
Advanced Methods for Bayesian Optimization
in Complex Scenarios Course

Presented by: Eduardo C. Garrido–Merchán.

Universidad Pontificia Comillas
June, 2023.

1/65



Index

I Introduction and Motivation.

I Fundamentals of Bayesian Optimization.

I Hands on Bayesian optimization with BOTorch.

I Parallel Constrained Multi-objective Bayesian optimization.

I Advanced scenarios: Mixed, multi-fidelity, high-dim,
topologies.

I Advanced hands on Bayesian optimization with BOTorch.

I References.

2/65



Index

I Introduction and Motivation.

I Fundamentals of Bayesian Optimization.

I Hands on Bayesian optimization with BOTorch.

I Parallel Constrained Multi-objective Bayesian optimization.

I Advanced scenarios: Mixed, multi-fidelity, high-dim,
topologies.

I Advanced hands on Bayesian optimization with BOTorch.

I References.

2/65



Index

I Introduction and Motivation.

I Fundamentals of Bayesian Optimization.

I Hands on Bayesian optimization with BOTorch.

I Parallel Constrained Multi-objective Bayesian optimization.

I Advanced scenarios: Mixed, multi-fidelity, high-dim,
topologies.

I Advanced hands on Bayesian optimization with BOTorch.

I References.

2/65



Index

I Introduction and Motivation.

I Fundamentals of Bayesian Optimization.

I Hands on Bayesian optimization with BOTorch.

I Parallel Constrained Multi-objective Bayesian optimization.

I Advanced scenarios: Mixed, multi-fidelity, high-dim,
topologies.

I Advanced hands on Bayesian optimization with BOTorch.

I References.

2/65



Index

I Introduction and Motivation.

I Fundamentals of Bayesian Optimization.

I Hands on Bayesian optimization with BOTorch.

I Parallel Constrained Multi-objective Bayesian optimization.

I Advanced scenarios: Mixed, multi-fidelity, high-dim,
topologies.

I Advanced hands on Bayesian optimization with BOTorch.

I References.

2/65



Index

I Introduction and Motivation.

I Fundamentals of Bayesian Optimization.

I Hands on Bayesian optimization with BOTorch.

I Parallel Constrained Multi-objective Bayesian optimization.

I Advanced scenarios: Mixed, multi-fidelity, high-dim,
topologies.

I Advanced hands on Bayesian optimization with BOTorch.

I References.

2/65



Index

I Introduction and Motivation.

I Fundamentals of Bayesian Optimization.

I Hands on Bayesian optimization with BOTorch.

I Parallel Constrained Multi-objective Bayesian optimization.

I Advanced scenarios: Mixed, multi-fidelity, high-dim,
topologies.

I Advanced hands on Bayesian optimization with BOTorch.

I References.

2/65



First Session: Bayesian optimization
fundamentals
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Introduction.
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Challenges in Machine Learning, Finance, Robotics,
Engineering, Business...

Companies face complex scenarios dealing with lots of
scenarios!

I Many choices at each step.

I Complicated and high dimensional.

I Difficult for individuals to reason
about.

I Prone to human bias.

I It may be possible to test various
models in parallel.

Optimization is a challenging task in real-life choices!
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Example: Deep Neural Network for object recognition.

Parameters to tune: Number of neurons, number of layers,
learning-rate, level of regularization, momentum, etc. If multiple
processors were available, we could test various configurations
in parallel, in order to gain more information.
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Example: new plastic solar cells for transforming light into
electricity.

Library generation
Fragments Bonding 

rules

Performance 
evaluation

Interesting 
molecules

22

1

Explore millions of candidate molecule structures to identify
the compounds with the best properties.
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Example: control system for a robot that is able to grasp objects.

Finger Joint Trajectories

Parameters to tune: initial pose for the robot’s hand and finger
joint trajectories.
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Optimization Problems: Common Features
I Very expensive

evaluations.

I The objective is a
black-box.

I The evaluation can be
noisy.

I Evaluations may be done
in parallel.

0 1

−1

0

1

Bayesian optimization methods can be used to solve
these problems!
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Bayesian Optimization
objective

1. Get initial sample.

2. Fit a model to the data:

p(y |x,Dn) .

3. Select data collection strategy:

α(x) = Ep(y |x,Dn)[U(y |x,Dn)] .

