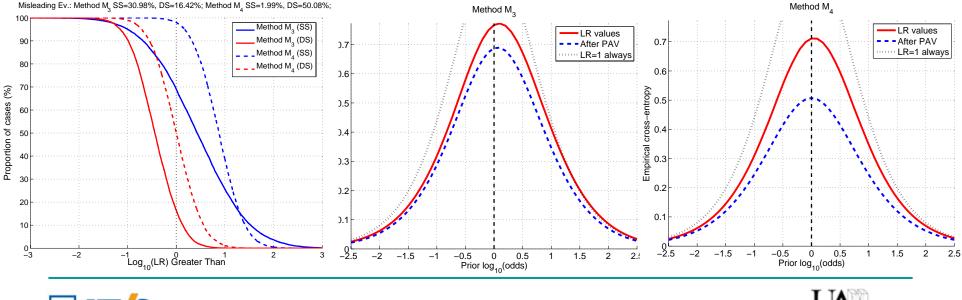
Difference among solid and dashed curves increases



FONOMA

ECE Plots vs. Tippett Plots

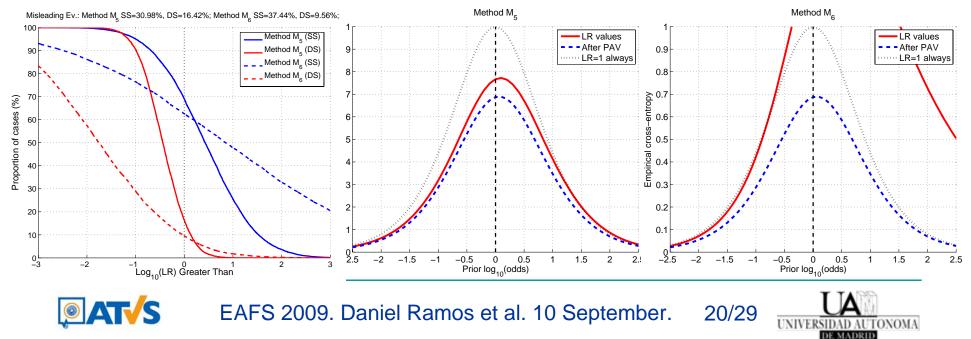
- Which method is better, M₃ or M₄?
 - □ M₃ is slightly worse (slightly higher ECE, solid curve)
 - \square However, ECE (solid curve) similar in M₃ and M₄
 - Both methods perform similarly
 - Overall performance (ECE, solid curve) is not outstanding
 - Solid curve near dotted curve (not evaluating evidence) in both M₃ and M₄
 - Calibration (difference among solid and dashed curves) is bad in M₄



ECE Plots vs. Tippett Plots

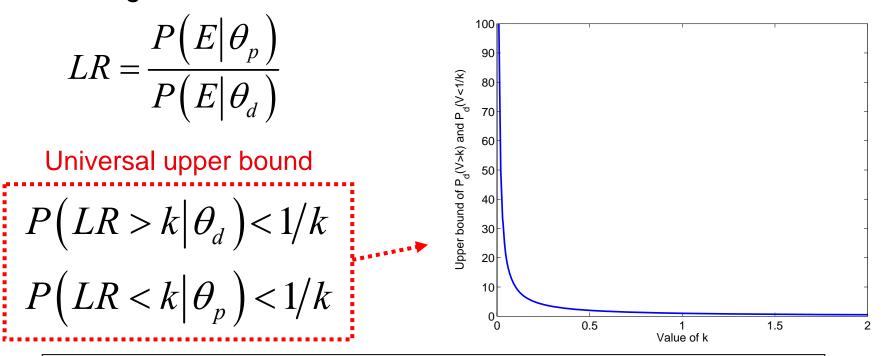
- Discriminating power (dashed curve) is easily seen and compared
 - \square M₅ and M₆ have the same discriminating power (dashed curve)
 - M₆ has a big calibration problem (big difference among solid and dashed curves)
 - That makes M₆ to be even worse than not evaluating the evidence (solid curve higher than dotted curve)

