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Summary so Far about GPs

Advantages of GPs:
® Non-parametric models!
® Exact Bayesian inference is tractable!
® They scale to very large datasets!

® Easy to introduce prior knowledge!

Disadvantages of GPs:
e Strong assumptions made about f(x)!
® The predictive distribution is always Gaussian!

® Do not learn specific features to represent the observed datal

Deep GPs constitute a nice alternative to address these issues!
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How do deep GPs work?

X1, X2
— ~

fi1(x1, x2) fia(x1, x2) ‘

y = g(x1,x2)+ noise

1

fi1, fiz, o ~ GP(0, C(-,-))

11
1-1— noise
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Deep GPs as Deep Neural Networks

Inputs
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Deep GPs: Composition of Functions
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Deep GPs: Composition of Functions
y=1f(g(x)), f(x)~gP(0,Cr(x,x)) g(x)~GP(0,Ce(x,x))
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Deep GP Predictive Distribution
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Deep GP Predictive Distribution

Standard GP

5

10

In a deep GP the predictive distribution needs not be Gaussian!
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Why deep GPs?

Advantages:
® Useful input warping: automatic, non-parametric kernel design.
® Repair damage done by sparse approximations to GPs.
® More accurate predictions and better uncertainty estimates.

® Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:
® Require complicated approximate inference methods.

® High computational cost of approximate inference.
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Bayesian inference

Posterior over latent functions (typically at the observed data X):

p(F)p(F)p(F3) p(YIF,F2, 3, X)
p(Y)

p(f*, £, F2|Y) =
® GP priors

® | ikelihood function

® Marginal likelihood

But the posterior p(f!, 2, f3|Y) is intractable.
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Inducing Points Representation

Latent variables: from O(N) to O(M), with M < N.

Distribution on f given by GP with inducing inputs X and outputs u.
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m* =% 2,1

u,u
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Inducing Points Representation

Latent variables: from O(N) to O(M), with M < N.

Distribution on f given by GP with inducing inputs X and outputs u.

If uis known, then p(f(x*)|u) = N(f(x*)|m*, v*), where

m* =% 2,1

u,u

V* = Ef*f* — Ef*’UEEiEuﬁf* .

u,

If p(u) = N (ulm,S), then p(f(x*)) = N(f(x*)|m*, v*), where

m* =% S im,

VAR SPAFIED P e ST PN D) dlpd

Given u or a Gaussian for u, 7(x*) is fully specified!
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Deep GPs Joint Distribution
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Deep GPs Joint Distribution

Likelihood
———
N

p(y, {u', £}) = [ [ p(ilf) x

i=1

L
[T p(F1u’, X)p(u'X)
=1

Deep GP prior

Ideally we would like to make inference about {u’, f'}L_,!
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Challenges of Approximate Inference for DGPs

The predictive distribution after the first layer is non Gaussian!
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Methods for Training DGPs

Using VI and an analytic lower bound.

e Using approximate expectation propagation.

Using stochastic variational inference.

® By minimizing alpha divergences.
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Analytic ELBO via Variational Inference

The early attempts for approximate inference in DGPs considered
fixed g that lead to an analytic ELBO!
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Analytic ELBO via Variational Inference

The early attempts for approximate inference in DGPs considered
fixed g that lead to an analytic ELBO!

For this, noisy versions of the variables at each layer but last are
introduced:

fl="fte, e~N(0,A)),
with A, a diagonal matrix for I =1,...,L— 1.

The joint distribution is now:

Likelihood
N
py, {u', #Hy {FY ) = [T (il £1) x
i=1
L L I /
p(FH|ut, X)) p(ut (XY T p(EIF)p(F|u’, X)) p(u'|X)
=1

Deep GP prior 14 /50



Original Graphical Model and Extended
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Original Graphical Model and Extended

Both models are equivalent, but this setting simplifies inference!

15/59



Analytic ELBO via Variational Inference

The posterior approximation g considered assumes independence
among layers!
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Analytic ELBO via Variational Inference

The posterior approximation g considered assumes independence
among layers!

Posterior approximation:
y , L1 5 »
a({u', £, F1,) = a(ub)p(fHut, X') T atu)a()p(f|u’, X'),
I=1
where the input to the layer / 4+ 1 is f! and
g(u’) = N(u'|lm;,S)), q(f') = N(F' |, &),

with A, a diagonal matrix.

