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» Many choices at each step.
» Complicated and high dimensional.

» Difficult for individuals to reason
/' Engineering abOUt.

" Design Process

» Prone to human bias.

» It may be possible to test various
models in parallel.

Optimization is a challenging task in real-life choices!
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Example: Deep Neural Network for object recognition.

X: Prediction Ly,

error

input layer

hidden layer 1 hidden layer 2

Parameters to tune: Number of neurons, number of layers,
learning-rate, level of regularization, momentum, etc. If multiple
processors were available, we could test various configurations
in parallel, in order to gain more information.
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Example: new plastic solar cells for transforming light into
electricity.

.

Library generation

Performance Interestin
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€ Bonding evaluation molecules
i rules
»
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Explore millions of candidate molecule structures to identify
the compounds with the best properties.
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Example: control system for a robot that is able to grasp objects.

b

Grasp Quality
Evaluation
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»

Finger Joint Trajectories

*}Yt

Parameters to tune: initial pose for the robot's hand and finger

joint trajectories.
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Optimization Problems: Common Features
> Very expensive
evaluations.
ove e
» The objective is a . -
black-box. ,“) xw-qu
i

» The evaluation can be y= ) e i
noisy.
Xz—»-—»Y,x,_.-—» Yy
» Evaluations may be done
in parallel.

Bayesian optimization methods can be used to solve
these problems!
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Fitting a Model to the Data

hj(x) = tanh (Z{Zl xiwﬁ)

Fx) =310 vih;(x)

Posterior Dist. p(W|Data) = p(W)p(Data|W)/p(Data)
Predictive Dist. p(yData, ) = [ p(y|W,z)p(W|Data)dW

Challenges: The model should be non-parametric (the world
is complicated) and computing p(Data) is intractable!

Solved by setting p(W) = []; NV'(w;i[0,0°H™") and letting
H — ool
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Bayesian Optimization vs. Uniform Exploration
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Function evaluations

Tuning LDA on a collection of Wikepida articles (Snoek et al., 2012).
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Using the GP Uncertainty in Optimization

Where to evaluate next?

» Exploration: seek places with high variance.
» Exploitation: seek places with low mean.

The acquisition function balances these two, to choose in an
intelligent way the next evaluation point!

a(x) = Ep(y+pyx) U [%, Dn)]
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Let v = min{y1,...,yn} and y(x) = V;é;()x).
» Probability of Improvement:
U(y*|Dn,x) = Iy <v), a(x) = ¢ (y(x))

> Expected Improvement:

U(y*|Dn, x) = max(0,v = y*) , a(x) = a(x) (v(x)® (7(x)) + &(7(x))

» Lower Confidence Bound:

» Entropy Search:
U(y*|DNaX) = H[p(xmin|DN)] - H[p(xmin’DN U {ny*})]
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Information-based Approach
The minimizer, x*, can be modelled as a random variable!

Information is measured by the entropy of p(x*|D).
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The acquisition function is
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about X" now.

How much we will Computing (1) is very
know about X "after difficult in practice!
collecting y at x.
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» Covariance function selection: critical to achieve good
performance. The default choice for regression (squared
exponential) is too smooth. Matérn v = 5/2 kernel works

better.
0281
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Function evaluations

Structured SVM for protein motif finding (Snoek et al., 2012).
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Bayesian Optimization and Model Selection

» Hyper-parameter selection: with a small number of
observations maximizing p(y|€) can give too confident
uncertainty estimates.

» Sampling the hyper-parameters: computing p(f|y) is
intractable! Alternative: generate a few samples form p(6|y)
using MCMC.

Slice sampling means no additional hyper-parameters!

p(0)

err_win u erqax

(Neal, 2003)
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GP fitting an unknown function sampling hyperparameters
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Integrated Acquisition Function

K

6 = [ al0)p(8ly)do ~ Z (00) 08 ~ p(0ly).

Posterior samples
with three different
length-scales

Length-scale specific
expected improvement \[\\

Integrated expected
improvement

(Snoek et al., 2012)
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MCMC estimation vs. Maximization
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Function Evaluations

Logistic regression on the MNIST (Snoek et al., 2012).

22/65



Cost-sensitive Bayesian Optimization
» Different inputs may have different computational costs,

e.g., training a neural network of increasing hidden layers and
units.

23/65



Cost-sensitive Bayesian Optimization

» Different inputs may have different computational costs,
e.g., training a neural network of increasing hidden layers and
units.

> Better to do cheap evaluations before expensive ones!

