
Part III: Deep Gaussian Processes

Daniel Hernández–Lobato
Computer Science Department

Universidad Autónoma de Madrid

http://dhnzl.org, daniel.hernandez@uam.es

1 / 59

http://dhnzl.org
mailto:daniel.hernandez@uam.es

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Summary so Far about GPs

Advantages of GPs:

• Non-parametric models!

• Exact Bayesian inference is tractable!

• They scale to very large datasets!

• Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about f (x)!

• The predictive distribution is always Gaussian!

• Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

2 / 59

Motivation for Deep Gaussian Processes

x1

x
2

GP fit

x1

x
2

Target function

x1

x
2

DGP fit

3 / 59

Motivation for Deep Gaussian Processes

x1

x
2

GP fit

x1

x
2

Target function

x1

x
2

DGP fit

3 / 59

Motivation for Deep Gaussian Processes

x1

x
2

GP fit

x1

x
2

Target function

x1

x
2

DGP fit

3 / 59

How do deep GPs work?

x1

x
2

x1

x
2

f11

f 1
2

x1, x2

f11(x1, x2) f12(x1, x2)

f2(f11, f12)

y
+ noise

≡

x1

x
2

y = g(x1, x2)+ noise

f11, f12, f2 ∼ GP(0,C (·, ·))

4 / 59

How do deep GPs work?

x1

x
2

x1

x
2

f11

f 1
2

x1, x2

f11(x1, x2) f12(x1, x2)

f2(f11, f12)

y
+ noise

≡

x1

x
2

y = g(x1, x2)+ noise

f11, f12, f2 ∼ GP(0,C (·, ·))

4 / 59

How do deep GPs work?

x1

x
2

x1

x
2

f11

f 1
2

x1, x2

f11(x1, x2) f12(x1, x2)

f2(f11, f12)

y
+ noise

≡

x1

x
2

y = g(x1, x2)+ noise

f11, f12, f2 ∼ GP(0,C (·, ·))

4 / 59

Deep GPs as Deep Neural Networks

x1

x2

x3

Inputs

x

GP

f (1)(x)

GP

y

GP

f (3)(x)

GP

f (2)(x)

5 / 59

Deep GPs: Composition of Functions

y = f (g(x)) , f (x) ∼ GP(0,Cf (x, x
′)) g(x) ∼ GP(0,Cg (x, x

′))

6 / 59

Deep GPs: Composition of Functions

y = f (g(x)) , f (x) ∼ GP(0,Cf (x, x
′)) g(x) ∼ GP(0,Cg (x, x

′))

6 / 59

Deep GPs: Composition of Functions

y = f (g(x)) , f (x) ∼ GP(0,Cf (x, x
′)) g(x) ∼ GP(0,Cg (x, x

′))

6 / 59

Deep GPs: Composition of Functions

y = f (g(x)) , f (x) ∼ GP(0,Cf (x, x
′)) g(x) ∼ GP(0,Cg (x, x

′))

6 / 59

Deep GPs: Composition of Functions

y = f (g(x)) , f (x) ∼ GP(0,Cf (x, x
′)) g(x) ∼ GP(0,Cg (x, x

′))

Deep GPs perform
automatic

covariance function
design!

6 / 59

Deep GP Predictive Distribution

−2 −1 0 1 2

0.
0

0.
5

1.
0

Standard GP

x

y

−2 −1 0 1 2

0.
0

0.
5

1.
0

Deep GP with 2 hidden layers of 2 units

x

y

In a deep GP the predictive distribution needs not be Gaussian!

7 / 59

Deep GP Predictive Distribution

−2 −1 0 1 2

0.
0

0.
5

1.
0

Standard GP

x

y

−2 −1 0 1 2

0.
0

0.
5

1.
0

Deep GP with 2 hidden layers of 2 units

x

y

In a deep GP the predictive distribution needs not be Gaussian!

7 / 59

Deep GP Predictive Distribution

−2 −1 0 1 2

0.
0

0.
5

1.
0

Standard GP

x

y

−2 −1 0 1 2

0.
0

0.
5

1.
0

Deep GP with 2 hidden layers of 2 units

x

y

In a deep GP the predictive distribution needs not be Gaussian!

7 / 59

Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.

8 / 59

Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.

8 / 59

Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.

8 / 59

Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.

8 / 59

Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.

8 / 59

Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.

8 / 59

Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.

8 / 59

Why deep GPs?

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

• High computational cost of approximate inference.

8 / 59

Bayesian inference

Posterior over latent functions (typically at the observed data X):

p(f1, f2, f3|Y) =
p(f1)p(f2)p(f3) p(Y|f1, f2, f3,X)

p(Y)

• GP priors

• Likelihood function

• Marginal likelihood

But the posterior p(f1, f2, f3|Y) is intractable.

9 / 59

Inducing Points Representation

Latent variables: from O(N) to O(M), with M ≪ N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x⋆)|u) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,uu ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ .

If p(u) = N (u|m,S), then p(f (x⋆)) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,um ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ +Σf ⋆,uΣ

−1
u,uSΣ

−1
u,uΣu,f ⋆

Given u or a Gaussian for u, f (x⋆) is fully specified!

10 / 59

Inducing Points Representation

Latent variables: from O(N) to O(M), with M ≪ N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x⋆)|u) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,uu ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ .

If p(u) = N (u|m,S), then p(f (x⋆)) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,um ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ +Σf ⋆,uΣ

−1
u,uSΣ

−1
u,uΣu,f ⋆

Given u or a Gaussian for u, f (x⋆) is fully specified!

10 / 59

Inducing Points Representation

Latent variables: from O(N) to O(M), with M ≪ N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x⋆)|u) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,uu ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ .

If p(u) = N (u|m,S), then p(f (x⋆)) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,um ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ +Σf ⋆,uΣ

−1
u,uSΣ

−1
u,uΣu,f ⋆

Given u or a Gaussian for u, f (x⋆) is fully specified!

10 / 59

Inducing Points Representation

Latent variables: from O(N) to O(M), with M ≪ N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x⋆)|u) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,uu ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ .

If p(u) = N (u|m,S), then p(f (x⋆)) = N (f (x⋆)|m⋆, v⋆), where

m⋆ = Σf ⋆,uΣ
−1
u,um ,

v⋆ = Σf ⋆,f ⋆ −Σf ⋆,uΣ
−1
u,uΣu,f ⋆ +Σf ⋆,uΣ

−1
u,uSΣ

−1
u,uΣu,f ⋆

Given u or a Gaussian for u, f (x⋆) is fully specified!

10 / 59

Deep GPs Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

L∏
l=1

p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

Ideally we would like to make inference about {ul , f l}Ll=1!

