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Assessment of
Evidence Evaluation Methods
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Assessment of Performance: Motivation
Increasing interest for the scientific assessment of any 
processes involved in forensic science

The effect of Daubert rules
Two recent and important references found in the literature

Assessment of evidence evaluation methods is a key point 
towards this aim

Committee on Identifying the Needs of the Forensic Sciences Community, 
“Strengthening Forensic Science in the United States: A Path Forward, 
National Research Council, National Academy of Sciences, 2009.

The Law Comission, The admissibility of Expert Evidence in Criminal 
Proceedings in England and Wales. A New Approach to the 
Determination of Evidentiary Reliability. Consultation paper no. 190, 2009.
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Evidence Evaluation with Likelihood Ratios
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Assessing Performance of
Likelihood-Ratio-Based

Evidence Evaluation Methods
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Empirically Measuring Performance
Experimental test

Database of materials with known sources
E.g., speech utterances of known origin

Generate comparisons (LR values) where:
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from the same source
θp is true
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different sources
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false negative cases

They depend on the decision threshold (typically LR=1)
Measure of discriminating power (separation among both 
histograms)
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Positives



EAFS 2009. Daniel Ramos et al. 10 September. 9/29

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

200

400

600

Log10−LR

 

 

Same−source

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

200

400

600

Log10−LR

 

 

Diff−source

False
negatives

False
Positives

Classical measure of performance
For a given decision threshold, percentage of false positive and
false negative cases

They depend on the decision threshold (typically LR=1)
Measure of discriminating power (separation among both 
histograms)

False Positive and False Negative Rates



EAFS 2009. Daniel Ramos et al. 10 September. 10/29

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

200

400

600

Log10−LR

 

 

Same−source

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

200

400

600

Log10−LR

 

 

Diff−source

False
negatives

False
Positives

Classical measure of performance
For a given decision threshold, percentage of false positive and
false negative cases

They depend on the decision threshold (typically LR=1)
Measure of discriminating power (separation among both 
histograms)

False Positive and False Negative Rates



EAFS 2009. Daniel Ramos et al. 10 September. 11/29

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

Log
10

(LR) Greater Than

P
ro

po
rt

io
n 

of
 c

as
es

 (
%

)

. Misleading Ev.: SS=16.04%, DS=16.22%

d
dx

x

−∞
∫

Tippett Plots
Cumulative histograms of same-source and different-source LR 
values

Interpretable as probabilities
Probability of finding LR values greater than… (value in the x-axis)

Equivalent to plot false positive and (the complementary of) 
false negative rates for any threshold in the x-axis
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Performance in Tippett Plots: ROME
Rates of Misleading Evidence (ROME)

“Proportion of LR values that will give support to the wrong 
hypothesis”

Can be interpreted as probabilities

( )1 15%pP LR θ< =

( )1 14%dP LR θ> =

Diff-source ROME

Same-source ROME
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Problems with Tippett Plots
ROME is far from enough to determine performance 
by itself

Strong misleading evidence is also very important

Methods M1 and M2 have 
very similar ROME

But M2 presents much 
higher strong misleading 
evidence
M1 should be much better

ROME do not highlight this
And Tippett plots do not 
numerically measure that
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Problems with Tippett Plots
Performance with Tippett plots is not numerically 
measured

Sometimes their interpretation is subjective
And sometimes it is difficult to identify the best method

Which method is better 
among M3 and M4?

ROME is not conclusive
M3: same-source is worse
M4: different-source is worse

Strong misleading evidence 
is not conclusive

M3: same-source is stronger
M4: different-source is 
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Problems with Tippett Plots
Discriminating power is not easily comparable

Methods M5 and M6 have the same discriminating power
They have very different Tippett plots
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Empirical Cross-Entropy (ECE)
Objective measure of performance: numerical value

The higher its value, the worse the evidence evaluation method
Allows easy comparison of methods

Discriminating power is clearly stated
Takes into account strong misleading evidence
Based on the logarithmic scoring rule
Information-theoretical interpretation

Intuitive and understandable
D. Ramos, J. Gonzalez-Rodriguez, G. Zadora, J. Zieba-Palus and C. G. G. Aitken
(2007). “Information-theoretical comparison of likelihood ratio methods of 
forensicevidence evaluation”. Proceedings of International Workshop on 
Computational Forensics (in IAS 2007), pp. 411-416.