16 /59



Graphical Model and Approximate Distribution

N(fYpr, Ay)

N (u?[my, S)
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Analytic Variational Inference for DGPs

Minimizes KL(g({u',f'}L, {FY= D) p({u!, £ 3L, {F}ty))

Equivalent to maximizing the lower bound on log p(y):

£ = 1, |1og 1 POAIED) Mp(uL)H, 1 p(fIf) plfHayp(u ')]

pEHETg(ul) 115 o(F)p(Eat) g(u')
:Z [log p y,\f Z[ |ngf|f ]+H[q(fl)]]

L
+ KL(g(u")|p(u"))
=1
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Analytic Variational Inference for DGPs

Minimizes KL(g({u',f'}L, {FY= D) p({u!, £ 3L, {F}ty))

Equivalent to maximizing the lower bound on log p(y):

L—T |ogH: L Pl F) MP(UL)H/ L p(F)f") pEaty p(u I)]
? Mq / 1qf’ Mq u/

= ZEq[logp yilfiH) ]+Z [Eqllog p()] + HIa(F)]]

+ Z KL(q(u')|p(u)).
=1

Which can be evaluated in closed-form (form some cov. functions)
and maximized to find g and good model hyper-parameters!

(Damianou, 2013) 18 /59



Predictive Distribution via Monte Carlo Sampling
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Predictive Distribution via Monte Carlo Sampling

For a particular fixed input, the predictive distribution of each
layer is Gaussian!
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DGPs Tractable Bound: lllustrative Example

VFE (M = 10)
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DGPs Tractable Bound: lllustrative Example

VFE (M = 10)

The VFE sparse GP reduces the length-scale to explain the data!

20/59



DGPs Tractable Bound: lllustrative Example

DGP (L =2, M = 10)

20/59



DGPs Tractable Bound: lllustrative Example

DGP (L =2, M = 10)

The DGP provides a more sensible predictive distribution!
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DGPs Tractable Bound: lllustrative Example

y = f2(f1(x) + noise)+ noise

,_.
N—r
Il

+ noise

< —

f17 f2 ~ gP(O, C(7 ))
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Limitations of DGPs via Tractable VI Bound

® The posterior approximation g assumes independence between
layers inputs and outputs.

22/59



Limitations of DGPs via Tractable VI Bound

® The posterior approximation g assumes independence between
layers inputs and outputs.

® The tractable VI bound is limited to certain covariance functions,
e.g., the squared exponential covariance function.

22/59



Limitations of DGPs via Tractable VI Bound

® The posterior approximation g assumes independence between
layers inputs and outputs.

® The tractable VI bound is limited to certain covariance functions,
e.g., the squared exponential covariance function.

® The original method did not consider mini-batch training and scales
linearly with N, which makes infeasible addressing large problems.
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DGPs and Approximate Expectation Propagation

Features:

® Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.
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DGPs and Approximate Expectation Propagation

Features:

® Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

® Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

® Relies on a modified version of EP to estimate the approximate
distribution g using standard optimization techniques.

® The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)
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Alternative Graphical Model
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Alternative Graphical Model

@N@ M
TH ® By

() ~ T o () )

The cost is linear in N
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Approximate Deep GP Joint Distribution

Likelihood
——tN—

N
py, {u', £} 2)) = [ [ p(yil£5) %
i=1

L
[T 5(Fu, X )p(u'1X)
=1

Approximate Deep GP prior 5({f’,u’},L:1)
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Approximate Deep GP Joint Distribution

Likelihood
—_—N—

N
py, {u', £} 2)) = [ [ p(yil£5) %
i=1

L
[T 5(F1u', X)p(u'X)
=1

Approximate Deep GP prior 5({f’,u’},L:1)

. - ¥/ .
The FITC approximation enforces j(f'|u/, X') to factorize across
the N data instances!