11 / 59

Deep GPs Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

L∏
l=1

p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

Ideally we would like to make inference about {ul , f l}Ll=1!

11 / 59

Challenges of Approximate Inference for DGPs

The predictive distribution after the first layer is non Gaussian!

12 / 59

Challenges of Approximate Inference for DGPs

The predictive distribution after the first layer is non Gaussian!

12 / 59

Challenges of Approximate Inference for DGPs

The predictive distribution after the first layer is non Gaussian!

12 / 59

Challenges of Approximate Inference for DGPs

The predictive distribution after the first layer is non Gaussian!

12 / 59

Challenges of Approximate Inference for DGPs

The predictive distribution after the first layer is non Gaussian!

12 / 59

Methods for Training DGPs

• Using VI and an analytic lower bound.

• Using approximate expectation propagation.

• Using stochastic variational inference.

• By minimizing alpha divergences.

13 / 59

Methods for Training DGPs

• Using VI and an analytic lower bound.

• Using approximate expectation propagation.

• Using stochastic variational inference.

• By minimizing alpha divergences.

13 / 59

Methods for Training DGPs

• Using VI and an analytic lower bound.

• Using approximate expectation propagation.

• Using stochastic variational inference.

• By minimizing alpha divergences.

13 / 59

Methods for Training DGPs

• Using VI and an analytic lower bound.

• Using approximate expectation propagation.

• Using stochastic variational inference.

• By minimizing alpha divergences.

13 / 59

Analytic ELBO via Variational Inference

The early attempts for approximate inference in DGPs considered
fixed q that lead to an analytic ELBO!

For this, noisy versions of the variables at each layer but last are
introduced:

f̃ l = f l + ϵ , ϵ ∼ N (0,Λl) ,

with Λl a diagonal matrix for l = 1, . . . , L− 1.

The joint distribution is now:

p(y, {ul , f l}Ll=1, {f̃ l}L−1
l=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

p(fL|uL,XL
)p(uL|XL

)
L−1∏
l=1

p(f̃ l |f l)p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

14 / 59

Analytic ELBO via Variational Inference

The early attempts for approximate inference in DGPs considered
fixed q that lead to an analytic ELBO!

For this, noisy versions of the variables at each layer but last are
introduced:

f̃ l = f l + ϵ , ϵ ∼ N (0,Λl) ,

with Λl a diagonal matrix for l = 1, . . . , L− 1.

The joint distribution is now:

p(y, {ul , f l}Ll=1, {f̃ l}L−1
l=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

p(fL|uL,XL
)p(uL|XL

)
L−1∏
l=1

p(f̃ l |f l)p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

14 / 59

Analytic ELBO via Variational Inference

The early attempts for approximate inference in DGPs considered
fixed q that lead to an analytic ELBO!

For this, noisy versions of the variables at each layer but last are
introduced:

f̃ l = f l + ϵ , ϵ ∼ N (0,Λl) ,

with Λl a diagonal matrix for l = 1, . . . , L− 1.

The joint distribution is now:

p(y, {ul , f l}Ll=1, {f̃ l}L−1
l=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

p(fL|uL,XL
)p(uL|XL

)
L−1∏
l=1

p(f̃ l |f l)p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

14 / 59

Original Graphical Model and Extended

Both models are equivalent, but this setting simplifies inference!

15 / 59

Original Graphical Model and Extended

Both models are equivalent, but this setting simplifies inference!

15 / 59

Analytic ELBO via Variational Inference

The posterior approximation q considered assumes independence
among layers!

Posterior approximation:

q({ul , f l , f̃ l}Ll=1) = q(uL)p(fL|uL,Xl
)
L−1∏
l=1

q(ul)q(f̃ l)p(f l |ul ,Xl
) ,

where the input to the layer l + 1 is f̃ l and

q(ul) = N (ul |ml ,Sl) , q(f̃ l) = N (f̃ l |µl ,∆l) ,

with ∆l a diagonal matrix.

16 / 59

Analytic ELBO via Variational Inference

The posterior approximation q considered assumes independence
among layers!

Posterior approximation:

q({ul , f l , f̃ l}Ll=1) = q(uL)p(fL|uL,Xl
)
L−1∏
l=1

q(ul)q(f̃ l)p(f l |ul ,Xl
) ,

where the input to the layer l + 1 is f̃ l and

q(ul) = N (ul |ml ,Sl) , q(f̃ l) = N (f̃ l |µl ,∆l) ,

with ∆l a diagonal matrix.

16 / 59

Graphical Model and Approximate Distribution

17 / 59

Analytic Variational Inference for DGPs

Minimizes KL(q({ul , f l}Ll=1, {f̃ l}
L−1
l=1)|p({u

l , f l}Ll=1, {f̃ l}
L−1
l=1 |y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li)�����

p(fL|uL)p(uL)
∏L−1

l=1 p(f̃ l |f l)����p(f l |ul)p(ul)
�����
p(fL|uL)q(uL)

∏L−1
l=1 q(f̃ l)����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)] +
L−1∑
l=1

[
Eq[log p(f̃

l |f l)] + H[q(f̃ l)]
]

+
L∑

l=1

KL(q(ul)|p(ul)) .

Which can be evaluated in closed-form (form some cov. functions)
and maximized to find q and good model hyper-parameters!

(Damianou, 2013) 18 / 59

Analytic Variational Inference for DGPs

Minimizes KL(q({ul , f l}Ll=1, {f̃ l}
L−1
l=1)|p({u

l , f l}Ll=1, {f̃ l}
L−1
l=1 |y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li)�����

p(fL|uL)p(uL)
∏L−1

l=1 p(f̃ l |f l)����p(f l |ul)p(ul)
�����
p(fL|uL)q(uL)

∏L−1
l=1 q(f̃ l)����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)] +
L−1∑
l=1

[
Eq[log p(f̃

l |f l)] + H[q(f̃ l)]
]

+
L∑

l=1

KL(q(ul)|p(ul)) .

Which can be evaluated in closed-form (form some cov. functions)
and maximized to find q and good model hyper-parameters!

(Damianou, 2013) 18 / 59

Analytic Variational Inference for DGPs

Minimizes KL(q({ul , f l}Ll=1, {f̃ l}
L−1
l=1)|p({u

l , f l}Ll=1, {f̃ l}
L−1
l=1 |y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li)�����

p(fL|uL)p(uL)
∏L−1

l=1 p(f̃ l |f l)����p(f l |ul)p(ul)
�����
p(fL|uL)q(uL)

∏L−1
l=1 q(f̃ l)����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)] +
L−1∑
l=1

[
Eq[log p(f̃

l |f l)] + H[q(f̃ l)]
]

+
L∑

l=1

KL(q(ul)|p(ul)) .