4. Optimize acquisition function α(x).

5. Collect data and update model.

6. Repeat!
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Fitting a Model to the Data

Challenges: The model should be non-parametric (the world
is complicated) and computing p(Data) is intractable!

Solved by setting p(W) =
∏

ij N (wji |0, σ2H−1) and letting
H →∞!
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Bayesian Optimization vs. Uniform Exploration
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Using the GP Uncertainty in Optimization

Where to evaluate next?

I Exploration: seek places with high variance.

I Exploitation: seek places with low mean.

The acquisition function balances these two, to choose in an
intelligent way the next evaluation point!

α(x) = Ep(y?|DN ,x) [U(y?|x,DN)]

13/65



Using the GP Uncertainty in Optimization

Where to evaluate next?

I Exploration: seek places with high variance.

I Exploitation: seek places with low mean.

The acquisition function balances these two, to choose in an
intelligent way the next evaluation point!

α(x) = Ep(y?|DN ,x) [U(y?|x,DN)]

13/65



Using the GP Uncertainty in Optimization

Where to evaluate next?

I Exploration: seek places with high variance.

I Exploitation: seek places with low mean.

The acquisition function balances these two, to choose in an
intelligent way the next evaluation point!

α(x) = Ep(y?|DN ,x) [U(y?|x,DN)]

13/65



Using the GP Uncertainty in Optimization

Where to evaluate next?

I Exploration: seek places with high variance.

I Exploitation: seek places with low mean.

The acquisition function balances these two, to choose in an
intelligent way the next evaluation point!

α(x) = Ep(y?|DN ,x) [U(y?|x,DN)]

13/65



Using the GP Uncertainty in Optimization

Where to evaluate next?

I Exploration: seek places with high variance.

I Exploitation: seek places with low mean.

The acquisition function balances these two, to choose in an
intelligent way the next evaluation point!

α(x) = Ep(y?|DN ,x) [U(y?|x,DN)]

13/65



Using the GP Uncertainty in Optimization

Where to evaluate next?

I Exploration: seek places with high variance.

I Exploitation: seek places with low mean.

The acquisition function balances these two, to choose in an
intelligent way the next evaluation point!

α(x) = Ep(y?|DN ,x) [U(y?|x,DN)]

13/65



Some Acquisition Functions
Let ν = min{y1, . . . , yN} and γ(x) = ν−µ(x)

σ(x) .

I Probability of Improvement:

U(y?|DN , x) = I(y? < ν) , α(x) = Φ (γ(x))

I Expected Improvement:

U(y?|DN , x) = max(0, ν − y?) , α(x) = σ(x) (γ(x)Φ (γ(x)) + φ(γ(x)))

I Lower Confidence Bound:

α(x) = − (µ(x)− κσ(x))

I Entropy Search:

U(y?|DN , x) = H[p(xmin|DN)]− H[p(xmin|DN ∪ {x, y?})]
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Some Acquisition Functions: Prob. Improvement
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Some Acquisition Functions: Exp. Improvement
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Some Acquisition Functions: Lower Conf. Bound
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Some Acquisition Functions: Entropy Search
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Information-based Approach

The minimizer, x∗, can be modelled as a random variable!

Information is measured by the entropy of p(x∗|D).
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Bayesian Optimization and Model Selection
I Covariance function selection: critical to achieve good

performance. The default choice for regression (squared
exponential) is too smooth. Matérn ν = 5/2 kernel works
better.
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Bayesian Optimization and Model Selection
I Hyper-parameter selection: with a small number of

observations maximizing p(y|θ) can give too confident
uncertainty estimates.

I Sampling the hyper-parameters: computing p(θ|y) is
intractable! Alternative: generate a few samples form p(θ|y)
using MCMC.

Slice sampling means no additional hyper-parameters!

(Neal, 2003)
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Integrated Acquisition Function

α̂(x) =

∫
α(x; θ)p(θ|y)dθ ≈ 1

K

K∑
k=1

α(x; θ(k)) θ(k) ∼ p(θ|y) ,

(Snoek et al., 2012)
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MCMC estimation vs. Maximization
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Cost-sensitive Bayesian Optimization

I Different inputs may have different computational costs,
e.g., training a neural network of increasing hidden layers and
units.

I Better to do cheap evaluations before expensive ones!

I The evaluation costs are unknown but they can be recorded
and then modeled with an additional Gaussian process.