25 /59



Graphical Model and Approximate Distribution
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Graphical Model and Approximate Distribution

X

FITC
£l N (u'[my,S;)
v

FITC

L

{fl I}/ 1 :H f’ 1|U/) CI(UI)

I=1 /
® Fixed and factorizing across data
® Tunable Gaussian
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Graphical lllustration of EP for DGPs

Approximates | p({F/, u'}-_, ly) o B({F',u'}e_ ) TV, p(yil FL) | with
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Approximates | p({F/, u'}-_, ly) o B({F',u'}e_ ) TV, p(yil FL) | with
g({f",u'}E ) oc B{F, u FE ) TV, E({u'}E )

pE Y |y) o pUE u'Y o)) p(nlfE) plyelff) plusl f5)

Gaussian
Factors

ts({u'}zy) o q({f', u'}z,)

The £; are tuned by minimizing the KL-divergence KL[pi||q] Vi,

pi({fu'},) o ~P()/i|fil') Hj;éitzj({ul}}:l)ﬁ({flaul}}:l)
q({f,u'}iy) o H({u}i,) Hj;éitj({ul}}:l)ﬁ({flaul}f:1).
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pE Y |y) o pUE u'Y o)) p(nlfE) plyelff) plusl f5)

Gaussian
Factors

ts({u'}zy) o q({f', u'}z,)

The £; are tuned by minimizing the KL-divergence KL[pi||q] Vi,
pi({f u'}i) o ~P(yi|fiL) Hj;éi ?j({u’}}:l)ﬁ({fla u'}i,) .
q({f,u'}iy) o H({u}i,) Hj;éi ({u'})B({F, u'}y)

Since p({f’,u’}L_)) is fixed, we only have to match the moments
of p; and g over {u'}L ;!

where
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EP as an Optimization Problem

The EP approximation to the evidence p(y) is given by:

N

log Zep = &(1q) — &(prior) + 3 _ log Zi + g(nq) — &(n4')
i=1
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EP as an Optimization Problem

The EP approximation to the evidence p(y) is given by:
N
\7
log Zep = £(1q) — &(Mprior) + > l0g Zi + &(nq) — &(ng')
i=1
Besides the EP updates, the EP solution for g is found by solving:

N
max min log Zep subject to g o ,BH t.
9 ti,..ty i1

Can be solved with a double-loop algorithm. Too slow in practice!
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Approximate Expectation Propagation

p({f b ly) o 5({E W) p(nlfE) plyelfs) p(slfs)
(XY XD o0
~ P ) B{u}ey) B> ) H{u't) oca({fu'}y)

s i —  —

We tie the approximate ' | '
factors!
~ P ule,) B{ulty) I(fu'e,) f({u'hn) q({f' )
I— | | | |
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Approximating log Z;

Note that log Z; = Iogfp(y;|1‘,-L)q\i(f,-L)dﬂL is the log predictive
likelihood of instance i when removed from the training set.
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Approximating log Z;

Note that log Z; = Iogfp(y;|1‘,-L)q\i(fiL)dﬁL is the log predictive
likelihood of instance i when removed from the training set.

We can use an iterative Gaussian approximation:

/f\fl\\\///\jﬂ
VANEVAN M

>>>

X

Doable for certain covariance functions, e.g., the squared
exponential!
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Gaussian Projection Example

-6 -4 -2 0 2 4 6
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Approx. EP for DGPs: lllustrative Example

DGP (L =2, M = 10)
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Approx. EP for DGPs: lllustrative Example

DGP (L =2, M = 10)

The AEP method provides a similar predictive distribution to the

previous method!
32/59



Approx. EP for DGPs: lllustrative Example
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X

L
f(x)

-

F2(f)

y + noise

5

y = f2(f1(x))+ noise



Approx. EP for DGPs: lllustrative Example
X
L
f(x)
y = f2(f1(x))+ noise

-

F2(f)

5

y + noise f17f2 ~ QP(O, C(7))
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Limitations of Approx. EP for DGPs

® The approximate predictive distribution of g at each layer is a
Gaussian projection, which can be a crude approximation.
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Limitations of Approx. EP for DGPs

® The approximate predictive distribution of g at each layer is a
Gaussian projection, which can be a crude approximation.

® |t is limited to certain covariance functions, e.g., the squared
exponential covariance function.

® |t modifies the deep GP prior and hence the model, by introducing
the FITC approximation.

34/59



Doubly Stochastic Variational Inference for DGPs

Features:

e Considers dependencies between inputs and outputs at each layer.
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Doubly Stochastic Variational Inference for DGPs

Features:

e Considers dependencies between inputs and outputs at each layer.
® Does not change the DGP prior, which is kept intact.
® Uses stochastic variational inference to approximate the posterior.

® FEach layer predictive distribution is approximated by Monte Carlo.