Which can be evaluated in closed-form (form some cov. functions)
and maximized to find q and good model hyper-parameters!

(Damianou, 2013) 18 / 59

Predictive Distribution via Monte Carlo Sampling

For a particular fixed input, the predictive distribution of each
layer is Gaussian!

19 / 59

Predictive Distribution via Monte Carlo Sampling

For a particular fixed input, the predictive distribution of each
layer is Gaussian!

19 / 59

Predictive Distribution via Monte Carlo Sampling

For a particular fixed input, the predictive distribution of each
layer is Gaussian!

19 / 59

Predictive Distribution via Monte Carlo Sampling

For a particular fixed input, the predictive distribution of each
layer is Gaussian!

19 / 59

Predictive Distribution via Monte Carlo Sampling

For a particular fixed input, the predictive distribution of each
layer is Gaussian!

19 / 59

DGPs Tractable Bound: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

VFE (M = 10)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The VFE sparse GP reduces the length-scale to explain the data!

20 / 59

DGPs Tractable Bound: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

VFE (M = 10)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The VFE sparse GP reduces the length-scale to explain the data!

20 / 59

DGPs Tractable Bound: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The DGP provides a more sensible predictive distribution!

20 / 59

DGPs Tractable Bound: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The DGP provides a more sensible predictive distribution!

20 / 59

DGPs Tractable Bound: Illustrative Example

x

f 1(x)

f 2(f̃1)

y

+ noise

+ noise

≡

·

··

· ·

·

····

···

·

·

·

·

· ·

·

y = f 2(f 1(x) + noise)+ noise

f 1, f 2 ∼ GP(0,C (·, ·))

21 / 59

DGPs Tractable Bound: Illustrative Example

x

f 1(x)

f 2(f̃1)

y

+ noise

+ noise

≡

·

··

· ·

·

····

···

·

·

·

·

· ·

·

y = f 2(f 1(x) + noise)+ noise

f 1, f 2 ∼ GP(0,C (·, ·))

21 / 59

DGPs Tractable Bound: Illustrative Example

x

f 1(x)

f 2(f̃1)

y

+ noise

+ noise

≡

·

··

· ·

·

····

···

·

·

·

·

· ·

·

y = f 2(f 1(x) + noise)+ noise

f 1, f 2 ∼ GP(0,C (·, ·))
21 / 59

Limitations of DGPs via Tractable VI Bound

• The posterior approximation q assumes independence between
layers inputs and outputs.

• The tractable VI bound is limited to certain covariance functions,
e.g., the squared exponential covariance function.

• The original method did not consider mini-batch training and scales
linearly with N, which makes infeasible addressing large problems.

22 / 59

Limitations of DGPs via Tractable VI Bound

• The posterior approximation q assumes independence between
layers inputs and outputs.

• The tractable VI bound is limited to certain covariance functions,
e.g., the squared exponential covariance function.

• The original method did not consider mini-batch training and scales
linearly with N, which makes infeasible addressing large problems.

22 / 59

Limitations of DGPs via Tractable VI Bound

• The posterior approximation q assumes independence between
layers inputs and outputs.

• The tractable VI bound is limited to certain covariance functions,
e.g., the squared exponential covariance function.

• The original method did not consider mini-batch training and scales
linearly with N, which makes infeasible addressing large problems.

22 / 59

DGPs and Approximate Expectation Propagation

Features:

• Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

• Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

• Relies on a modified version of EP to estimate the approximate
distribution q using standard optimization techniques.

• The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)

23 / 59

DGPs and Approximate Expectation Propagation

Features:

• Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

• Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

• Relies on a modified version of EP to estimate the approximate
distribution q using standard optimization techniques.

• The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)

23 / 59

DGPs and Approximate Expectation Propagation

Features:

• Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

• Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

• Relies on a modified version of EP to estimate the approximate
distribution q using standard optimization techniques.

• The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)

23 / 59

DGPs and Approximate Expectation Propagation

Features:

• Does not assume independence between inputs and outputs in each
layer in the approximate distribution q.

• Uses the FITC approximation for tractable scaling and allows for
mini-batch training. Thus, the model is changed.

• Relies on a modified version of EP to estimate the approximate
distribution q using standard optimization techniques.

• The intractable predictive distribution at each layer is approximated
by a Gaussian with the same moments.

(Bui et al., 2016)

23 / 59

Alternative Graphical Model

24 / 59

Alternative Graphical Model

24 / 59

Alternative Graphical Model

24 / 59

Alternative Graphical Model

24 / 59

Alternative Graphical Model

24 / 59

Approximate Deep GP Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

L∏
l=1

p̃(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Approximate Deep GP prior p̃({f l , ul}Ll=1)

The FITC approximation enforces p̃(f l |ul ,Xl
) to factorize across

the N data instances!

25 / 59

Approximate Deep GP Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

L∏
l=1

p̃(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Approximate Deep GP prior p̃({f l , ul}Ll=1)

The FITC approximation enforces p̃(f l |ul ,Xl
) to factorize across

the N data instances!

25 / 59

Graphical Model and Approximate Distribution

q({f l ,ul}Ll=1) =
L∏

l=1

p̃(f l−1|ul) q(ul)

• Fixed and factorizing across data
• Tunable Gaussian

26 / 59

Graphical Model and Approximate Distribution

q({f l ,ul}Ll=1) =
L∏

l=1

p̃(f l−1|ul) q(ul)

• Fixed and factorizing across data
• Tunable Gaussian

26 / 59

Graphical Illustration of EP for DGPs

Approximates p({f l ,ul}Ll=1|y) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 p(yi |f Li) with

q({f l ,ul}Ll=1) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 t̃i ({ul}Ll=1)

The t̃i are tuned by minimizing the KL-divergence KL[p̂i ||q] ∀i ,

where
p̂i ({f l ,ul}Ll=1) ∝ p(yi |f Li)

∏
j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)

q({f l ,ul}Ll=1) ∝ t̃i ({u}Ll=1)
∏

j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)
.

Since p̃({f l ,ul}Ll=1) is fixed, we only have to match the moments
of p̂j and q over {ul}Ll=1!

27 / 59

Graphical Illustration of EP for DGPs

Approximates p({f l ,ul}Ll=1|y) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 p(yi |f Li) with

q({f l ,ul}Ll=1) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 t̃i ({ul}Ll=1)

The t̃i are tuned by minimizing the KL-divergence KL[p̂i ||q] ∀i ,

where
p̂i ({f l ,ul}Ll=1) ∝ p(yi |f Li)

∏
j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)

q({f l ,ul}Ll=1) ∝ t̃i ({u}Ll=1)
∏

j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)
.