Expected Improvement per-second:

α(x) =
σ(x) (γ(x)Φ (γ(x)) + φ(γ(x)))

exp {µlog-time(x)}

(Snoek et al., 2012)
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Cost-sensitive Bayesian Optimization
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Cost-sensitive Bayesian Optimization
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Gaussian processes are not the only probabilistic surrogate
model!

1. Computationally expensive: GPs scale poorly due to cubic
observation complexity.

2. Fixed covariance structure: GPs assume a fixed structure in
data covariance (stationarity), limiting their ability to model
complex data patterns.

3. Difficulties with high dimensionality: GPs struggle to
perform well in high-dimensional search spaces.

4. Random Forests: We use its empirical predictive distribution.
Perform well in hierarchical spaces, are robust to outliers and
scale well.

5. Bayesian neural networks: Able to model complex patterns
and scalable.

6. Deep Gaussian Process: Increased expressivity, advantages
of GPs.

26/65



Gaussian processes are not the only probabilistic surrogate
model!

1. Computationally expensive: GPs scale poorly due to cubic
observation complexity.

2. Fixed covariance structure: GPs assume a fixed structure in
data covariance (stationarity), limiting their ability to model
complex data patterns.

3. Difficulties with high dimensionality: GPs struggle to
perform well in high-dimensional search spaces.

4. Random Forests: We use its empirical predictive distribution.
Perform well in hierarchical spaces, are robust to outliers and
scale well.

5. Bayesian neural networks: Able to model complex patterns
and scalable.

6. Deep Gaussian Process: Increased expressivity, advantages
of GPs.

26/65



Gaussian processes are not the only probabilistic surrogate
model!

1. Computationally expensive: GPs scale poorly due to cubic
observation complexity.

2. Fixed covariance structure: GPs assume a fixed structure in
data covariance (stationarity), limiting their ability to model
complex data patterns.

3. Difficulties with high dimensionality: GPs struggle to
perform well in high-dimensional search spaces.

4. Random Forests: We use its empirical predictive distribution.
Perform well in hierarchical spaces, are robust to outliers and
scale well.

5. Bayesian neural networks: Able to model complex patterns
and scalable.

6. Deep Gaussian Process: Increased expressivity, advantages
of GPs.

26/65



Gaussian processes are not the only probabilistic surrogate
model!

1. Computationally expensive: GPs scale poorly due to cubic
observation complexity.

2. Fixed covariance structure: GPs assume a fixed structure in
data covariance (stationarity), limiting their ability to model
complex data patterns.

3. Difficulties with high dimensionality: GPs struggle to
perform well in high-dimensional search spaces.

4. Random Forests: We use its empirical predictive distribution.
Perform well in hierarchical spaces, are robust to outliers and
scale well.

5. Bayesian neural networks: Able to model complex patterns
and scalable.

6. Deep Gaussian Process: Increased expressivity, advantages
of GPs.

26/65



Gaussian processes are not the only probabilistic surrogate
model!

1. Computationally expensive: GPs scale poorly due to cubic
observation complexity.

2. Fixed covariance structure: GPs assume a fixed structure in
data covariance (stationarity), limiting their ability to model
complex data patterns.

3. Difficulties with high dimensionality: GPs struggle to
perform well in high-dimensional search spaces.

4. Random Forests: We use its empirical predictive distribution.
Perform well in hierarchical spaces, are robust to outliers and
scale well.

5. Bayesian neural networks: Able to model complex patterns
and scalable.

6. Deep Gaussian Process: Increased expressivity, advantages
of GPs.

26/65



Gaussian processes are not the only probabilistic surrogate
model!

1. Computationally expensive: GPs scale poorly due to cubic
observation complexity.

2. Fixed covariance structure: GPs assume a fixed structure in
data covariance (stationarity), limiting their ability to model
complex data patterns.

3. Difficulties with high dimensionality: GPs struggle to
perform well in high-dimensional search spaces.

4. Random Forests: We use its empirical predictive distribution.
Perform well in hierarchical spaces, are robust to outliers and
scale well.

5. Bayesian neural networks: Able to model complex patterns
and scalable.

6. Deep Gaussian Process: Increased expressivity, advantages
of GPs.

26/65



Other Models: Random Forest

Ensemble method where the predictors are random regression trees
trained on random subsamples of the data.

I Trees are grown on different
bootstrap samples of the
data.

I At each node the best
splitter is chosen randomly.

I Leaf nodes predict the
average value of the points
reaching that node.