(Salimbeni, 2017)
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Black-box Variational Inference

VI works when we can compute Eg[log p(f,y)] in closed form!
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Black-box VI can be used with arbitrarily complicated models:
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Black-box Variational Inference

VI works when we can compute Eg[log p(f,y)] in closed form!
In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of 0£(qy)/df and
stochastic optimization techniques to maximize L!

Black-box VI can be used with arbitrarily complicated models:

L) _ 9 OH,

)
= LEq ['og p(f, y)@

OH,

| f)| + =9
og go(F)| + 50

0 OHq
Zlogp 5:¥) 55 log an(fs) + 7
s=1

This is an unbiased estimate of the gradient and can be plugged
in any stochastic optimization algorithm!
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Stochastic Optimization
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Stochastic Optimization

To converge to a local neighborhood of the optimum stochastic methods
only require an unbiased estimate of the gradient!
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Reparametrization Trick

The previous estimator of the gradient can have high variance and
exhibit low convergence!
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Reparametrization Trick

The previous estimator of the gradient can have high variance and
exhibit low convergence!
Sometimes the randomness can be separated from the parameters:

fNN(:u70-2)a f=p+oe, ENN(Ovl)

This allows to obtain another estimator of the gradient:

L) _ D OH,
O0H,
N@gZ'OgP 0),y) + — a0

where fs = ¢(€s; 0) for some function ¢(+; 6).
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Reparametrization Trick
The previous estimator of the gradient can have high variance and
exhibit low convergence!
Sometimes the randomness can be separated from the parameters:
f o~ N(p,0?), f=p+oe, e ~N(0,1)
This allows to obtain another estimator of the gradient:

L) _ D OH,

OHq
where fs = ¢(€s; 0) for some function ¢(+; 6).

This other estimator has less variance and leads to better results!
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Deep GPs Joint Distribution

Likelihood

N
p(y, {u', £}) = [ [ p(rilf) x
i=1

L
T p(f1u'.X)p(u'X)
=1

Deep GP prior
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Deep GPs Joint Distribution

Likelihood

N
p(y, {u', £} 2)) = [ ] p(yil ) %
i=1

L
T p(f1u'.X)p(u'X)
=1

Deep GP prior

No change in the model is made at all!
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Graphical Model and Posterior Approximation
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Graphical Model and Posterior Approximation

® Fixed

® Tunable
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Variational Inference for Deep GPs

Based on minimizing KL(g({u’,f'}L_)|p({u,f}L_,]y))

(Salimbeni, 2017)
41/59



Variational Inference for Deep GPs

Based on minimizing KL(q({u’, f'}L_)|p({u’, f'}L_,]y))

Equivalent to maximizing the lower bound on log p(y):

£ — B, |log Lzt PUIE TTiy 2T p(u)
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N L
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Variational Inference for Deep GPs

Based on minimizing KL(q({u’, f'}L_)|p({u’, f'}L_,]y))

Equivalent to maximizing the lower bound on log p(y):

£ — B, |log Lzt PUIE TTiy 2T p(u)
’ [T7-, p(Ea"Yq(u')

N L
= Eqllog p(yil 1] = > KL(g(u)|p(u')).
i=1 =1

® The expectations can be approximated by Monte Carlo.

® Suitable for mini-batch training by subsampling the data.

(Salimbeni, 2017)
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Predictive Distribution via Monte Carlo Sampling
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Predictive Distribution via Monte Carlo Sampling

Used not only for testing, but also during training, unlike the
previous methods!
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DSVI for DGPs: lllustrative Example

DGP (L =2, M = 10)
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DSVI for DGPs: lllustrative Example

DGP (L =2, M = 10)

DSVI provides better results than the previous methods!
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DSVI for DGPs:

X

\
(x)
(%)

l

y + noise

lllustrative Example

y = f2(f1(x))+ noise

f17 f2 ~ gP(O, C(7 ))
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DGPs via DSVI:
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DGPs via DSVI: LL Experimental

PBP
DGP 5
DGP 4
DGP 3
DGP 2

AEDGP 2
SGP 500

SGP

Linear

PBP
DGP 5
DGP 4
DGP 3
DGP 2

AEDGP 2
SGP 500

SGP

Linear

DGPs perform similar or better than the sparse GP and adding

(Salimbeni, 2017)

