Part III: Deep Gaussian Processes

Daniel Hernández-Lobato

Computer Science Department Universidad Autónoma de Madrid

http://dhnzl.org, daniel.hernandez@uam.es

Advantages of GPs:

• Non-parametric models!

- Non-parametric models!
- Exact Bayesian inference is tractable!

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs:

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs:

• Strong assumptions made about $f(\mathbf{x})$!

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs:

- Strong assumptions made about $f(\mathbf{x})$!
- The predictive distribution is always Gaussian!

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs:

- Strong assumptions made about $f(\mathbf{x})$!
- The predictive distribution is always Gaussian!
- Do not learn specific features to represent the observed data!

Advantages of GPs:

- Non-parametric models!
- Exact Bayesian inference is tractable!
- They scale to very large datasets!
- Easy to introduce prior knowledge!

Disadvantages of GPs:

- Strong assumptions made about $f(\mathbf{x})$!
- The predictive distribution is always Gaussian!
- Do not learn specific features to represent the observed data!

Deep GPs constitute a nice alternative to address these issues!

Motivation for Deep Gaussian Processes

Target function

Motivation for Deep Gaussian Processes

Motivation for Deep Gaussian Processes

How do deep GPs work?

How do deep GPs work?

How do deep GPs work?

Deep GPs as Deep Neural Networks

Deep GPs: Composition of Functions $y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$

Deep GPs: Composition of Functions $y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$

Deep GPs: Composition of Functions

 $y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$

Deep GPs: Composition of Functions $y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$

Deep GPs: Composition of Functions

 $y = f(g(\mathbf{x})), \quad f(\mathbf{x}) \sim \mathcal{GP}(0, C_f(\mathbf{x}, \mathbf{x}')) \quad g(\mathbf{x}) \sim \mathcal{GP}(0, C_g(\mathbf{x}, \mathbf{x}'))$

Deep GPs perform automatic covariance function design!

Deep GP Predictive Distribution

Standard GP

Deep GP Predictive Distribution

Standard GP 2 0.0 Deep GP with 2 hidden layers of 2 units 0 0.0 -1

Deep GP Predictive Distribution

In a deep GP the predictive distribution needs not be Gaussian!

Advantages:

• Useful input warping: automatic, non-parametric kernel design.

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.
- Better cost scaling w.r.t. depth L rather than inducing points M.

Advantages:

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.
- Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

Advantages:

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.
- Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

• Require complicated approximate inference methods.

Advantages:

- Useful input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.
- Better cost scaling w.r.t. depth L rather than inducing points M.

Drawbacks:

- Require complicated approximate inference methods.
- High computational cost of approximate inference.

Bayesian inference

Posterior over latent functions (typically at the observed data **X**):

But the posterior $p(\mathbf{f}^1, \mathbf{f}^2, \mathbf{f}^3 | \mathbf{Y})$ is intractable.
Latent variables: from $\mathcal{O}(N)$ to $\mathcal{O}(M)$, with $M \ll N$.

Distribution on f given by GP with inducing inputs $\bar{\mathbf{X}}$ and outputs \mathbf{u} .

Latent variables: from $\mathcal{O}(N)$ to $\mathcal{O}(M)$, with $M \ll N$.

Distribution on f given by GP with inducing inputs $\bar{\mathbf{X}}$ and outputs \mathbf{u} .

If **u** is known, then $p(f(\mathbf{x}^{\star})|\mathbf{u}) = \mathcal{N}(f(\mathbf{x}^{\star})|m^{\star},v^{\star})$, where

$$m^{\star} = \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u} ,$$

$$v^{\star} = \Sigma_{f^{\star},f^{\star}} - \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \Sigma_{\mathbf{u},f^{\star}} .$$

Latent variables: from $\mathcal{O}(N)$ to $\mathcal{O}(M)$, with $M \ll N$.

Distribution on f given by GP with inducing inputs $\bar{\mathbf{X}}$ and outputs \mathbf{u} .