23/65



Cost-sensitive Bayesian Optimization

» Different inputs may have different computational costs,
e.g., training a neural network of increasing hidden layers and
units.

> Better to do cheap evaluations before expensive ones!

» The evaluation costs are unknown but they can be recorded
and then modeled with an additional Gaussian process.

23/65



Cost-sensitive Bayesian Optimization

» Different inputs may have different computational costs,
e.g., training a neural network of increasing hidden layers and
units.

> Better to do cheap evaluations before expensive ones!

» The evaluation costs are unknown but they can be recorded
and then modeled with an additional Gaussian process.

Expected Improvement per-second:

a(x) (v(x)® (v(x)) + ¢((x)))
exp {Mlog—time(x)}

a(x) =

(Snoek et al., 2012)
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Deep neural network on the CIFAR dataset (Snoek et al., 2012)
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Gaussian processes are not the only probabilistic surrogate
model!
1. Computationally expensive: GPs scale poorly due to cubic
observation complexity.

2. Fixed covariance structure: GPs assume a fixed structure in
data covariance (stationarity), limiting their ability to model
complex data patterns.

3. Difficulties with high dimensionality: GPs struggle to
perform well in high-dimensional search spaces.

4. Random Forests: We use its empirical predictive distribution.
Perform well in hierarchical spaces, are robust to outliers and
scale well.

5. Bayesian neural networks: Able to model complex patterns
and scalable.

6. Deep Gaussian Process: Increased expressivity, advantages
of GPs.
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Ensemble method where the predictors are random regression trees

% @ 0
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All attributes (potential . . . .

splitters)

Entire dataset

©
0G0

®0

Random bootstrap sample (~2/3
of original): used to build tree
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sample of attributes
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Q,

trained on random subsamples of the data.

P Trees are grown on different
bootstrap samples of the
data.

» At each node the best
splitter is chosen randomly.

» Leaf nodes predict the
average value of the points
reaching that node.

» This guarantees that each
tree is slightly different.

Very cheap to compute and massively paralelizable!
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Random Forest: Predictive Distribution
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)(
Tree 1 Tree 2 Tree M
C 1 \
The predictive distribution is a
Gaussian with the emprical average
Random Forest Prediction C2 and empirical variance.

p(f*|Dy) = N (f*|, 7°)

(Hutter et al., 2011)
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Random Forest in Practice
Random Forest

L L .
0.0 0.5 1.0

(Shahriari et al., 2016)

» Allows for a lot of evaluations (good when the objective is
cheap).

» Too confident intervals in far away from the data regions.
» Conflictive predictions can cause the variance to be too high.
» Discontinuous: Difficult to optimize the acquisition function.

» No parameters to tune.
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hj(x) = tanh (Zle l'iwji)

F(x) =1 vih;(x)

» Neural networks scale well to the training data (linear cost).
» Trained very fast on GPUs.

» State of the art prediction results.

They are an alternative to GPs to allow for a large number
observations!

The posterior distribution of the networks weights W is
intractable!
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Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive
distribution:

» Markov Chain Monte Carlo methods.
» Variational Inference.

» Expectation Propagation.

» Reinterpretations of dropout.

» Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and
scalability! Still a lot of research going on!
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Software for Bayesian Optimization

Many of the methods described are implemented
into BOTorch using Python.
https://botorch.org/

BOTorch's super-nice features:

1. Modularity: Plugin new models, acquisition functions and
optimizers.

2. PyTorch: Easily integrate neural network modules. Native
GPU and Autograd support.

3. Scalability: Support for scalable GPs via GPyTorch.

4. Advanced scenarios: Advanced research coded into tutorials
about complex BO scenarios.

Other tools: SMAC3 (Python-RFs), GPyOpt (Python3),
Spearmint (Python2.7-sampling), mIrMBO (R).
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Time to practice!

1. Bayesian optimization of a benchmark optimization function.

. Bayesian optimization of the hyper-parameters of a machine
learning model.

. Bayesian optimization of the hyper-paramaters of a deep
reinforcement learning algorithm.

Jupyter
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Second Session: Advanced Bayesian
optimization.
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(Parallel) Multi-objective Bayesian
optimization with constraints.
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Several Objectives and Constraints
Optimal design of hardware accelerator for neural network

predictions.
input layer
hidden layer 1 hidden layer 2
Goals: .
Constrained to:
» Minimize prediction .
P » Chip area below a value.
error.

» Power consumption below a

» Minimize prediction
level.

time.

Challenges:

e v e |
error ﬂ speed » Complicated constraints.

