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Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!
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Motivation for Deep Gaussian Processes
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How do deep GPs work?
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Deep GPs as Deep Neural Networks
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Deep GPs: Composition of Functions

y = f (g(x)) , f (x) ∼ GP(0,Cf (x, x
′)) g(x) ∼ GP(0,Cg (x, x

′))
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Deep GPs: Composition of Functions

y = f (g(x)) , f (x) ∼ GP(0,Cf (x, x
′)) g(x) ∼ GP(0,Cg (x, x

′))

Deep GPs perform 
automatic 

covariance function 
design!
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Deep GP Predictive Distribution
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In a deep GP the predictive distribution needs not be Gaussian!
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Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.
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Bayesian inference

Posterior over latent functions (typically at the observed data X):

p(f1, f2, f3|Y) =
p(f1)p(f2)p(f3) p(Y|f1, f2, f3,X)

p(Y)

• GP priors

• Likelihood function

• Marginal likelihood

But the posterior p(f1, f2, f3|Y) is intractable.

9 / 59



Inducing Points Representation

Latent variables: from O(N) to O(M), with M ≪ N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x⋆)|u) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,uu ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ .

If p(u) = N (u|m,S), then p(f (x⋆)) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,um ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ +Σf ⋆,uΣ

−1
u,uSΣ

−1
u,uΣu,f ⋆

Given u or a Gaussian for u, f (x⋆) is fully specified!
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Deep GPs Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li )×

L∏
l=1

p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

Ideally we would like to make inference about {ul , f l}Ll=1!
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Challenges of Approximate Inference for DGPs

The predictive distribution after the first layer is non Gaussian!
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Methods for Training DGPs

• Using VI and an analytic lower bound.

• Using approximate expectation propagation.

• Using stochastic variational inference.

• By minimizing alpha divergences.
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Analytic ELBO via Variational Inference

The early attempts for approximate inference in DGPs considered
fixed q that lead to an analytic ELBO!

For this, noisy versions of the variables at each layer but last are
introduced:

f̃ l = f l + ϵ , ϵ ∼ N (0,Λl) ,

with Λl a diagonal matrix for l = 1, . . . , L− 1.

The joint distribution is now:

p(y, {ul , f l}Ll=1, {f̃ l}L−1
l=1 ) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li )×

p(fL|uL,XL
)p(uL|XL

)
L−1∏
l=1

p(f̃ l |f l)p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior
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Original Graphical Model and Extended

Both models are equivalent, but this setting simplifies inference!
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Analytic ELBO via Variational Inference

The posterior approximation q considered assumes independence
among layers!

Posterior approximation:

q({ul , f l , f̃ l}Ll=1) = q(uL)p(fL|uL,Xl
)
L−1∏
l=1

q(ul)q(f̃ l)p(f l |ul ,Xl
) ,

where the input to the layer l + 1 is f̃ l and

q(ul) = N (ul |ml ,Sl) , q(f̃ l) = N (f̃ l |µl ,∆l) ,

with ∆l a diagonal matrix.
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Graphical Model and Approximate Distribution
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Analytic Variational Inference for DGPs

Minimizes KL(q({ul , f l}Ll=1, {f̃ l}
L−1
l=1 )|p({u

l , f l}Ll=1, {f̃ l}
L−1
l=1 |y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li )�����

p(fL|uL)p(uL)
∏L−1

l=1 p(f̃ l |f l)����p(f l |ul)p(ul)
�����
p(fL|uL)q(uL)

∏L−1
l=1 q(f̃ l)����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li )] +
L−1∑
l=1

[
Eq[log p(f̃

l |f l)] + H[q(f̃ l)]
]

+
L∑

l=1

KL(q(ul)|p(ul)) .

Which can be evaluated in closed-form (form some cov. functions)
and maximized to find q and good model hyper-parameters!

(Damianou, 2013) 18 / 59
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Predictive Distribution via Monte Carlo Sampling

For a particular fixed input, the predictive distribution of each
layer is Gaussian!
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DGPs Tractable Bound: Illustrative Example
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The VFE sparse GP reduces the length-scale to explain the data!
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Limitations of DGPs via Tractable VI Bound

• The posterior approximation q assumes independence between
layers inputs and outputs.

• The tractable VI bound is limited to certain covariance functions,
e.g., the squared exponential covariance function.

• The original method did not consider mini-batch training and scales
linearly with N, which makes infeasible addressing large problems.
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DGPs and Approximate Expectation Propagation

Features:

• Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

• Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

• Relies on a modified version of EP to estimate the approximate
distribution q using standard optimization techniques.