Since p̃({f l ,ul}Ll=1) is fixed, we only have to match the moments
of p̂j and q over {ul}Ll=1!

27 / 59

Graphical Illustration of EP for DGPs

Approximates p({f l ,ul}Ll=1|y) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 p(yi |f Li) with

q({f l ,ul}Ll=1) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 t̃i ({ul}Ll=1)

The t̃i are tuned by minimizing the KL-divergence KL[p̂i ||q] ∀i ,

where
p̂i ({f l ,ul}Ll=1) ∝ p(yi |f Li)

∏
j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)

q({f l ,ul}Ll=1) ∝ t̃i ({u}Ll=1)
∏

j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)
.

Since p̃({f l ,ul}Ll=1) is fixed, we only have to match the moments
of p̂j and q over {ul}Ll=1!

27 / 59

Graphical Illustration of EP for DGPs

Approximates p({f l ,ul}Ll=1|y) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 p(yi |f Li) with

q({f l ,ul}Ll=1) ∝ p̃({f l ,ul}Ll=1)
∏N

i=1 t̃i ({ul}Ll=1)

The t̃i are tuned by minimizing the KL-divergence KL[p̂i ||q] ∀i ,

where
p̂i ({f l ,ul}Ll=1) ∝ p(yi |f Li)

∏
j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)

q({f l ,ul}Ll=1) ∝ t̃i ({u}Ll=1)
∏

j ̸=i t̃j({ul}Ll=1)p̃({f l ,ul}Ll=1)
.

Since p̃({f l ,ul}Ll=1) is fixed, we only have to match the moments
of p̂j and q over {ul}Ll=1!

27 / 59

EP as an Optimization Problem

The EP approximation to the evidence p(y) is given by:

logZEP = g(ηq)− g(ηprior) +
N∑
i=1

logZi + g(ηq)− g(η
\i
q)

Besides the EP updates, the EP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm. Too slow in practice!

28 / 59

EP as an Optimization Problem

The EP approximation to the evidence p(y) is given by:

logZEP = g(ηq)− g(ηprior) +
N∑
i=1

logZi + g(ηq)− g(η
\i
q)

Besides the EP updates, the EP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm. Too slow in practice!

28 / 59

EP as an Optimization Problem

The EP approximation to the evidence p(y) is given by:

logZEP = g(ηq)− g(ηprior) +
N∑
i=1

logZi + g(ηq)− g(η
\i
q)

Besides the EP updates, the EP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm.

Too slow in practice!

28 / 59

EP as an Optimization Problem

The EP approximation to the evidence p(y) is given by:

logZEP = g(ηq)− g(ηprior) +
N∑
i=1

logZi + g(ηq)− g(η
\i
q)

Besides the EP updates, the EP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm. Too slow in practice!

28 / 59

Approximate Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZEP = g(ηq)− g(ηprior) +
∑N

i=1 log+g(ηq)− g(ηcav
q)

which is suitable for standard optimization and mini-batch training.

29 / 59

Approximate Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZEP = g(ηq)− g(ηprior) +
∑N

i=1 log+g(ηq)− g(ηcav
q)

which is suitable for standard optimization and mini-batch training.

29 / 59

Approximate Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZEP = g(ηq)− g(ηprior) +
∑N

i=1 logZi + g(ηq)− g(ηcav
q)

which is suitable for standard optimization and mini-batch training.

29 / 59

Approximate Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZEP = g(ηq)− g(ηprior) +
∑N

i=1 log Z̃i + g(ηq)− g(ηcav
q)

which is suitable for standard optimization and mini-batch training.

29 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)q\i (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use an iterative Gaussian approximation:

Doable for certain covariance functions, e.g., the squared
exponential!

30 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)q\i (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use an iterative Gaussian approximation:

Doable for certain covariance functions, e.g., the squared
exponential!

30 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)q\i (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use an iterative Gaussian approximation:

Doable for certain covariance functions, e.g., the squared
exponential!

30 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)q\i (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use an iterative Gaussian approximation:

Doable for certain covariance functions, e.g., the squared
exponential!

30 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)q\i (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use an iterative Gaussian approximation:

Doable for certain covariance functions, e.g., the squared
exponential!

30 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)q\i (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use an iterative Gaussian approximation:

Doable for certain covariance functions, e.g., the squared
exponential!

30 / 59

Gaussian Projection Example

31 / 59

Approx. EP for DGPs: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The AEP method provides a similar predictive distribution to the
previous method!

32 / 59

Approx. EP for DGPs: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The AEP method provides a similar predictive distribution to the
previous method!

32 / 59

Approx. EP for DGPs: Illustrative Example

x

f 1(x)

f 2(f1)

y + noise

≡

·

··

· ·

·

····

· ··

·

·

·

·

· ·

·

y = f 2(f 1(x))+ noise

f 1, f 2 ∼ GP(0,C (·, ·))

33 / 59

Approx. EP for DGPs: Illustrative Example

x

f 1(x)

f 2(f1)

y + noise

≡

·

··

· ·

·

····

· ··

·

·

·

·

· ·

·

y = f 2(f 1(x))+ noise

f 1, f 2 ∼ GP(0,C (·, ·))

33 / 59

Approx. EP for DGPs: Illustrative Example

x

f 1(x)

f 2(f1)

y + noise

≡

·

··

· ·

·

····

· ··

·

·

·

·

· ·

·

y = f 2(f 1(x))+ noise

f 1, f 2 ∼ GP(0,C (·, ·))
33 / 59

Limitations of Approx. EP for DGPs

• The approximate predictive distribution of q at each layer is a
Gaussian projection, which can be a crude approximation.

• It is limited to certain covariance functions, e.g., the squared
exponential covariance function.

• It modifies the deep GP prior and hence the model, by introducing
the FITC approximation.

34 / 59

Limitations of Approx. EP for DGPs

• The approximate predictive distribution of q at each layer is a
Gaussian projection, which can be a crude approximation.

• It is limited to certain covariance functions, e.g., the squared
exponential covariance function.

• It modifies the deep GP prior and hence the model, by introducing
the FITC approximation.

34 / 59

Limitations of Approx. EP for DGPs

• The approximate predictive distribution of q at each layer is a
Gaussian projection, which can be a crude approximation.

• It is limited to certain covariance functions, e.g., the squared
exponential covariance function.

• It modifies the deep GP prior and hence the model, by introducing
the FITC approximation.