If **u** is known, then $p(f(\mathbf{x}^{\star})|\mathbf{u}) = \mathcal{N}(f(\mathbf{x}^{\star})|m^{\star},v^{\star})$, where

$$m^{\star} = \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u} ,$$

$$v^{\star} = \Sigma_{f^{\star},f^{\star}} - \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \Sigma_{\mathbf{u},f^{\star}} .$$

If $p(\mathbf{u}) = \mathcal{N}(\mathbf{u}|\mathbf{m}, \mathbf{S})$, then $p(f(\mathbf{x}^{\star})) = \mathcal{N}(f(\mathbf{x}^{\star})|m^{\star}, v^{\star})$, where

$$m^{\star} = \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{m},$$

$$v^{\star} = \Sigma_{f^{\star},f^{\star}} - \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \Sigma_{\mathbf{u},f^{\star}} + \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{S} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \Sigma_{\mathbf{u},f^{\star}}$$

Latent variables: from $\mathcal{O}(N)$ to $\mathcal{O}(M)$, with $M \ll N$.

Distribution on f given by GP with inducing inputs $\bar{\mathbf{X}}$ and outputs \mathbf{u} .

If **u** is known, then $p(f(\mathbf{x}^{\star})|\mathbf{u}) = \mathcal{N}(f(\mathbf{x}^{\star})|m^{\star},v^{\star})$, where

$$m^{\star} = \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u} ,$$

$$v^{\star} = \Sigma_{f^{\star},f^{\star}} - \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \Sigma_{\mathbf{u},f^{\star}} .$$

If $p(\mathbf{u}) = \mathcal{N}(\mathbf{u}|\mathbf{m}, \mathbf{S})$, then $p(f(\mathbf{x}^{\star})) = \mathcal{N}(f(\mathbf{x}^{\star})|m^{\star}, v^{\star})$, where

$$m^{\star} = \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{m},$$

$$v^{\star} = \Sigma_{f^{\star},f^{\star}} - \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \Sigma_{\mathbf{u},f^{\star}} + \Sigma_{f^{\star},\mathbf{u}} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{S} \Sigma_{\mathbf{u},\mathbf{u}}^{-1} \Sigma_{\mathbf{u},f^{\star}}$$

Given u or a Gaussian for u, $f(x^*)$ is fully specified!

Deep GPs Joint Distribution

Deep GPs Joint Distribution

Ideally we would like to make inference about $\{u^{l}, f^{l}\}_{l=1}^{L}$!

The predictive distribution after the first layer is non Gaussian!

• Using VI and an analytic lower bound.

- Using VI and an analytic lower bound.
- Using approximate expectation propagation.

- Using VI and an analytic lower bound.
- Using approximate expectation propagation.
- Using stochastic variational inference.

- Using VI and an analytic lower bound.
- Using approximate expectation propagation.
- Using stochastic variational inference.
- By minimizing alpha divergences.

The early attempts for approximate inference in DGPs considered fixed *q* that lead to an analytic ELBO!

The early attempts for approximate inference in DGPs considered fixed *q* that lead to an analytic ELBO!

For this, noisy versions of the variables at each layer **but last** are introduced:

$$\widetilde{\mathbf{f}}' = \mathbf{f}' + oldsymbol{\epsilon} \,, \qquad \qquad oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Lambda}_l) \,,$$

with Λ_l a diagonal matrix for $l = 1, \ldots, L - 1$.

The early attempts for approximate inference in DGPs considered fixed *q* that lead to an analytic ELBO!

For this, noisy versions of the variables at each layer **but last** are introduced:

$$\widetilde{\mathbf{f}}' = \mathbf{f}' + oldsymbol{\epsilon} \,, \qquad \qquad oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Lambda}_l) \,,$$

with Λ_l a diagonal matrix for $l = 1, \ldots, L - 1$.

The joint distribution is now:

Original Graphical Model and Extended

Original Graphical Model and Extended

Both models are equivalent, but this setting simplifies inference!

The posterior approximation *q* considered assumes independence among layers!

The posterior approximation *q* considered assumes independence among layers!

Posterior approximation:

$$q(\{\mathbf{u}',\mathbf{f}',\tilde{\mathbf{f}}'\}_{l=1}^{L})=q(\mathbf{u}^{L})p(\mathbf{f}^{L}|\mathbf{u}^{L},\overline{\mathbf{X}}')\prod_{l=1}^{L-1}q(\mathbf{u}')q(\tilde{\mathbf{f}}')p(\mathbf{f}'|\mathbf{u}',\overline{\mathbf{X}}'),$$

where the input to the layer l+1 is $\tilde{\mathbf{f}}^l$ and

$$q(\mathbf{u}') = \mathcal{N}(\mathbf{u}'|\mathbf{m}_l, \mathbf{S}_l), \qquad \qquad q(\tilde{\mathbf{f}}') = \mathcal{N}(\tilde{\mathbf{f}}'|\boldsymbol{\mu}_l, \boldsymbol{\Delta}_l),$$

with Δ_l a diagonal matrix.