D. Ramos (2007). “Forensic Evidence Evaluation Using Automatic Speaker 
Recognition Systems”. Ph.D. Thesis, Dept. of Computer Science, Univ. Autonoma
de Madrid.
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ECE Plots: LR Performance
3 curves are represented

Separation of roles
Forensic scientist: ECE computation for a wide range of priors
Fact finder: prior establishment (allows measuring ECE)
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ECE (solid): overall performance
The higher its value, the worse the 
method

Calibrated (dashed): discriminating 
power

Difference among ECE & Calibrated
is the calibration performance

Always LR=1 (dotted)
A method that does not take into 
account the evidence (“does nothing”)
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ECE Plots vs. Tippett Plots
ECE plots solve many problems of Tippett plots

Takes into account strong misleading evidence
Strong misleading evidence in M2 makes ECE (solid curve) grow

In fact, using M2 is even worse than not evaluating the evidence 
(dotted curve) at extreme prior probabilities

It also degrades calibration performance for M2
Difference among solid and dashed curves increases
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ECE Plots vs. Tippett Plots
Which method is better, M3 or M4?

M3 is slightly worse (slightly higher ECE, solid curve)
However, ECE (solid curve) similar in M3 and M4

Both methods perform similarly
Overall performance (ECE, solid curve) is not outstanding

Solid curve near dotted curve (not evaluating evidence) in both M3 and M4

Calibration (difference among solid and dashed curves) is bad in M4
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ECE Plots vs. Tippett Plots
Discriminating power (dashed curve) is easily seen and 
compared

M5 and M6 have the same discriminating power (dashed curve)
M6 has a big calibration problem (big difference among solid and 
dashed curves)

That makes M6 to be even worse than not evaluating the evidence 
(solid curve higher than dotted curve)

Conclusion: do not use M6 for evidence evaluation
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R. Royall, 2000. “On the probability of observing misleading evidence.”
Journal of the American Statistical Association, v. 95(451), pp. 760-768.

Limit Tippett Plots: Novel Assessment Tool
Let assume that LR values are computed properly

Then, there is a universal bound for the probability of strong
misleading evidence
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Limit Tippett Plots: Novel Assessment Tool
Such limits can be drawn in Tippett plots

Way of detecting if LR values are correctly obtained

Good (inside bounds) Bad (outside bounds)
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Limit Tippett Plots: Novel Assessment Tool
Violation of universal bounds related with bad calibration

Can be seen in ECE plots

Limit Tippett plots useful to detect calibration problems

Bad (outside bounds)
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Experimental Example:
Forensic Automatic
Speaker Recognition
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Example with Forensic Speaker Recognition
Common database and protocol for comparisons

NIST Speaker Recognition Evaluation (SRE) 2008
More than 100,000 comparisons…

Background data for model tuning
Past NIST SRE databases

Two different evidence evaluation methods for score-based biometric
systems

Gaussian modelling
Logistic Regression

D. Ramos (2007). “Forensic Evidence Evaluation Using Automatic Speaker Recognition Systems”. Ph.D. 
Thesis, Dept. of Computer Science, Univ. Autonoma de Madrid.

J. Gonzalez-Rodriguez, P. Rose, D. Ramos, D. T. Toledano and J. Ortega-Garcia (2007). “Emulating 
DNA: Rigorous Quantification of Evidential Weight in Transparent and Testable Forensic Speaker 
Recognition.” IEEE Transactions on Audio, Speech and Language Processing, 15(7), pp. 2072-2084.
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Example with Forensic Speaker Recognition
Limit Tippett plots

Gaussian method slightly out from theoretical bounds
Reason: distributions in testing data were not exactly Gaussian



EAFS 2009. Daniel Ramos et al. 10 September. 27/29

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Prior log
10

(odds)

E
m

pi
ric

al
 c

ro
ss

−
en

tr
op

y

LR Gaussian

 

 

LR values
After PAV
LR=1 always

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Prior log
10

(odds)

E
m

pi
ric

al
 c

ro
ss

−
en

tr
op

y

LR Logistic Regression

 

 

LR values
After PAV
LR=1 always

Example with Forensic Speaker Recognition
ECE plots

Calibration is not optimal for Gaussian method
Limit Tippett plots detected a calibration problem
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Conclusions
The importance of scientific and objective performance
assessment of forensic evidence evaluation methods is
recently increasing

How good are we?

Likelihood-ratio-based evidence evaluation methods
have been assessed in several ways in the literature, 
e.g.:

False positive and false negative rates
Tippett plots

We have reviewed such frameworks, identified their
problems and proposed alternatives and improvements

ECE plots
Limit Tippett plots
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