I This guarantees that each
tree is slightly different.

Very cheap to compute and massively paralelizable!
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Random Forest: Predictive Distribution

p(f ?|Dn) = N (f ?|µ, ν2)

(Hutter et al., 2011)
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Random Forest in Practice

(Shahriari et al., 2016)

I Allows for a lot of evaluations (good when the objective is
cheap).

I Too confident intervals in far away from the data regions.

I Conflictive predictions can cause the variance to be too high.

I Discontinuous: Difficult to optimize the acquisition function.

I No parameters to tune.
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Other Models: Bayesian Neural Networks

I Neural networks scale well to the training data (linear cost).

I Trained very fast on GPUs.

I State of the art prediction results.

They are an alternative to GPs to allow for a large number
observations!

The posterior distribution of the networks weights W is
intractable!
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Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive
distribution:

I Markov Chain Monte Carlo methods.

I Variational Inference.

I Expectation Propagation.

I Reinterpretations of dropout.

I Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and
scalability! Still a lot of research going on!

31/65



Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive
distribution:

I Markov Chain Monte Carlo methods.

I Variational Inference.

I Expectation Propagation.

I Reinterpretations of dropout.

I Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and
scalability! Still a lot of research going on!

31/65



Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive
distribution:

I Markov Chain Monte Carlo methods.

I Variational Inference.

I Expectation Propagation.

I Reinterpretations of dropout.

I Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and
scalability! Still a lot of research going on!

31/65



Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive
distribution:

I Markov Chain Monte Carlo methods.

I Variational Inference.

I Expectation Propagation.

I Reinterpretations of dropout.

I Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and
scalability! Still a lot of research going on!

31/65



Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive
distribution:

I Markov Chain Monte Carlo methods.

I Variational Inference.

I Expectation Propagation.

I Reinterpretations of dropout.

I Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and
scalability! Still a lot of research going on!

31/65



Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive
distribution:

I Markov Chain Monte Carlo methods.

I Variational Inference.

I Expectation Propagation.

I Reinterpretations of dropout.

I Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and
scalability! Still a lot of research going on!

31/65



Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive
distribution:

I Markov Chain Monte Carlo methods.

I Variational Inference.

I Expectation Propagation.

I Reinterpretations of dropout.

I Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and
scalability! Still a lot of research going on!

31/65



Software for Bayesian Optimization

Many of the methods described are implemented
into BOTorch using Python.
https://botorch.org/

BOTorch’s super-nice features:

1. Modularity: Plugin new models, acquisition functions and
optimizers.

2. PyTorch: Easily integrate neural network modules. Native
GPU and Autograd support.

3. Scalability: Support for scalable GPs via GPyTorch.

4. Advanced scenarios: Advanced research coded into tutorials
about complex BO scenarios.

Other tools: SMAC3 (Python-RFs), GPyOpt (Python3),
Spearmint (Python2.7-sampling), mlrMBO (R).
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Time to practice!
1. Bayesian optimization of a benchmark optimization function.

2. Bayesian optimization of the hyper-parameters of a machine
learning model.

3. Bayesian optimization of the hyper-paramaters of a deep
reinforcement learning algorithm.
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Second Session: Advanced Bayesian
optimization.
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(Parallel) Multi-objective Bayesian
optimization with constraints.
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Several Objectives and Constraints
Optimal design of hardware accelerator for neural network
predictions.

Goals:

I Minimize prediction
error.

I Minimize prediction
time.

Constrained to:

I Chip area below a value.

I Power consumption below a
level.

a

1 Prediction
   speed

22Prediction 
error

Energy 
consumption Chip area

Challenges:

I Complicated constraints.

I Conflictive objectives.
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Constrained Multi-Objective Optimization
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Constrained Multi-Objective Optimization
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Constrained Multi-Objective Optimization
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Bayesian Optimization Methods
Additional challenges when dealing with several black-boxes.

I Simple approach: evaluate all the objectives and constraints
at the same input location. Expected to be sub-optimal.

I Advanced approach: make intelligent decisions about what
black-box to evaluate next and on which location.
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Information-based Approach

The Pareto set X ? in the feasible space is a random variable!

Information is measured by the entropy of p(X ?|DN).
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Predictive Entropy Search (PES)

We swap y and X ? to obtain a reformulation of the acquisition
function.