Graphical Model and Approximate Distribution

Analytic Variational Inference for DGPs

 $\text{Minimizes } \mathsf{KL}(q(\{\mathbf{u}^{l},\mathbf{f}^{l}\}_{l=1}^{L},\{\tilde{\mathbf{f}}^{l}\}_{l=1}^{L-1})|\rho(\{\mathbf{u}^{l},\mathbf{f}^{l}\}_{l=1}^{L},\{\tilde{\mathbf{f}}^{l}\}_{l=1}^{L-1}|\mathbf{y})) \\$

Analytic Variational Inference for DGPs

 $\text{Minimizes } \mathsf{KL}(q(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L}, \{\tilde{\mathbf{f}}^{l}\}_{l=1}^{L-1}) | p(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L}, \{\tilde{\mathbf{f}}^{l}\}_{l=1}^{L-1} | \mathbf{y}))$

Equivalent to maximizing the lower bound on $\log p(\mathbf{y})$:

$$\begin{split} \mathcal{L} &= \mathbb{E}_{q} \left[\log \frac{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L}) p(\mathbf{f}^{L}|\mathbf{u}^{L}) p(\mathbf{u}^{L}) \prod_{l=1}^{L-1} p(\tilde{\mathbf{f}}^{l}|\mathbf{f}^{l}) p(\mathbf{f}^{L}|\mathbf{u}^{L}) p(\mathbf{u}^{l})}{p(\mathbf{f}^{L}|\mathbf{u}^{L}) q(\mathbf{u}^{L}) \prod_{l=1}^{L-1} q(\tilde{\mathbf{f}}^{l}) p(\mathbf{f}^{L}|\mathbf{u}^{L}) q(\mathbf{u}^{l})} \right] \\ &= \sum_{i=1}^{N} \mathbb{E}_{q} [\log p(y_{i}|f_{i}^{L})] + \sum_{l=1}^{L-1} \left[\mathbb{E}_{q} [\log p(\tilde{\mathbf{f}}^{l}|\mathbf{f}^{l})] + H[q(\tilde{\mathbf{f}}^{l})] \right] \\ &+ \sum_{l=1}^{L} \mathsf{KL}(q(\mathbf{u}^{l})|p(\mathbf{u}^{l})) \,. \end{split}$$

.

Analytic Variational Inference for DGPs

Minimizes $\mathsf{KL}(q(\{\mathbf{u}^{l},\mathbf{f}^{l}\}_{l=1}^{L},\{\tilde{\mathbf{f}}^{l}\}_{l=1}^{L-1})|p(\{\mathbf{u}^{l},\mathbf{f}^{l}\}_{l=1}^{L},\{\tilde{\mathbf{f}}^{l}\}_{l=1}^{L-1}|\mathbf{y}))$

Equivalent to maximizing the lower bound on $\log p(\mathbf{y})$:

$$\begin{split} \mathcal{L} &= \mathbb{E}_{q} \left[\log \frac{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L}) p(\mathbf{f}^{L} | \mathbf{u}^{L}) p(\mathbf{u}^{L}) \prod_{l=1}^{L-1} p(\tilde{\mathbf{f}}^{l} | \mathbf{f}^{l}) p(\mathbf{f}^{L} | \mathbf{u}^{t}) p(\mathbf{u}^{l})}{p(\mathbf{f}^{L} | \mathbf{u}^{L}) q(\mathbf{u}^{L}) \prod_{l=1}^{L-1} q(\tilde{\mathbf{f}}^{l}) p(\mathbf{f}^{l} | \mathbf{u}^{t}) q(\mathbf{u}^{l})} \right] \\ &= \sum_{i=1}^{N} \mathbb{E}_{q} [\log p(y_{i}|f_{i}^{L})] + \sum_{l=1}^{L-1} \left[\mathbb{E}_{q} [\log p(\tilde{\mathbf{f}}^{l} | \mathbf{f}^{l})] + H[q(\tilde{\mathbf{f}}^{l})] \right] \\ &+ \sum_{l=1}^{L} \mathsf{KL}(q(\mathbf{u}^{l}) | p(\mathbf{u}^{l})) \,. \end{split}$$

Which can be evaluated in closed-form (form some cov. functions) and maximized to find *q* and good model hyper-parameters!

For a particular fixed input, the predictive distribution of each layer is Gaussian!

VFE (M = 10)

х

VFE (M = 10)

The VFE sparse GP reduces the length-scale to explain the data!