Results

boston concrete energy kin8nm
N=506, D=13 N=1030, D=8 N=768, D=8 N=8192, D=8
——. ° . .
- H O H °
- ° .
- ° °
- ° °
—— - [
e : . e
- [ [
- H . . H . H
-2.89 -2.63 237 375 -3.43 311 -2.39 -1.55 071 025 0.78 131
naval power protein wine_red
N=11934, D=26 N=9568, D=4 N=45730, D=9 N=1599, D=22
° : - o —
P e . ——
- : L4 —4—
- H ° ——
- : 3 -— H
. HEY —.—
é £
. . . ——
3.92 5.39 6.86  -2.92 -2.83 273 -3.05 -2.89 273 -1.01 -0.97 -0.93
@ Bayesian NN ® Single layer benchmarks @ DGP with approx EP e DGPSVI

more layers does not seem to overfit!
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Limitations of DSVI for DGPs

DSVI and the approximate EP method for training DGPs target
different divergences: KL[g|p] and KL[p|g]!
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Limitations of DSVI for DGPs

DSVI and the approximate EP method for training DGPs target
different divergences: KL[g|p] and KL[p|q]!

KL[pla] KLalp]

KL[g|p] may result in too compact approximations while KL[p|q]
may put mass in regions with no posterior density. Can we have
something in between?

46 /59



Alpha Divergence

Jo (ap(6) + (1 — a)a(6) — p(6)*4(0)'"") d6

Da(plla) = a(l—a)

(Amari, 1985).
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Alpha Divergence

Jo (ap(6) + (1 — a)a(6) — p(6)*4(0)'"") d6

Da(pllq) =

a(l —a)
(Amari, 1985).
«
q tends to fit a mode of p q tends to fit p globally
T T T
0 0.5 1
q
P P P p
% J/\ qu\ q
o= —00 a=0 a=0.5 o= o = 00

Figure source: (Minka, 2005).

47/59



Alpha Diver

Da(pl|

(Amari, 1985).

q) =

gence

Jy (ap(8) + (1 = a)a(6) — p(6)*q(6)'~*) dB

q tends to fit a mode of p

Q

a(l—a)

q tends to fit p globally

0

| Jf\)f\ﬁk

p
q
o= —00 a=0
Variational
Bayes (VB)
KL(ql|p)

Figure source: (Minka, 2005).

a=1

Expectation
propagation (EP)

KL(pllq)
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Alpha Divergence

Jy (ap(8) + (1 = a)a(6) — p(6)*q(6)'~*) dB

D =
a(qu) a(lfa)
(Amari, 1985).
«
q tends to fit a mode of p q tends to fit p globally
T T
0
p p
| | Jf\ y\ ﬁk
a=—00 a=0 a=1
Variational Expectation
Bayes (VB) propagation (EP)
KL(ql|p) KL(pllq)

Figure source: (Minka, 2005).
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Local a-divergence minimization (Power EP)

Approximates

p(Fly) o to(f) [T, ti(F)

with

q(F) o< to(F) T/, Ei(t)
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Approximates | p(f|y) o to(f) HJN:I t;(f)

with

q(F) o< to(F) T/, Ei(t)

p(fly)oc to(f) ti(f) to(f) ta(f) q(f) o< to(f) ti(f) taof) ts(f)
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Local a-divergence minimization (Power EP)

Approximates | p(fly) o to(F) [T/, ;(f) | with | q(F) o< to(F) TTL; £(t)

p(fly)oc to(f) ti(f) to(f) ta(f) q(f) o< to(f) ti(f) taof) ts(f)

—e <2< v [ ][ 1 1 ]

The t; are tuned by minimizing local a-divergences

pi(f) oc ti(F) 1y &(f)

D.[p; fory=1,...,N, where K .
[Pilla]  for] a(f) o G T, i)
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Local a-divergence minimization (Power EP)

Approximates | p(fly) o to(F) [T/, ;(f) | with | q(F) o< to(F) TTL; £(t)

p(fly)oc to(f) ti(f) to(f) ta(f) q(f) o< to(f) ti(f) taof) ts(f)

—e <2< v [ ][ 1 1 ]

The t; are tuned by minimizing local a-divergences
BiE) o ()1 ()
q(f) o g(F) [ ti(f)

It turns out that the «a-divergence can be minimized in terms of
the KL-divergence!

Do[pjllq] forj=1,...,N, where
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a-divergence minimization via KL minimization

Power EP steps to refine t;:

49 /59



a-divergence minimization via KL minimization

Power EP steps to refine t;:

©® Compute cavity: ¢\ o g/

49 /59



a-divergence minimization via KL minimization

Power EP steps to refine t;:
® Compute cavity: ¢\ o g/

® Minimize KL(Z; 't*q\*||q) to find g"e".