(Minka, 2001)
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Example of PES’ acquisition
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Finding a Fast and Accurate Neural Network
Average Pareto Front 100 Function Evaluations

coupled}

Black-boxes

(Hernández-Lobato et al., 2016)
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Parallel Bayesian Optimization
Traditional Bayesian optimization is sequential!

Computing clusters let us do many things at once!

Parallel experiments should be highly informative but
different!
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Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search

Choose a set Q points St = {xq}Qq=1 to minimize the entropy of x?.

It is possible to compute the gradient of α(·) w.r.t. each
xq ∈ St !

(Shah and Ghahramani, 2015)

46/65



Parallel Predictive Entropy Search: Level Curves

(Shah and Ghahramani, 2015)
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Parallel Predictive Entropy Search: Results

(Shah and Ghahramani, 2015)
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BO with Integer-valued and Categorical Variables

Standard GPs assume continuous input variables which makes BO
with integer-valued or categorical challenging.

A naive approach is to round the suggested value to the closest
integer or to the closest one-hot encoding.

The BO algorithm may get stuck and may always perform
the next evaluation at the same input location!
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BO with Integer-valued and Categorical Variables

Rounding inside of the wrapper works but makes the objective flat!

Round variable inside wrapper. 4 evaluations.

●
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A modified GP covariance function accounts for this:

Cnew(xn, xn′) = C (T (xn),T (xn′);θ)

where T (·) does the rounding to the closest integer or one-hot
encoding.

Integer Transformation. 4 evaluations.
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BO with Integer-valued and Categorical Variables

The GP predictive distribution is constant across all variables that
lead to the same integer or one-hot-encoding.
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BO with Integer-valued and Categorical Variables

One continuous variable and two integer-valued variables.
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Freeze-Thaw Bayesian Optimization
Common aspects of many machine learning algorithms:

1. A minimization step must be performed with, e.g., gradient
descent.

2. There are hyper-parameters that impact the final performance.

Can we use partial training information and a model to determine
which hyper-parameter configuration is going to be optimal?

Yes, that is precisely what Freeze-Thaw BO does!

(Swersky et al., 2014)
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A GP Kernel for Training Curves

We want to specify a kernel that supports exponentially decaying
functions of the form exp{−λt} for t, λ ≥ 0.

The covariance between inputs t and t ′ is:

C (t, t ′) =

∫ ∞
0

e−λte−λt
′
ψ(λ;α, β)dλ =

βα

(t + t ′ + β)α

where ψ(λ;α, β) is a gamma distribution with parameters α and β.
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Inference on Asymptotic Values

A standard GP is used as the prior for the asymptotic values
of each training curve.

Hierarchical generative model:

p({yn}Nn=1|{xn}Nn=1) =

∫ [
N∏

n=1

N (yn|fn1,Ktn)

]
N (f|m,Kx)d f

where

xn ≡ n configuration , yn ≡ n observed curve ,

fn ≡ n asymptotic value , m ≡ prior asymptotic mean values ,

Ktn ≡ covariances for curve values , Kx ≡ cov. for asymptotic values

The joint distribution of {y}Nn=1 and f is Gaussian and hence
so it is the predictive distribution p(f|{y}Nn=1)!
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Inference on Asymptotic Values and BO

Bayesian Optimization:

I p(f|{yn}Nn=1, {xn}Nn=1) determines asymptotic values.

I This distribution can be used to make intelligent decisions!

I Shall we train more one configuration or shall we start a new
one?

I A combination of EI and ES is used as the acquisition
function.

(Swersky et al., 2014)
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Freeze-Thaw BO in practice

(Swersky et al., 2014)
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Multi-fidelity Bayesian optimization

I Concept of Fidelity: Fidelity refers to the accuracy or
reliability of the information, we use different levels of
accuracy.

I Example: # layers in NNs, # of timesteps for DRL.
I We assume that lower fidelities are correlated with higher.
I Cost-Efficiency: Leveraging computationally cheaper

versions of the functions to guide the search process.
I The trick: The acquisition function should balance

exploration at cheaper fidelities with exploitation at the
highest fidelity level.
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Multi-fidelity Bayesian optimization example

I Trace-aware knowledge-gradient acquisition function.

I It values observations of a point (x) and a set of fidelities (S)
according to the ratio of the reduction in expected loss that it
induces, to its computational cost.

I It measures the value of information per unit cost of sampling.

I It uses a function L() to measure the extent to which
observing trace information improves the quality of the
solution. L(0) will be the minimum.