Conclusion: do not use M₆ for evidence evaluation



Limit Tippett Plots: Novel Assessment Tool

- Let assume that LR values are computed properly
- Then, there is a universal bound for the probability of strong misleading evidence

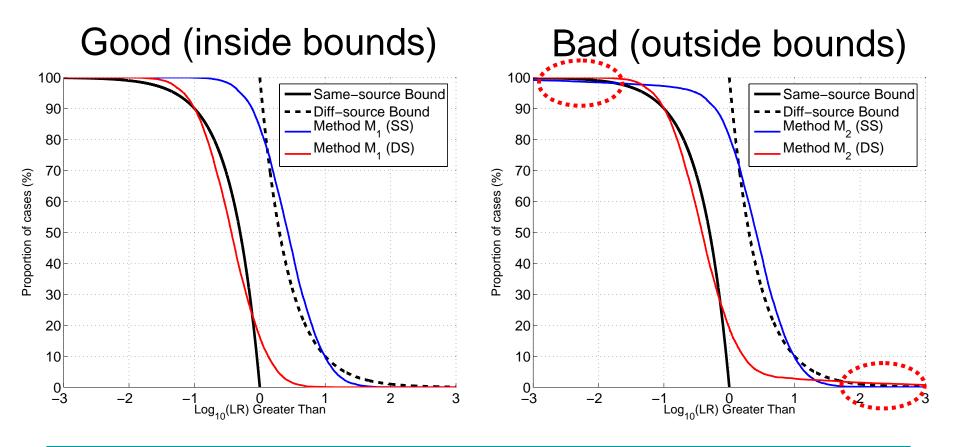


R. Royall, 2000. "On the probability of observing misleading evidence." Journal of the American Statistical Association, v. 95(451), pp. 760-768.

Limit Tippett Plots: Novel Assessment Tool

Such limits can be drawn in Tippett plots

Way of detecting if LR values are correctly obtained

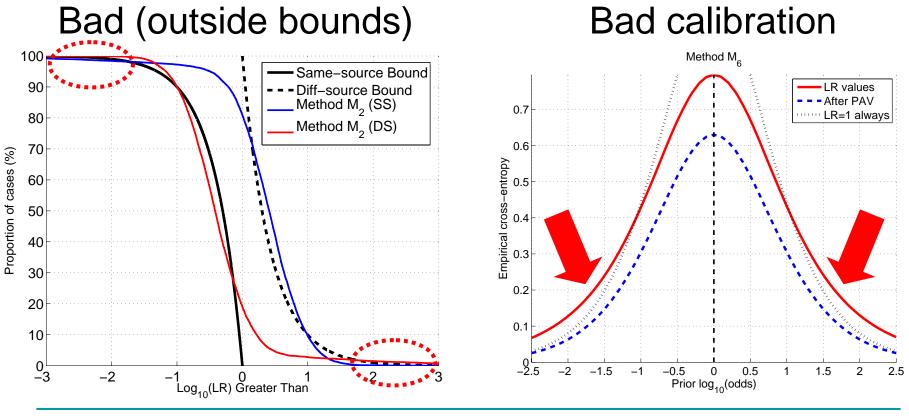


EAFS 2009. Daniel Ramos et al. 10 September. 22/29

Limit Tippett Plots: Novel Assessment Tool

- Violation of universal bounds related with bad calibration
 - Can be seen in ECE plots

Limit Tippett plots useful to detect calibration problems



Experimental Example: Forensic Automatic Speaker Recognition

EAFS 2009. Daniel Ramos et al. 10 September.

Example with Forensic Speaker Recognition

- Common database and protocol for comparisons
 - NIST Speaker Recognition Evaluation (SRE) 2008
 - □ More than 100,000 comparisons...
- Background data for model tuning
 - Past NIST SRE databases
- Two different evidence evaluation methods for score-based biometric systems
 - Gaussian modelling
 - Logistic Regression

D. Ramos (2007). "Forensic Evidence Evaluation Using Automatic Speaker Recognition Systems". Ph.D. Thesis, Dept. of Computer Science, Univ. Autonoma de Madrid.