> Conflictive objectives.
Xt Energy M Xt—] Chip area W “
consumption N
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Bayesian Optimization Methods
Additional challenges when dealing with several black-boxes.
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Additional challenges when dealing with several black-boxes.

» Simple approach: evaluate all the objectives and constraints
at the same input location. Expected to be sub-optimal.

» Advanced approach: make intelligent decisions about what
black-box to evaluate next and on which location.

Coupled evaluations
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Information-based Approach

The Pareto set X'* in the feasible space is a random variable!

Information is measured by the entropy of p(X*|Dy).
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Predictive Entropy Search (PES)

We swap y and X* to obtain a reformulation of the acquisition
function.
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Predictive Entropy Search (PES)

We swap y and X* to obtain a reformulation of the acquisition

function.
H[x*(D,] — Ey[H [x4|D: U {x, Y}]‘Dt,x] = MI(}I xI*) (ESMOC)
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Predictive Entropy Search (PES)

We swap y and X* to obtain a reformulation of the acquisition
function.

H|D:] — Ey[H[3

|

HY|Dx] — EY[HIDex,44][De x| = Mi(-y) (PESMOC)

N

Factorized Gaussian approximation
with expectation(one acquisition
A" dominates any| per black-box |)-

D U {x, Y} |DPe.x| = MI(y. 1) (ESMOC)

Approximated by

Gaussian
sampling from p(x*D;)

distribution

(o} C »
a(x) ~ Y., logvfP(x) - & Zf\::l (Zc:l log vaD(x|X(‘m\)l) +
* C
ZkK:1 logvfP(x) — ﬁ Zi‘r{:l (ZkK=1 log ”I?PD(XW(m))) = Ei:iK i(x)
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Example of PES' acquisition
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Example of PES' acquisition

viP(x) Sample of X* VPP (x| AT) a1(x)

) [ [ 0 05 07 ) [ [ 07 07 ) 0% [ °p 2 O
V5P (x) Sample of X* vsPP (x| A7) az(x)
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of PES' acquisition

Vi (x)

Sample of X*

viPP (x| AT)

ai1(x)
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Sample of X*




Finding a Fast and Accurate Neural Network

Average Pareto Front 100 Function Evaluations
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Finding a Fast and Accurate Neural Network

verage Pareto Front 100 Function Evaluaﬂons
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Low energy hardware accelerator
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Low energy hardware accelerator

Pareto Fronts 600 Function Evaluations
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(Herndndez-Lobato et al., 2016)
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Parallel Bayesian Optimization

Traditional Bayesian optimization is sequential!

Black-box

:xt_’ Objective Ve

A \ﬂ%“

Computing clusters let us do many things at once!

0

Y
Black-box v

v

:> xf Objective t
Xt t
0,

Parallel experiments should be highly informative but
different!
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Parallel Predictive Entropy Search

Choose a set Q points S; = {xq}q 1 to minimize the entropy of x*.

H[x*]Dt]—IEy[ [x*| D¢ Utz a1 ] MI(y, x*) (Parallel ES)

(Shah and Ghahramani, 2015)
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Parallel Predictive Entropy Search

Choose a set Q points S; = {xq}q 1 to minimize the entropy of x*.
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Parallel Predictive Entropy Search

Choose a set Q points S; = {Xq}f;?:l to minimize the entropy of x*.

H [X*

| By [H[x| De U] [De.X] = MGy, x) (Parallel ES)
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HY|DeX] — EL[HDIDeX,][DeX] = Mi(ey) (Parallel PES)
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Gaussian | |sampling from p(x*|D;)
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with expectation propagation
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Parallel Predictive Entropy Search

Choose a set Q points S; = {Xq}f;?:l to minimize the entropy of x*.

H[x* ,x*) (Parallel ES)

»

D] — By [H[x:|De Utxe] [P, X] = MI(

><,<—>‘<
< —>

,y) (Parallel PES)

HD:X] — EL[HDIDeX, %] [Dex] = M

SN N

Multi-variate | [Approximated by

Gaussian | |sampling from p(x*|D;)
distribution

with expectation propagation
x* is better than any other point in X’

Multivariate Gaussian approximation ]

o(X) =1og|[VPP(X)| — 3 Zm_y log [VEPP(X [xF, )]

It is possible to compute the gradient of «(-) w.r.t. each
Xq S Stl

(Shah and Ghahramani, 2015)
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Parallel Predictive Entropy Search: Level Curves

Synthetic function

]
gl AT
: Walsl |- -

(Shah and Ghahramani, 2015)
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Parallel Predictive Entropy Search: Results

2

batch_size

=4

batch_size
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— PPES
EL-MCMC

MW
15

0 5 10 20 “\7 10 20 30 40 10 20 40 0 10 20 30 40
t ¢ ¢ \
(a) boston (b) hydrogen (c) rocket (d) robot
(Shah and Ghahramani, 2015)
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BO with Integer-valued and Categorical Variables

Standard GPs assume continuous input variables which makes BO
with integer-valued or categorical challenging.