DGP (L = 2, M = 10)

х

DGP (L = 2, M = 10)

The DGP provides a more sensible predictive distribution!

DGPs Tractable Bound: Illustrative Example

DGPs Tractable Bound: Illustrative Example

Limitations of DGPs via Tractable VI Bound

• The posterior approximation *q* assumes independence between layers inputs and outputs.

Limitations of DGPs via Tractable VI Bound

- The posterior approximation *q* assumes independence between layers inputs and outputs.
- The tractable VI bound is limited to certain covariance functions, *e.g.*, the squared exponential covariance function.

Limitations of DGPs via Tractable VI Bound

- The posterior approximation *q* assumes independence between layers inputs and outputs.
- The tractable VI bound is limited to certain covariance functions, *e.g.*, the squared exponential covariance function.
- The original method did not consider mini-batch training and scales linearly with *N*, which makes infeasible addressing large problems.

Features:

• Does not assume independence between inputs and outputs in each layer in the approximate distribution *q*.

Features:

- Does not assume independence between inputs and outputs in each layer in the approximate distribution *q*.
- Uses the FITC approximation for tractable scaling and allows for mini-batch training. Thus, the model is changed.

Features:

- Does not assume independence between inputs and outputs in each layer in the approximate distribution *q*.
- Uses the FITC approximation for tractable scaling and allows for mini-batch training. Thus, the model is changed.
- Relies on a modified version of EP to estimate the approximate distribution *q* using standard optimization techniques.

Features:

- Does not assume independence between inputs and outputs in each layer in the approximate distribution *q*.
- Uses the FITC approximation for tractable scaling and allows for mini-batch training. Thus, the model is changed.
- Relies on a modified version of EP to estimate the approximate distribution *q* using standard optimization techniques.
- The intractable predictive distribution at each layer is approximated by a Gaussian with the same moments.

(Bui et al., 2016)

Approximate Deep GP Joint Distribution

Approximate Deep GP Joint Distribution

$$p(\mathbf{y}, {\mathbf{u}^{l}, \mathbf{f}^{l}}_{l=1}^{L}) = \underbrace{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L})}_{\substack{I=1\\ l=1}} \times \underbrace{\prod_{i=1}^{L} \tilde{p}(\mathbf{f}^{l}|\mathbf{u}^{l}, \overline{\mathbf{X}}^{l}) p(\mathbf{u}^{l}|\overline{\mathbf{X}}^{l})}_{\text{Approximate Deep GP prior } \tilde{p}({\mathbf{f}^{l}, \mathbf{u}^{l}}_{l=1}^{L})}$$

The FITC approximation enforces $\tilde{p}(\mathbf{f}'|\mathbf{u}', \overline{\mathbf{X}}')$ to factorize across the *N* data instances!

Graphical Model and Approximate Distribution

Graphical Model and Approximate Distribution

Approximates
$$p(\{\mathbf{f}^{l}, \mathbf{u}^{l}\}_{l=1}^{L} | \mathbf{y}) \propto \tilde{p}(\{\mathbf{f}^{l}, \mathbf{u}^{l}\}_{l=1}^{L}) \prod_{i=1}^{N} p(y_{i}|f_{i}^{L})$$
 with $q(\{\mathbf{f}^{l}, \mathbf{u}^{l}\}_{l=1}^{L}) \propto \tilde{p}(\{\mathbf{f}^{l}, \mathbf{u}^{l}\}_{l=1}^{L}) \prod_{i=1}^{N} \tilde{t}_{i}(\{\mathbf{u}^{l}\}_{l=1}^{L})$

Approximates
$$p(\{\mathbf{f}^{l}, \mathbf{u}^{l}\}_{l=1}^{L} | \mathbf{y}) \propto \tilde{p}(\{\mathbf{f}^{l}, \mathbf{u}^{l}\}_{l=1}^{L}) \prod_{i=1}^{N} p(y_{i} | f_{i}^{L})$$
 with
$$q(\{\mathbf{f}^{l}, \mathbf{u}^{l}\}_{l=1}^{L}) \propto \tilde{p}(\{\mathbf{f}^{l}, \mathbf{u}^{l}\}_{l=1}^{L}) \prod_{i=1}^{N} \tilde{t}_{i}(\{\mathbf{u}^{l}\}_{l=1}^{L})$$