34 / 59

Doubly Stochastic Variational Inference for DGPs

Features:

• Considers dependencies between inputs and outputs at each layer.

• Does not change the DGP prior, which is kept intact.

• Uses stochastic variational inference to approximate the posterior.

• Each layer predictive distribution is approximated by Monte Carlo.

(Salimbeni, 2017)

35 / 59

Doubly Stochastic Variational Inference for DGPs

Features:

• Considers dependencies between inputs and outputs at each layer.

• Does not change the DGP prior, which is kept intact.

• Uses stochastic variational inference to approximate the posterior.

• Each layer predictive distribution is approximated by Monte Carlo.

(Salimbeni, 2017)

35 / 59

Doubly Stochastic Variational Inference for DGPs

Features:

• Considers dependencies between inputs and outputs at each layer.

• Does not change the DGP prior, which is kept intact.

• Uses stochastic variational inference to approximate the posterior.

• Each layer predictive distribution is approximated by Monte Carlo.

(Salimbeni, 2017)

35 / 59

Doubly Stochastic Variational Inference for DGPs

Features:

• Considers dependencies between inputs and outputs at each layer.

• Does not change the DGP prior, which is kept intact.

• Uses stochastic variational inference to approximate the posterior.

• Each layer predictive distribution is approximated by Monte Carlo.

(Salimbeni, 2017)

35 / 59

Black-box Variational Inference

VI works when we can compute Eq[log p(f, y)] in closed form!

In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of ∂L(qθ)/dθ and
stochastic optimization techniques to maximize L!

Black-box VI can be used with arbitrarily complicated models:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

= Eq

[
log p(f, y)

∂

∂θ
log qθ(f)

]
+

∂Hq

∂θ

≈ 1

S

S∑
s=1

log p(fs , y)
∂

∂θ
log qθ(fs) +

∂Hq

∂θ

This is an unbiased estimate of the gradient and can be plugged
in any stochastic optimization algorithm!

36 / 59

Black-box Variational Inference

VI works when we can compute Eq[log p(f, y)] in closed form!

In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of ∂L(qθ)/dθ and
stochastic optimization techniques to maximize L!

Black-box VI can be used with arbitrarily complicated models:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

= Eq

[
log p(f, y)

∂

∂θ
log qθ(f)

]
+

∂Hq

∂θ

≈ 1

S

S∑
s=1

log p(fs , y)
∂

∂θ
log qθ(fs) +

∂Hq

∂θ

This is an unbiased estimate of the gradient and can be plugged
in any stochastic optimization algorithm!

36 / 59

Black-box Variational Inference

VI works when we can compute Eq[log p(f, y)] in closed form!

In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of ∂L(qθ)/dθ and
stochastic optimization techniques to maximize L!

Black-box VI can be used with arbitrarily complicated models:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

= Eq

[
log p(f, y)

∂

∂θ
log qθ(f)

]
+

∂Hq

∂θ

≈ 1

S

S∑
s=1

log p(fs , y)
∂

∂θ
log qθ(fs) +

∂Hq

∂θ

This is an unbiased estimate of the gradient and can be plugged
in any stochastic optimization algorithm!

36 / 59

Black-box Variational Inference

VI works when we can compute Eq[log p(f, y)] in closed form!

In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of ∂L(qθ)/dθ and
stochastic optimization techniques to maximize L!

Black-box VI can be used with arbitrarily complicated models:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

= Eq

[
log p(f, y)

∂

∂θ
log qθ(f)

]
+

∂Hq

∂θ

≈ 1

S

S∑
s=1

log p(fs , y)
∂

∂θ
log qθ(fs) +

∂Hq

∂θ

This is an unbiased estimate of the gradient and can be plugged
in any stochastic optimization algorithm!

36 / 59

Black-box Variational Inference

VI works when we can compute Eq[log p(f, y)] in closed form!

In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of ∂L(qθ)/dθ and
stochastic optimization techniques to maximize L!

Black-box VI can be used with arbitrarily complicated models:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

= Eq

[
log p(f, y)

∂

∂θ
log qθ(f)

]
+

∂Hq

∂θ

≈ 1

S

S∑
s=1

log p(fs , y)
∂

∂θ
log qθ(fs) +

∂Hq

∂θ

This is an unbiased estimate of the gradient and can be plugged
in any stochastic optimization algorithm!

36 / 59

Stochastic Optimization

To converge to a local neighborhood of the optimum stochastic methods
only require an unbiased estimate of the gradient!

37 / 59

Stochastic Optimization

To converge to a local neighborhood of the optimum stochastic methods
only require an unbiased estimate of the gradient!

37 / 59

Reparametrization Trick

The previous estimator of the gradient can have high variance and
exhibit low convergence!

Sometimes the randomness can be separated from the parameters:

f ∼ N (µ, σ2) , f = µ+ σϵ , ϵ ∼ N (0, 1)

This allows to obtain another estimator of the gradient:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

≈ ∂

∂θ

1

S

S∑
s=1

log p(ϕ(ϵs ; θ), y) +
∂Hq

∂θ

where fs = ϕ(ϵs ; θ) for some function ϕ(·; θ).

This other estimator has less variance and leads to better results!

38 / 59

Reparametrization Trick

The previous estimator of the gradient can have high variance and
exhibit low convergence!

Sometimes the randomness can be separated from the parameters:

f ∼ N (µ, σ2) , f = µ+ σϵ , ϵ ∼ N (0, 1)

This allows to obtain another estimator of the gradient:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

≈ ∂

∂θ

1

S

S∑
s=1

log p(ϕ(ϵs ; θ), y) +
∂Hq

∂θ

where fs = ϕ(ϵs ; θ) for some function ϕ(·; θ).

This other estimator has less variance and leads to better results!

38 / 59

Reparametrization Trick

The previous estimator of the gradient can have high variance and
exhibit low convergence!

Sometimes the randomness can be separated from the parameters:

f ∼ N (µ, σ2) , f = µ+ σϵ , ϵ ∼ N (0, 1)

This allows to obtain another estimator of the gradient:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

≈ ∂

∂θ

1

S

S∑
s=1

log p(ϕ(ϵs ; θ), y) +
∂Hq

∂θ

where fs = ϕ(ϵs ; θ) for some function ϕ(·; θ).

This other estimator has less variance and leads to better results!

38 / 59

Reparametrization Trick

The previous estimator of the gradient can have high variance and
exhibit low convergence!