J. Gonzalez-Rodriguez, P. Rose, D. Ramos, D. T. Toledano and J. Ortega-Garcia (2007). "Emulating DNA: Rigorous Quantification of Evidential Weight in Transparent and Testable Forensic Speaker Recognition." IEEE Transactions on Audio, Speech and Language Processing, 15(7), pp. 2072-2084.

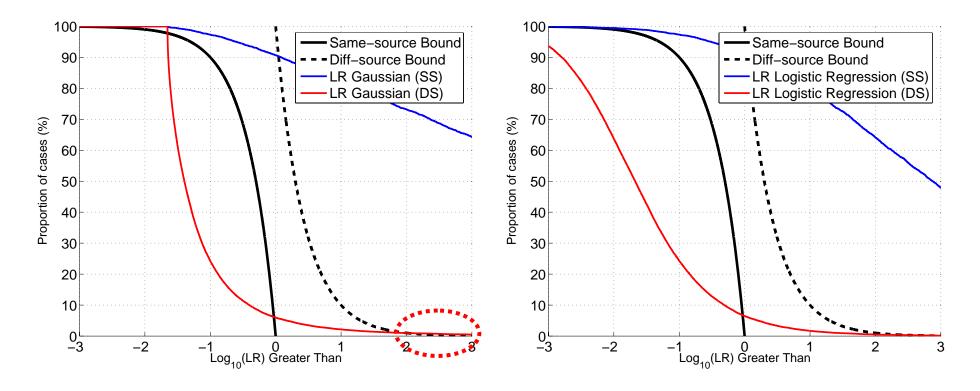
EAFS 2009. Daniel Ramos et al. 10 September. 25/29

Example with Forensic Speaker Recognition

Limit Tippett plots

Gaussian method slightly out from theoretical bounds

Reason: distributions in testing data were not exactly Gaussian



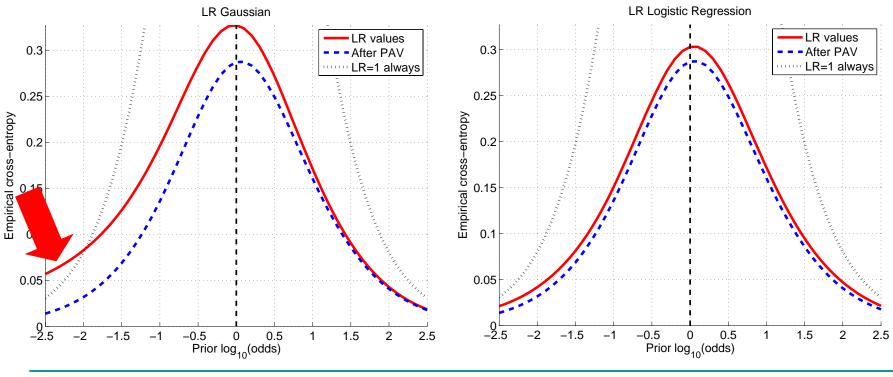
EAFS 2009. Daniel Ramos et al. 10 September. 26/29

Example with Forensic Speaker Recognition

ECE plots

Calibration is not optimal for Gaussian method

Limit Tippett plots detected a calibration problem



EAFS 2009. Daniel Ramos et al. 10 September.

Conclusions

- The importance of scientific and objective performance assessment of forensic evidence evaluation methods is recently increasing
 - □ How good are we?
- Likelihood-ratio-based evidence evaluation methods have been assessed in several ways in the literature, e.g.:
 - False positive and false negative rates
 - Tippett plots
- We have reviewed such frameworks, identified their problems and proposed alternatives and improvements
 - ECE plots
 - Limit Tippett plots

Accuracy Assessment Methods for Likelihood-Ratio-based Evidence Evaluation

Daniel Ramos and Joaquin Gonzalez-Rodriguez ATVS – Biometric Recognition Group Universidad Autónoma de Madrid <u>http://atvs.ii.uam.es</u>

Jose-Juan Lucena-Molina Statistics Department, Criminalistics Service Dirección General de la Policía y de la Guardia Civil Ministerio del Interior, Spain