I Its analytical expression basically penalizes the cost wrt the
information obtained:

takg(x ,S) =
L(0)− L(x ,S)

cost(x ,max(S))
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High-dimensional Bayesian optimization

I GPs empirical performance tends to be lower if d > 7.
I The problem: The search space grows exponentially with the

number of dimensions.
I The trick: We can project the high-dimensional problem into

a lower-dimensional subspace that explains it well using
embeddings.

I Find the hidden most explicative manifold for the data, then
optimize there!

I Approaches differ in the type of embeddings (e.g. random),
assumptions about the function (e.g. being a sum of
functions), or use of models (Deep GP, GP-LVM.)
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High-dimensional Bayesian optimization example

I Sparse Axis-Aligned Subspace
Bayesian Optimization (SAASBO)

I Goal: Identify sparse subspaces
relevant to modeling the unknown
objective function.

I Assumption: High function variability
being captured by axis-aligned blocks
of input features.

I Method: Use complex GP prior to
consider a smaller class of functions.

I Effect: Turn most non-explicative
dims off,

I Integration: Perform hyper-parameter
sampling with NUTS and EI.
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Bayesian optimization in a simplex (Portfolio optimization)

I Common financial metrics as Sharpe or Sortino ratio can be
configured for a specific portfolio.

I For example using real-time ESG values of the assets.

I Garrido-Merchán, E. C., Piris, G. G., & Vaca, M. C. (2023).
Bayesian optimization of ESG (Environmental Social
Governance) financial investments. Environmental Research
Communications, 5(5), 055003.
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Conclusions and Further Work

I BO is a state-of-the-art class of methods
used to optimize expensive and noisy
black-box functions.

I We can generalize BO to tackle advanced
scenarios: parallel constrained multi-obj,
high-dim, multi-fidelity...

I BO can be applied in a wide array of
applications: ML, DRL, finance, robotics,
materials, business operations...

I Further work topics: causality, meta-BO,
transfer learning, adaptation to specific
domains.
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I Jariego-Pérez, L. C., & Garrido-Merchán, E. C. (2020). Towards Automatic Bayesian Optimization: A first
step involving acquisition functions. CAEPIA. 2021. Accepted.

64/65



Referencias

I Garrido-Merchán, E. C., & Hernández-Lobato, D. (2019). Predictive Entropy Search for Multi-Objective
Bayesian Optimization with Constraints. Neurocomputing, 361, 50-68.

I Garrido-Merchán, E. C., & Hernández-Lobato, D. (2023). Parallel Predictive Entropy Search for
Multi-objective Bayesian Optimization with Constraints. Expert Systems with Applications, pre-print.

I Garrido-Merchán, E. C., & Hernández-Lobato, D. (2020). Dealing with Categorical and Integer-valued
Variables in Bayesian Optimization with Gaussian Processes. Neurocomputing, 380, 20-35.

I Cornejo-Bueno, L., Garrido-Merchán, E. C., Hernández-Lobato, D., & Salcedo-Sanz, S. (2018). Bayesian
Optimization of a Hybrid System for Robust Ocean Wave Features Prediction. Neurocomputing, 275,
818-828.

I Cornejo-Bueno, L., Garrido-Merchán, E. C., Hernández-Lobato, D., & Salcedo-Sanz, S. (2017, June).
Bayesian optimization of a hybrid prediction system for optimal wave energy estimation problems. In
International Work-Conference on Artificial Neural Networks (pp. 648-660). Springer, Cham.

I Balázs, C., van Beekveld, M., Caron, S., Dillon, B. M., Farmer, B., Fowlie, A., Garrido-Merchán, E. C., ...
& White, M. (2021). A Comparison of Optimisation Algorithms for High-Dimensional Particle and
Astrophysics Applications. Journal of High Energy Physics, 2021(5), 1-46.
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I Córdoba, I., Garrido-Merchán, E. C., Hernández-Lobato, D., Bielza, C., & Larranaga, P. (2018, October).
Bayesian Optimization of the PC Algorithm for Learning Gaussian Bayesian Networks. In Conference of the
Spanish Association for Artificial Intelligence (pp. 44-54). Springer, Cham.

I Garrido-Merchán, E. C., & Albarca-Molina, A. (2018, November). Suggesting Cooking Recipes through
Simulation and Bayesian Optimization. In International Conference on Intelligent Data Engineering and
Automated Learning (pp. 277-284). Springer, Cham.
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