Sometimes the randomness can be separated from the parameters:

f ∼ N (µ, σ2) , f = µ+ σϵ , ϵ ∼ N (0, 1)

This allows to obtain another estimator of the gradient:

∂L(qθ)
∂θ

=
∂

∂θ
Eq[log p(f, y)] +

∂Hq

∂θ

≈ ∂

∂θ

1

S

S∑
s=1

log p(ϕ(ϵs ; θ), y) +
∂Hq

∂θ

where fs = ϕ(ϵs ; θ) for some function ϕ(·; θ).

This other estimator has less variance and leads to better results!

38 / 59

Deep GPs Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

L∏
l=1

p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

No change in the model is made at all!

39 / 59

Deep GPs Joint Distribution

p(y, {ul , f l}Ll=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

L∏
l=1

p(f l |ul ,Xl
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

No change in the model is made at all!

39 / 59

Graphical Model and Posterior Approximation

q({f l ,ul}Ll=1) =
L∏

l=1

p(f l |ul) q(ul)

• Fixed
• Tunable

40 / 59

Graphical Model and Posterior Approximation

q({f l ,ul}Ll=1) =
L∏

l=1

p(f l |ul) q(ul)

• Fixed
• Tunable

40 / 59

Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li)

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)]−
L∑

l=1

KL(q(ul)|p(ul)) .

• The expectations can be approximated by Monte Carlo.

• Suitable for mini-batch training by subsampling the data.

(Salimbeni, 2017)

41 / 59

Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li)

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)]−
L∑

l=1

KL(q(ul)|p(ul)) .

• The expectations can be approximated by Monte Carlo.

• Suitable for mini-batch training by subsampling the data.

(Salimbeni, 2017)

41 / 59

Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li)

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)]−
L∑

l=1

KL(q(ul)|p(ul)) .

• The expectations can be approximated by Monte Carlo.

• Suitable for mini-batch training by subsampling the data.

(Salimbeni, 2017)

41 / 59

Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing the lower bound on log p(y):

L = Eq

[
log

∏N
i=1 p(yi |f Li)

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)]−
L∑

l=1

KL(q(ul)|p(ul)) .

• The expectations can be approximated by Monte Carlo.

• Suitable for mini-batch training by subsampling the data.

(Salimbeni, 2017)

41 / 59

Predictive Distribution via Monte Carlo Sampling

Used not only for testing, but also during training, unlike the
previous methods!

42 / 59

Predictive Distribution via Monte Carlo Sampling

Used not only for testing, but also during training, unlike the
previous methods!

42 / 59

Predictive Distribution via Monte Carlo Sampling

Used not only for testing, but also during training, unlike the
previous methods!

42 / 59

Predictive Distribution via Monte Carlo Sampling

Used not only for testing, but also during training, unlike the
previous methods!

42 / 59

Predictive Distribution via Monte Carlo Sampling

Used not only for testing, but also during training, unlike the
previous methods!

42 / 59

DSVI for DGPs: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

DSVI provides better results than the previous methods!

43 / 59

DSVI for DGPs: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

DSVI provides better results than the previous methods!

43 / 59

DSVI for DGPs: Illustrative Example

x

f 1(x)

f 2(f1)

y + noise

≡

·

··

· ·

·

····

· ··

·

·

·

·

· ·

·

y = f 2(f 1(x))+ noise

f 1, f 2 ∼ GP(0,C (·, ·))

44 / 59

DSVI for DGPs: Illustrative Example

x

f 1(x)

f 2(f1)

y + noise

≡

·

··

· ·

·

····

· ··

·

·

·

·

· ·

·

y = f 2(f 1(x))+ noise

f 1, f 2 ∼ GP(0,C (·, ·))

44 / 59

DSVI for DGPs: Illustrative Example

x

f 1(x)

f 2(f1)

y + noise

≡

·

··

· ·

·

····

· ··

·

·

·

·

· ·

·

y = f 2(f 1(x))+ noise

f 1, f 2 ∼ GP(0,C (·, ·))
44 / 59

DGPs via DSVI: LL Experimental Results

-2.89 -2.63 -2.37

Linear

SGP

SGP 500

AEDGP 2

DGP 2

DGP 3

DGP 4

DGP 5

PBP

boston
N=506, D=13

-3.75 -3.43 -3.11

concrete
N=1030, D=8

-2.39 -1.55 -0.71

energy
N=768, D=8

0.25 0.78 1.31

Linear

SGP

SGP 500

AEDGP 2

DGP 2

DGP 3

DGP 4

DGP 5

PBP

kin8nm
N=8192, D=8

3.92 5.39 6.86

Linear

SGP

SGP 500

AEDGP 2

DGP 2

DGP 3

DGP 4

DGP 5

PBP

naval
N=11934, D=26

-2.92 -2.83 -2.73

power
N=9568, D=4

-3.05 -2.89 -2.73

protein
N=45730, D=9

-1.01 -0.97 -0.93

Linear

SGP

SGP 500

AEDGP 2

DGP 2

DGP 3

DGP 4

DGP 5

PBP

wine_red
N=1599, D=22

Bayesian NN Single layer benchmarks DGP with approx EP DGP SVI

DGPs perform similar or better than the sparse GP and adding
more layers does not seem to overfit!

(Salimbeni, 2017)

45 / 59

DGPs via DSVI: LL Experimental Results

-2.89 -2.63 -2.37

Linear

SGP

SGP 500

AEDGP 2

DGP 2

DGP 3

DGP 4

DGP 5

PBP

boston
N=506, D=13

-3.75 -3.43 -3.11

concrete
N=1030, D=8

-2.39 -1.55 -0.71

energy
N=768, D=8

0.25 0.78 1.31

Linear

SGP

SGP 500

AEDGP 2

DGP 2

DGP 3

DGP 4

DGP 5

PBP

kin8nm
N=8192, D=8

3.92 5.39 6.86

Linear

SGP

SGP 500

AEDGP 2

DGP 2

DGP 3

DGP 4

DGP 5

PBP

naval
N=11934, D=26

-2.92 -2.83 -2.73

power
N=9568, D=4

-3.05 -2.89 -2.73

protein
N=45730, D=9

-1.01 -0.97 -0.93

Linear

SGP

SGP 500

AEDGP 2

DGP 2

DGP 3

DGP 4

DGP 5

PBP

wine_red
N=1599, D=22

Bayesian NN Single layer benchmarks DGP with approx EP DGP SVI

DGPs perform similar or better than the sparse GP and adding
more layers does not seem to overfit!

(Salimbeni, 2017)

45 / 59

Limitations of DSVI for DGPs

DSVI and the approximate EP method for training DGPs target
different divergences: KL[q|p] and KL[p|q]!