• The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)

23 / 59



DGPs and Approximate Expectation Propagation

Features:

• Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

• Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

• Relies on a modified version of EP to estimate the approximate
distribution q using standard optimization techniques.

• The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)

23 / 59



DGPs and Approximate Expectation Propagation

Features:

• Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

• Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

• Relies on a modified version of EP to estimate the approximate
distribution q using standard optimization techniques.

• The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)

23 / 59



DGPs and Approximate Expectation Propagation

Features:

• Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

• Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

• Relies on a modified version of EP to estimate the approximate
distribution q using standard optimization techniques.

• The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)

23 / 59



Alternative Graphical Model
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Approximate Deep GP Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li )×

L∏
l=1

p̃(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Approximate Deep GP prior p̃({f l , ul}Ll=1)

The FITC approximation enforces p̃(f l |ul ,Xl
) to factorize across

the N data instances!

25 / 59



Approximate Deep GP Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li )×

L∏
l=1

p̃(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Approximate Deep GP prior p̃({f l , ul}Ll=1)

The FITC approximation enforces p̃(f l |ul ,Xl
) to factorize across

the N data instances!

25 / 59



Graphical Model and Approximate Distribution

q({f l ,ul}Ll=1) =
L∏

l=1

p̃(f l−1|ul) q(ul)

• Fixed and factorizing across data
• Tunable Gaussian
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Graphical Illustration of EP for DGPs

Approximates p({f l ,ul}Ll=1|y) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 p(yi |f Li ) with

q({f l ,ul}Ll=1) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 t̃i ({ul}Ll=1)

The t̃i are tuned by minimizing the KL-divergence KL[p̂i ||q] ∀i ,

where
p̂i ({f l ,ul}Ll=1) ∝ p(yi |f Li )

∏
j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)

q({f l ,ul}Ll=1) ∝ t̃i ({u}Ll=1)
∏

j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)
.

Since p̃({f l ,ul}Ll=1) is fixed, we only have to match the moments
of p̂j and q over {ul}Ll=1!
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EP as an Optimization Problem

The EP approximation to the evidence p(y) is given by:

logZEP = g(ηq)− g(ηprior) +
N∑
i=1

logZi + g(ηq)− g(η
\i
q )

Besides the EP updates, the EP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm. Too slow in practice!
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Approximate Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZEP = g(ηq)− g(ηprior) +
∑N

i=1 log+g(ηq)− g(ηcav
q )

which is suitable for standard optimization and mini-batch training.
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Approximating log Zi

Note that logZi = log
∫
p(yi |f Li )q\i (f Li )df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use an iterative Gaussian approximation:

Doable for certain covariance functions, e.g., the squared
exponential!
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Gaussian Projection Example
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Approx. EP for DGPs: Illustrative Example
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The AEP method provides a similar predictive distribution to the
previous method!
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Approx. EP for DGPs: Illustrative Example
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y = f 2(f 1(x))+ noise

f 1, f 2 ∼ GP(0,C (·, ·))
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Limitations of Approx. EP for DGPs

• The approximate predictive distribution of q at each layer is a
Gaussian projection, which can be a crude approximation.

• It is limited to certain covariance functions, e.g., the squared
exponential covariance function.

• It modifies the deep GP prior and hence the model, by introducing
the FITC approximation.
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Doubly Stochastic Variational Inference for DGPs

Features:

• Considers dependencies between inputs and outputs at each layer.

• Does not change the DGP prior, which is kept intact.

• Uses stochastic variational inference to approximate the posterior.

• Each layer predictive distribution is approximated by Monte Carlo.

(Salimbeni, 2017)
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Black-box Variational Inference

VI works when we can compute Eq[log p(f, y)] in closed form!

In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of ∂L(qθ)/dθ and
stochastic optimization techniques to maximize L!

Black-box VI can be used with arbitrarily complicated models:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

= Eq

[
log p(f, y)

∂

∂θ
log qθ(f)

]
+

∂Hq

∂θ

≈ 1

S

S∑
s=1

log p(fs , y)
∂

∂θ
log qθ(fs) +

∂Hq

∂θ

This is an unbiased estimate of the gradient and can be plugged
in any stochastic optimization algorithm!
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Stochastic Optimization

To converge to a local neighborhood of the optimum stochastic methods
only require an unbiased estimate of the gradient!
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Reparametrization Trick

The previous estimator of the gradient can have high variance and
exhibit low convergence!