49 /59



a-divergence minimization via KL minimization

Power EP steps to refine t;:
® Compute cavity: ¢\ o g/
® Minimize KL(Z; 't*q\*||q) to find g"e".

©® Update factor: W = (Ziqnew/q\ai)é-

49 /59



a-divergence minimization via KL minimization

Power EP steps to refine t;:
® Compute cavity: ¢\ o g/
® Minimize KL(Z; 't*q\*||q) to find g"e".
©® Update factor: W = (Zig"™ /q\*/)a .

At convergence the moments of p = Zi_lfio‘q\o‘i and g match!

49 /59



a-divergence minimization via KL minimization

Power EP steps to refine t;:
® Compute cavity: ¢\ o g/
® Minimize KL(Z; 't*q\*||q) to find g"e".
©® Update factor: W = (Zig"™ /q\*/)a .

At convergence the moments of p = Zi_1

f,-“q\o‘i and g match!

Ve Dalpilla] = % (Eq[s(0)] — Ep[s(0)]) o< Vi KL[B||q]
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a-divergence minimization via KL minimization
Power EP steps to refine t;:

® Compute cavity: ¢\ o g/

® Minimize KL(Z; 't*q\*||q) to find g"e".

©® Update factor: W = (Zig"™ /q\*/)a .

At convergence the moments of p = Zi_1

f@q\* and q match!
Zs i
Vg Dalpilla] = —= (Eq[s(0)] — E5[s(8)]) o Vi KL[B][q]
where p o (t:g\)¥qt™* = tFq\*.

At convergence V, D, [ps||q] equals zero!
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PEP as an Optimization Problem

The PEP approximation to the evidence p(y) is given by:

N
1 ai
log Zpep = &(11q) — &(Mprior) + ) o (log Zi + g(nq) — g(ng ))
i=1
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PEP as an Optimization Problem

The PEP approximation to the evidence p(y) is given by:

N
1 ai
log Zpep = &(11q) — &(Mprior) + ) o (log Zi + g(nq) — g(ng ))
i=1

Besides the PEP updates, the PEP solution for g is found by solving:

N

max min log Zpgp subject to g o ﬁH t.
q  t1,..ty i1

Can be solved with a double-loop algorithm. Too slow in practice!
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Approximate Power Expectation Propagation

p({F 0} ly) oc B{E WYy)  p(ulfF) plvalfF) plyslf)
~ p({fhultl) f({ul}e ) R({ule,) (') ca({f u'})

s | —  —

We tie the approximate
factors!

~ (') i) i) B eca({E u'hEy)
] |
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Approximate Power Expectation Propagation

p({f 0 e |y) o BUEL u'Yy)  p(ulfE) p(uelfE) plyslfi)
e 544/ 06‘3’!1 =
~ (L ult ) H{ulye ) B({ulE) (({u'Y,) o« a({ffu'}L,)
o ) — — |

We tie the approximate
factors!

~ p({f ) d(fuhe,) i{u'ty) f{uh) oo u'he)
I— | | | | |

® max min problem — max problem, no double-loop needed!
9 f,.f
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Approximate Power Expectation Propagation

p({F 0} ly) oc B{E WYy)  p(ulfF) plvalfF) plyslf)
XY XD oo
~ p({fu'}e,) B({u}e) R({uE) ('} ) ocq({f u'}))
o Y —  —

We tie the approximate
factors!

~ (') i) i) B eca({E u'hEy)
I— | | | | |

® max min problem — max problem, no double-loop needed!
9 f,.f

The final objective is:

log Zpep = g(10q) — &(Mprior) + Sy L (log Zi + g(ng) — g(Mge))

which is suitable for standard optimization and mini-batch training.
(Villacampa, 2022)(Li, 2017)
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Approximate Power Expectation Propagation

p({F 0} ly) oc B{E WYy)  p(ulfF) plvalfF) plyslf)
XY XD oo
~ p({fu'}e,) B({u}e) R({uE) ('} ) ocq({f u'}))
o Y —  —

We tie the approximate
factors!