49/65



BO with Integer-valued and Categorical Variables

Standard GPs assume continuous input variables which makes BO
with integer-valued or categorical challenging.

A naive approach is to round the suggested value to the closest
integer or to the closest one-hot encoding.

49/65



BO with Integer-valued and Categorical Variables

Standard GPs assume continuous input variables which makes BO
with integer-valued or categorical challenging.

A naive approach is to round the suggested value to the closest
integer or to the closest one-hot encoding.

Round variable before evaluation. 4 evaluations. Round variable before e

49/65



BO with Integer-valued and Categorical Variables

Standard GPs assume continuous input variables which makes BO
with integer-valued or categorical challenging.

A naive approach is to round the suggested value to the closest
integer or to the closest one-hot encoding.

Round variable before evaluation. 4 evaluations. Round variable before e

The BO algorithm may get stuck and may always perform
the next evaluation at the same input location!
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BO with Integer-valued and Categorical Variables

The GP predictive distribution is constant across all variables that
lead to the same integer or one-hot-encoding.
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BO with Integer-valued and Categorical Variables

The GP predictive distribution is constant across all variables that
lead to the same integer or one-hot-encoding.

Posterior Mean

Real Variable

Posterior Standard Deviation

Integer Variable

Similar results for categorical variables!
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1
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BO with Integer-valued and Categorical Variables

Tuning the Hyper-parameters of a Gradient Boosting Ensemble

!
—_
o

Methods
~®~ Basic Approach -~ SMAC
-~ OEN Optimization Only HyperOpt_TPE

e~ Proposed Approach

S

0 50 100 150 200
Number of Function Evaluations

|
>
3

I
o
[3)

|
o
3}

Log distance to the optimum value

One continuous variable and two integer-valued variables.

52/65



Freeze-Thaw Bayesian Optimization
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Freeze-Thaw Bayesian Optimization
Common aspects of many machine learning algorithms:

1. A minimization step must be performed with, e.g., gradient
descent.

2. There are hyper-parameters that impact the final performance.

Can we use partial training information and a model to determine
which hyper-parameter configuration is going to be optimal?

Yes, that is precisely what Freeze-Thaw BO does!
(Swersky et al., 2014)
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A GP Kernel for Training Curves

We want to specify a kernel that supports exponentially decaying
functions of the form exp{—At} for t, A > 0.
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A GP Kernel for Training Curves

We want to specify a kernel that supports exponentially decaying
functions of the form exp{—At} for t, A > 0.

The covariance between inputs t and t’ is:

Ba

C(t, t,) _ /0 e—)\te—At’w()\;a,ﬁ)d)\ = m

where ¥(\; a, B) is a gamma distribution with parameters o and /3.

54/65



A GP Kernel for Training Curves

We want to specify a kernel that supports exponentially decaying
functions of the form exp{—At} for t,A > 0.

The covariance between inputs t and t’ is:

ﬂa

C(t, t,) _ /0 e_)‘te_le()‘;a”B)d)\ = m

where ¥(\; a, B) is a gamma distribution with parameters o and /3.

(a) Exponential Decay Basis (b) Samples (c) Training Curve Samples
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Inference on Asymptotic Values

A standard GP is used as the prior for the asymptotic values
of each training curve.

55/65



Inference on Asymptotic Values

A standard GP is used as the prior for the asymptotic values
of each training curve.

Hierarchical generative model:

N
p({yn}nztl{xn}tn=1) = / [H N(ynlfal, Ktn)] N(f|m, Ky)df
n=1
where
Xn = n configuration , Yn = n observed curve,
f, = n asymptotic value, m = prior asymptotic mean values,

K:, = covariances for curve values, K, = cov. for asymptotic values

n

55/65



Inference on Asymptotic Values

A standard GP is used as the prior for the asymptotic values
of each training curve.