KL[p|q]

x1

x2

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−2 −1 0 1 2 3

−2
−1

0
1

2
3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Target Gaussian
Approximate Gaussian

KL[q|p]

x1

x2

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−2 −1 0 1 2 3

−2
−1

0
1

2
3

5

10

15 20

25

35

Target Gaussian
Approximate Gaussian

KL[q|p] may result in too compact approximations while KL[p|q]
may put mass in regions with no posterior density.

Can we have
something in between?

46 / 59

Limitations of DSVI for DGPs

DSVI and the approximate EP method for training DGPs target
different divergences: KL[q|p] and KL[p|q]!

KL[p|q]

x1

x2

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−2 −1 0 1 2 3

−2
−1

0
1

2
3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Target Gaussian
Approximate Gaussian

KL[q|p]

x1

x2

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−2 −1 0 1 2 3
−2

−1
0

1
2

3

5

10

15 20

25

35

Target Gaussian
Approximate Gaussian

KL[q|p] may result in too compact approximations while KL[p|q]
may put mass in regions with no posterior density.

Can we have
something in between?

46 / 59

Limitations of DSVI for DGPs

DSVI and the approximate EP method for training DGPs target
different divergences: KL[q|p] and KL[p|q]!

KL[p|q]

x1

x2

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−2 −1 0 1 2 3

−2
−1

0
1

2
3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Target Gaussian
Approximate Gaussian

KL[q|p]

x1

x2

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−2 −1 0 1 2 3
−2

−1
0

1
2

3

5

10

15 20

25

35

Target Gaussian
Approximate Gaussian

KL[q|p] may result in too compact approximations while KL[p|q]
may put mass in regions with no posterior density.

Can we have
something in between?

46 / 59

Limitations of DSVI for DGPs

DSVI and the approximate EP method for training DGPs target
different divergences: KL[q|p] and KL[p|q]!

KL[p|q]

x1

x2

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−2 −1 0 1 2 3

−2
−1

0
1

2
3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Target Gaussian
Approximate Gaussian

KL[q|p]

x1

x2

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−2 −1 0 1 2 3
−2

−1
0

1
2

3

5

10

15 20

25

35

Target Gaussian
Approximate Gaussian

KL[q|p] may result in too compact approximations while KL[p|q]
may put mass in regions with no posterior density. Can we have

something in between?

46 / 59

Alpha Divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α)
.

(Amari, 1985).

Figure source: (Minka, 2005).

47 / 59

Alpha Divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α)
.

(Amari, 1985).

0.5 10

q tends to fit a mode of p q tends to fit p globally

Figure source: (Minka, 2005).

47 / 59

Alpha Divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α)
.

(Amari, 1985).

Variational
Bayes (VB)

0.5 10

q tends to fit a mode of p q tends to fit p globally

Expectation
propagation (EP)

Figure source: (Minka, 2005).

47 / 59

Alpha Divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α)
.

(Amari, 1985).

Variational
Bayes (VB)

0.5 10

q tends to fit a mode of p q tends to fit p globally

Expectation
propagation (EP)

Figure source: (Minka, 2005).

47 / 59

Local α-divergence minimization (Power EP)

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing local α-divergences

Dα[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

It turns out that the α-divergence can be minimized in terms of
the KL-divergence!

48 / 59

Local α-divergence minimization (Power EP)

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing local α-divergences

Dα[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

It turns out that the α-divergence can be minimized in terms of
the KL-divergence!

48 / 59

Local α-divergence minimization (Power EP)

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing local α-divergences

Dα[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

It turns out that the α-divergence can be minimized in terms of
the KL-divergence!

48 / 59

Local α-divergence minimization (Power EP)

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing local α-divergences

Dα[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

It turns out that the α-divergence can be minimized in terms of
the KL-divergence!

48 / 59

α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi)

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i)αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59

α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi)

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i)αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59

α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi)

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i)αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59

α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi)

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i)αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59

α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi)

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i)αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59

α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi)

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i)αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59

α-divergence minimization via KL minimization

Power EP steps to refine t̃i :

1 Compute cavity: q\αi ∝ q/t̃αi .

2 Minimize KL(Z−1
i tαi q

\αi ||q) to find qnew.

3 Update factor: t̃newi = (Ziq
new/q\αi)

1
α .

At convergence the moments of p̃ = Z−1
i f αi q\αi and q match!

∇ηqDα[pi ||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (tiq
\i)αq1−α = tαi q

\αi .

At convergence ∇ηqDα[pn||q] equals zero!

49 / 59

PEP as an Optimization Problem

The PEP approximation to the evidence p(y) is given by:

logZPEP = g(ηq)− g(ηprior) +
N∑
i=1

1

α

(
logZi + g(ηq)− g(η

\αi
q)

)

Besides the PEP updates, the PEP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZPEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm. Too slow in practice!

50 / 59

PEP as an Optimization Problem

The PEP approximation to the evidence p(y) is given by:

logZPEP = g(ηq)− g(ηprior) +
N∑
i=1

1

α

(
logZi + g(ηq)− g(η

\αi
q)

)
Besides the PEP updates, the PEP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZPEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm. Too slow in practice!

50 / 59

PEP as an Optimization Problem

The PEP approximation to the evidence p(y) is given by:

logZPEP = g(ηq)− g(ηprior) +
N∑
i=1

1

α

(
logZi + g(ηq)− g(η

\αi
q)

)
Besides the PEP updates, the PEP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZPEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm.

Too slow in practice!

50 / 59

PEP as an Optimization Problem

The PEP approximation to the evidence p(y) is given by:

logZPEP = g(ηq)− g(ηprior) +
N∑
i=1

1

α

(
logZi + g(ηq)− g(η

\αi
q)

)
Besides the PEP updates, the PEP solution for q is found by solving:

max
q

min
t̃1,...,t̃N

logZPEP subject to q ∝ p̃
N∏
i=1

t̃i .

Can be solved with a double-loop algorithm. Too slow in practice!

50 / 59

Approximate Power Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZPEP = g(ηq)− g(ηprior) +
∑N

i=1
1
α

(
log+g(ηq)− g(ηqcavα

)
)

which is suitable for standard optimization and mini-batch training.
(Villacampa, 2022)(Li, 2017)

51 / 59

Approximate Power Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZPEP = g(ηq)− g(ηprior) +
∑N

i=1
1
α

(
log+g(ηq)− g(ηqcavα

)
)

which is suitable for standard optimization and mini-batch training.
(Villacampa, 2022)(Li, 2017)

51 / 59

Approximate Power Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZPEP = g(ηq)− g(ηprior) +
∑N

i=1
1
α

(
logZi + g(ηq)− g(ηqcavα

)
)

which is suitable for standard optimization and mini-batch training.
(Villacampa, 2022)(Li, 2017)

51 / 59

Approximate Power Expectation Propagation

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

The final objective is:

logZPEP = g(ηq)− g(ηprior) +
∑N

i=1
1
α

(
log Z̃i + g(ηq)− g(ηqcavα

)
)

which is suitable for standard optimization and mini-batch training.
(Villacampa, 2022)(Li, 2017)

51 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)αq\αi (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection
method used by AEP!