~ (') i) i) B eca({E u'hEy)
I— | | | | |

® max min problem — max problem, no double-loop needed!
9 f,.f

The final objective is:

log Zpep = g(Nq) — &(Nprior) + ZIN:]. é( log Z; + g(ng) — g(’?qﬁfv))

which is suitable for standard optimization and mini-batch training.
(Villacampa, 2022)(Li, 2017)
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Approximating log Z;

Note that log Z; = Iogfp(y;|)‘iL)o‘q\ai(ﬁL)df}L is the log predictive
likelihood of instance i when removed from the training set.
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Approximating log Z;
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Approximating log Z;

Note that log Z; = Iogfp(y;|)‘iL)o‘q\ai(ﬂL)df}L is the log predictive
likelihood of instance i when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection
method used by AEP!
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Further Approximations

Consider a =~ 0 or N — oo (i.e., the cavity becomes q):

N

1 .
log Zpep ~ g(1q) — &(1Mprior) + Y — (108 Zi + &(nq) — &(1z))
i=1

N o1
=Y~ log Zi = Rg[qeav|prior]
i=1

with Rg[gcav|prior] a Rényi divergence, becomes similar to

N

1 ~ .
log Zpep =~ Z o log Z; — KL[q|prior],
i=1
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Further Approximations

Consider a =~ 0 or N — oo (i.e., the cavity becomes q):

N

1 .
log Zpep ~ g(1q) — &(1Mprior) + Y — (108 Zi + &(nq) — &(1z))
i=1

N o1
=Y~ log Zi = Rg[qeav|prior]
i=1

with Rg[gcav|prior] a Rényi divergence, becomes similar to

N
1 = .
log Zpep =~ Z o log Z; — KL[q|prior],
i=1

Which for a — 0 gives the DVSVI objective and for o =1 is
expected to give similar results to AEP (better estimating log Z;)!
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a-Divergence Minimization: lllustrative Example

DGP (L =2, M =10) (alpha = 1e-3)
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a-Divergence Minimization: lllustrative Example

DGP (L = 2, M = 10) (alpha = 0.5)
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a-Divergence Minimization: lllustrative Example

DGP (L = 2, M = 10) (alpha = 1.0)
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a-Divergence Minimization: lllustrative Example

DGP (L = 2, M = 10) (alpha = 1.0)

The value of « has an impact on the final predictive distribution!
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a-Divergence Minimization: Toy Problems

Training data for bi-modal problem

Training data for heteroskedastic problem
.
L9
10 10
5 5
> 9 - 0
-5 -5
-10 o €
-10 = Ground truth S %, = Ground truth
e Data points . e Data points
=20 -15 -1.0 -05 0.0 05 1.0 15 20 -4 -3 -2 -1 0 1 2 3 4
x

55 /59



a-Divergence Minimization: Toy Problems

Training data for bi-modal problem Training data for heteroskedastic problem

> 9 - 0
-5
-5
-10 % 0'.
-10 = Ground truth e e = Ground truth
e Data points . e Data points
-2.0 -5 -1.0 -05 0.0 0.5 1.0 15 20 -4 -3 -2 -1 0 1 2 3 4

The first problem has heteroscedastic noise. The second, a
bimodal predictive distribution!

(Depeweng, 2016)
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a-Divergence Minimization: Toy Problems

Alpha = 1le-3 Alpha = 0.5 Alpha = 1.0

Prodictions alpha 0.001 Predictions alpha 0.5 Predictions alpha 1.0

Bimodal
Problem

Proditons pha 001 Predictions alpha 0.5 Predictions alpha 1.0

Heteroscedastic
Noise Problem
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a-Divergence Minimization: Toy Problems

Bimodal
Problem

Heteroscedastic
Noise Problem

Alpha = 1le-3

Predictions alpha 0.001

Alpha = 0.5

Predictions alpha

Alpha = 1.0

Predictions alpha 1.0

Prodictons igha 0001

Predictions alpha 0.5

Predictions alpha 1.0

The value o = 1.0 provides more sensible predictive distributions!
(Villacampa, 2022)
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a-Divergence Minimization: Average Ranks
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The value a = 1.0 provides better results in terms of the NLL and

intermediate values of « give better RMSE!
(Villacampa, 2022)
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Summary about DGPs

Useful for input warping: automatic, non-parametric kernel design.

Repair damage done by sparse approximations to GPs.

® More accurate predictions and better uncertainty estimates.

Better cost scaling w.r.t. depth L rather than inducing points M.

® More complex inference: DSVI, AEP, a-divergence minimization.

a-divergence minimization generalizes the other methods.
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