Hierarchical generative model:

N
p({yn}nztl{xn}tn=1) = / [H N(ynlfal, Ktn)] N(f|m, Ky)df
n=1
where
Xn = n configuration , Yn = n observed curve,
f, = n asymptotic value, m = prior asymptotic mean values,

K:, = covariances for curve values, K, = cov. for asymptotic values

n

The joint distribution of {y}"_; and f is Gaussian and hence
so it is the predictive distribution p(f|{y}"_,)!

55/65



Inference on Asymptotic Values and BO

v

(a) Graphical Model (b) Training curve predictions (c) Asymptotic GP
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Inference on Asymptotic Values and BO

j

(a) Graphical Model (b) Training curve predictions (c) Asymptotic GP

Bayesian Optimization:
> p(fl{yn}M_;, {xa}"_,) determines asymptotic values.
» This distribution can be used to make intelligent decisions!

» Shall we train more one configuration or shall we start a new
one?

» A combination of El and ES is used as the acquisition
function.

(Swersky et al., 2014)
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Freeze-Thaw BO in practice
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Freeze-Thaw BO in practice

5000

Error

Optimization I
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(a) Logistic Regression (b) Online LDA (c) PMF

(Swersky et al., 2014)
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Multi-fidelity Bayesian optimization

L4 Manh(kz) = (1 + %) !

)
fidelity —
leyel 1 ~

fidélity
decreasing level 2

model error

increasing
computational cost

> Concept of Fidelity: Fidelity refers to the accuracy or
reliability of the information, we use different levels of
accuracy.

» Example: # layers in NNs, # of timesteps for DRL.

> We assume that lower fidelities are correlated with higher.

» Cost-Efficiency: Leveraging computationally cheaper
versions of the functions to guide the search process.

» The trick: The acquisition function should balance
exploration at cheaper fidelities with exploitation at the
highest fidelity level.
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Multi-fidelity Bayesian optimization example

» Trace-aware knowledge-gradient acquisition function.

» It values observations of a point (x) and a set of fidelities (S)
according to the ratio of the reduction in expected loss that it
induces, to its computational cost.

P It measures the value of information per unit cost of sampling.

» It uses a function L() to measure the extent to which
observing trace information improves the quality of the
solution. L(0) will be the minimum.

P Its analytical expression basically penalizes the cost wrt the
information obtained:

L(0) — L(x,S)

takg(x,S) = cost(x, max(S))
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High-dimensional Bayesian optimization

2QQuQ
QQQQQ
Q0009
Q0aag
420229

89999

X X

» GPs empirical performance tends to be lower if d > 7.

» The problem: The search space grows exponentially with the
number of dimensions.

» The trick: We can project the high-dimensional problem into
a lower-dimensional subspace that explains it well using
embeddings.

» Find the hidden most explicative manifold for the data, then
optimize there!

» Approaches differ in the type of embeddings (e.g. random),
assumptions about the function (e.g. being a sum of
functions), or use of models (Deep GP, GP-LVM.)
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High-dimensional Bayesian optimization example

| 2

Sparse Axis-Aligned Subspace
Bayesian Optimization (SAASBO)

Goal: Identify sparse subspaces
relevant to modeling the unknown
objective function.

Assumption: High function variability
being captured by axis-aligned blocks
of input features.

Method: Use complex GP prior to
consider a smaller class of functions.
Effect: Turn most non-explicative
dims off,

Integration: Perform hyper-parameter
sampling with NUTS and EI.

[kernel variance|
[global shrinkage]
[length scales|
[funetion values)

[observations]

o ~ LN(0,107)
7 ~ HC(ex)
pi ~ HC(T)
f~ N0, Kyy)
vy ~ N(f. (72]1_\'}
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Bayesian optimization in a simplex (Portfolio optimization)

Objective function Objective function transformed into simplex

» Common financial metrics as Sharpe or Sortino ratio can be

configured for a specific portfolio.

» For example using real-time ESG values of the assets.

» Garrido-Merchén, E. C., Piris, G. G., & Vaca, M. C. (2023).

Bayesian optimization of ESG (Environmental Social

Governance) financial investments. Environmental Research

Communications, 5(5), 055003.

-0.345

-0.570

-0.795

-1.020

-1.245

-1.470

~1.695

-1.920

-2.145

-2.370
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Conclusions and Further Work

» BO is a state-of-the-art class of methods
used to optimize expensive and noisy
black-box functions.

» We can generalize BO to tackle advanced
scenarios: parallel constrained multi-obj,
high-dim, multi-fidelity...

» BO can be applied in a wide array of
applications: ML, DRL, finance, robotics,
materials, business operations...

» Further work topics: causality, meta-BO,
transfer learning, adaptation to specific
domains.
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Thank you for your attention.
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