52 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)αq\αi (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection
method used by AEP!

52 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)αq\αi (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection
method used by AEP!

52 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)αq\αi (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection
method used by AEP!

52 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)αq\αi (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection
method used by AEP!

52 / 59

Approximating log Zi

Note that logZi = log
∫
p(yi |f Li)αq\αi (f Li)df Li is the log predictive

likelihood of instance i when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection
method used by AEP!

52 / 59

Further Approximations

Consider α ≈ 0 or N → ∞ (i.e., the cavity becomes q):

logZPEP ≈ g(ηq)− g(ηprior) +
N∑
i=1

1

α

(
log Z̃i + g(ηq)− g(ηqcavα

)
)

=
N∑
i=1

1

α
log Z̃i − Rβ[qcav|prior] ,

with Rβ[qcav|prior] a Rényi divergence, becomes similar to

logZPEP ≈
N∑
i=1

1

α
log Z̃i − KL[q|prior] ,

Which for α → 0 gives the DVSVI objective and for α = 1 is
expected to give similar results to AEP (better estimating logZi)!

53 / 59

Further Approximations

Consider α ≈ 0 or N → ∞ (i.e., the cavity becomes q):

logZPEP ≈ g(ηq)− g(ηprior) +
N∑
i=1

1

α

(
log Z̃i + g(ηq)− g(ηqcavα

)
)

=
N∑
i=1

1

α
log Z̃i − Rβ[qcav|prior] ,

with Rβ[qcav|prior] a Rényi divergence, becomes similar to

logZPEP ≈
N∑
i=1

1

α
log Z̃i − KL[q|prior] ,

Which for α → 0 gives the DVSVI objective and for α = 1 is
expected to give similar results to AEP (better estimating logZi)!

53 / 59

α-Divergence Minimization: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10) (alpha = 1e−3)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The value of α has an impact on the final predictive distribution!

54 / 59

α-Divergence Minimization: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10) (alpha = 0.5)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The value of α has an impact on the final predictive distribution!

54 / 59

α-Divergence Minimization: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10) (alpha = 1.0)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The value of α has an impact on the final predictive distribution!

54 / 59

α-Divergence Minimization: Illustrative Example

−4 −2 0 2 4

−
2

−
1

0
1

2

DGP (L = 2, M = 10) (alpha = 1.0)

x

y

·

· ·

· ·

·

····

· ··

·

·

·

·

· ·

·

The value of α has an impact on the final predictive distribution!

54 / 59

α-Divergence Minimization: Toy Problems

The first problem has heteroscedastic noise. The second, a
bimodal predictive distribution!

(Depeweng, 2016)

55 / 59

α-Divergence Minimization: Toy Problems

The first problem has heteroscedastic noise. The second, a
bimodal predictive distribution!

(Depeweng, 2016)

55 / 59

α-Divergence Minimization: Toy Problems

The value α = 1.0 provides more sensible predictive distributions!

(Villacampa, 2022)

56 / 59

α-Divergence Minimization: Toy Problems

The value α = 1.0 provides more sensible predictive distributions!

(Villacampa, 2022)

56 / 59

α-Divergence Minimization: Average Ranks

The value α = 1.0 provides better results in terms of the NLL and
intermediate values of α give better RMSE!

(Villacampa, 2022)

57 / 59

α-Divergence Minimization: Average Ranks

The value α = 1.0 provides better results in terms of the NLL and
intermediate values of α give better RMSE!

(Villacampa, 2022)

57 / 59

Summary about DGPs

• Useful for input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

• More complex inference: DSVI, AEP, α-divergence minimization.

• α-divergence minimization generalizes the other methods.

58 / 59

Summary about DGPs

• Useful for input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

• More complex inference: DSVI, AEP, α-divergence minimization.

• α-divergence minimization generalizes the other methods.

58 / 59

Summary about DGPs

• Useful for input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

• More complex inference: DSVI, AEP, α-divergence minimization.

• α-divergence minimization generalizes the other methods.

58 / 59

Summary about DGPs

• Useful for input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

• More complex inference: DSVI, AEP, α-divergence minimization.

• α-divergence minimization generalizes the other methods.

58 / 59

Summary about DGPs

• Useful for input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

• More complex inference: DSVI, AEP, α-divergence minimization.

• α-divergence minimization generalizes the other methods.

58 / 59

Summary about DGPs

• Useful for input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

• More complex inference: DSVI, AEP, α-divergence minimization.

• α-divergence minimization generalizes the other methods.

58 / 59

Summary about DGPs

• Useful for input warping: automatic, non-parametric kernel design.

• Repair damage done by sparse approximations to GPs.

• More accurate predictions and better uncertainty estimates.

• Better cost scaling w.r.t. depth L rather than inducing points M.

• More complex inference: DSVI, AEP, α-divergence minimization.

• α-divergence minimization generalizes the other methods.

58 / 59

References

• Damianou, A., & Lawrence, N. D. (2013, April). Deep Gaussian processes.
In Artificial intelligence and statistics (pp. 207-215).

• Bui, T., Hernández-Lobato, D., Hernandez-Lobato, J., Li, Y., & Turner,
R. (2016, June). Deep Gaussian processes for regression using
approximate expectation propagation. In International conference on
machine learning (pp. 1472-1481).

• Salimbeni, H., & Deisenroth, M. (2017). Doubly stochastic variational
inference for deep Gaussian processes. Advances in neural information
processing systems, 30.

• Li, Y., & Gal, Y. (2017, July). Dropout inference in Bayesian neural
networks with alpha-divergences. In International conference on machine
learning (pp. 2052-2061).

• Villacampa-Calvo, C., & Hernandez-Lobato, D. (2020). Alpha divergence
minimization in multi-class Gaussian process classification.
Neurocomputing, 378, 210-227.

59 / 59

	anm8:
	8.24:
	8.23:
	8.22:
	8.21:
	8.20:
	8.19:
	8.18:
	8.17:
	8.16:
	8.15:
	8.14:
	8.13:
	8.12:
	8.11:
	8.10:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.24:
	7.23:
	7.22:
	7.21:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