Sometimes the randomness can be separated from the parameters:

f ∼ N (µ, σ2) , f = µ+ σϵ , ϵ ∼ N (0, 1)

This allows to obtain another estimator of the gradient:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

≈ ∂

∂θ

1

S

S∑
s=1

log p(ϕ(ϵs ; θ), y) +
∂Hq

∂θ

where fs = ϕ(ϵs ; θ) for some function ϕ(·; θ).

This other estimator has less variance and leads to better results!
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Deep GPs Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li )×

L∏
l=1

p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

No change in the model is made at all!
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Graphical Model and Posterior Approximation

q({f l ,ul}Ll=1) =
L∏

l=1

p(f l |ul) q(ul)

• Fixed
• Tunable
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Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li )

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li )]−
L∑

l=1

KL(q(ul)|p(ul)) .

• The expectations can be approximated by Monte Carlo.

• Suitable for mini-batch training by subsampling the data.

(Salimbeni, 2017)
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Predictive Distribution via Monte Carlo Sampling

Used not only for testing, but also during training, unlike the
previous methods!
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DSVI for DGPs: Illustrative Example
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DSVI provides better results than the previous methods!
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y = f 2(f 1(x))+ noise

f 1, f 2 ∼ GP(0,C (·, ·))
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DGPs via DSVI: LL Experimental Results
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DGPs perform similar or better than the sparse GP and adding
more layers does not seem to overfit!

(Salimbeni, 2017)
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Limitations of DSVI for DGPs

DSVI and the approximate EP method for training DGPs target
different divergences: KL[q|p] and KL[p|q]!
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KL[q|p] may result in too compact approximations while KL[p|q]
may put mass in regions with no posterior density.

Can we have
something in between?
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Alpha Divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α)
.

(Amari, 1985).

Figure source: (Minka, 2005).
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Local α-divergence minimization (Power EP)

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing local α-divergences

Dα[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

It turns out that the α-divergence can be minimized in terms of
the KL-divergence!
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α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi )

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i )αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59



α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi )

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i )αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59



α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi )

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i )αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59



α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi )

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i )αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59



α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi )

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i )αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59



α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi )

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i )αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59



α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi )

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i )αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59



PEP as an Optimization Problem

The PEP approximation to the evidence p(y) is given by:

logZPEP = g(ηq)− g(ηprior) +
N∑
i=1

1

α

(
logZi + g(ηq)− g(η

\αi
q )

)

Besides the PEP updates, the PEP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZPEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm. Too slow in practice!
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Approximate Power Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZPEP = g(ηq)− g(ηprior) +
∑N

i=1
1
α

(
log+g(ηq)− g(ηqcavα

)
)

which is suitable for standard optimization and mini-batch training.
(Villacampa, 2022)(Li, 2017)
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Approximating log Zi

Note that logZi = log
∫
p(yi |f Li )αq\αi (f Li )df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection
method used by AEP!
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Further Approximations

Consider α ≈ 0 or N → ∞ (i.e., the cavity becomes q):

logZPEP ≈ g(ηq)− g(ηprior) +
N∑
i=1

1

α

(
log Z̃i + g(ηq)− g(ηqcavα

)
)

=
N∑
i=1

1

α
log Z̃i − Rβ[qcav|prior] ,

with Rβ[qcav|prior] a Rényi divergence, becomes similar to

logZPEP ≈
N∑
i=1

1

α
log Z̃i − KL[q|prior] ,

Which for α → 0 gives the DVSVI objective and for α = 1 is
expected to give similar results to AEP (better estimating logZi)!
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with Rβ[qcav|prior] a Rényi divergence, becomes similar to

logZPEP ≈
N∑
i=1

1

α
log Z̃i − KL[q|prior] ,

Which for α → 0 gives the DVSVI objective and for α = 1 is
expected to give similar results to AEP (better estimating logZi)!

53 / 59



α-Divergence Minimization: Illustrative Example
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The value of α has an impact on the final predictive distribution!
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The value of α has an impact on the final predictive distribution!
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α-Divergence Minimization: Toy Problems

The first problem has heteroscedastic noise. The second, a
bimodal predictive distribution!

(Depeweng, 2016)
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α-Divergence Minimization: Toy Problems

The value α = 1.0 provides more sensible predictive distributions!

(Villacampa, 2022)
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α-Divergence Minimization: Average Ranks

The value α = 1.0 provides better results in terms of the NLL and
intermediate values of α give better RMSE!

(Villacampa, 2022)
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Summary about DGPs

• Useful for input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

• More complex inference: DSVI, AEP, α-divergence minimization.

• α-divergence minimization generalizes the other methods.
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