Approximates
$$p(\{\mathbf{f}', \mathbf{u}'\}_{l=1}^{L} | \mathbf{y}) \propto \tilde{p}(\{\mathbf{f}', \mathbf{u}'\}_{l=1}^{L}) \prod_{i=1}^{N} p(y_i | f_i^L) \text{ with}$$
$$q(\{\mathbf{f}', \mathbf{u}'\}_{l=1}^{L}) \propto \tilde{p}(\{\mathbf{f}', \mathbf{u}'\}_{l=1}^{L}) \prod_{i=1}^{N} \tilde{t}_i(\{\mathbf{u}'\}_{l=1}^{L})$$

The \tilde{t}_i are tuned by minimizing the KL-divergence $KL[\hat{p}_i||q] \quad \forall i$,

where
$$\hat{p}_i(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L) \propto p(y_i|f_i^L) \prod_{j \neq i} \tilde{t}_j(\{\mathbf{u}'\}_{l=1}^L) \tilde{\rho}(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L) q(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L) \propto \tilde{t}_i(\{\mathbf{u}\}_{l=1}^L) \prod_{j \neq i} \tilde{t}_j(\{\mathbf{u}'\}_{l=1}^L) \tilde{\rho}(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L).$$

Approximates
$$p(\{\mathbf{f}', \mathbf{u}'\}_{l=1}^{L} | \mathbf{y}) \propto \tilde{p}(\{\mathbf{f}', \mathbf{u}'\}_{l=1}^{L}) \prod_{i=1}^{N} p(y_i | f_i^L) \text{ with}$$
$$q(\{\mathbf{f}', \mathbf{u}'\}_{l=1}^{L}) \propto \tilde{p}(\{\mathbf{f}', \mathbf{u}'\}_{l=1}^{L}) \prod_{i=1}^{N} \tilde{t}_i(\{\mathbf{u}'\}_{l=1}^{L})$$

The \tilde{t}_i are tuned by minimizing the KL-divergence $KL[\hat{p}_i||q] \quad \forall i$,

where
$$\begin{array}{l} \hat{p}_i(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L) \propto p(y_i|f_i^L) \prod_{j\neq i} \tilde{t}_j(\{\mathbf{u}'\}_{l=1}^L) \tilde{p}(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L) \\ q(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L) \propto \tilde{t}_i(\{\mathbf{u}\}_{l=1}^L) \prod_{j\neq i} \tilde{t}_j(\{\mathbf{u}'\}_{l=1}^L) \tilde{p}(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L) \\ \end{array}$$
Since $\tilde{p}(\{\mathbf{f}',\mathbf{u}'\}_{l=1}^L)$ is fixed, we only have to match the moments of \hat{p}_j and q over $\{\mathbf{u}'\}_{l=1}^L$!

The EP approximation to the evidence $p(\mathbf{y})$ is given by:

$$\log Z_{\mathsf{EP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N \log Z_i + g(\eta_q) - g(\eta_q^{\setminus i})$$

The EP approximation to the evidence $p(\mathbf{y})$ is given by:

$$\log Z_{\mathsf{EP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N \log Z_i + g(\eta_q) - g(\eta_q^{\setminus i})$$

Besides the EP updates, the EP solution for q is found by solving:

$$\max_{q} \min_{\tilde{t}_1,...,\tilde{t}_N} \log Z_{\rm EP} \quad \text{subject to} \quad q \propto \tilde{p} \prod_{i=1}^N \tilde{t}_i \,.$$

The EP approximation to the evidence $p(\mathbf{y})$ is given by:

$$\log Z_{\mathsf{EP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N \log Z_i + g(\eta_q) - g(\eta_q^{\setminus i})$$

Besides the EP updates, the EP solution for q is found by solving:

$$\max_{q} \min_{\tilde{t}_1,...,\tilde{t}_N} \log Z_{\rm EP} \quad \text{subject to} \quad q \propto \tilde{p} \prod_{i=1}^N \tilde{t}_i \,.$$

Can be solved with a **double-loop** algorithm.

The EP approximation to the evidence $p(\mathbf{y})$ is given by:

$$\log Z_{\mathsf{EP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N \log Z_i + g(\eta_q) - g(\eta_q^{\setminus i})$$

Besides the EP updates, the EP solution for q is found by solving:

$$\max_{q} \min_{\tilde{t}_1,...,\tilde{t}_N} \log Z_{\rm EP} \quad \text{subject to} \quad q \propto \tilde{\rho} \prod_{i=1}^N \tilde{t}_i \,.$$

Can be solved with a double-loop algorithm. Too slow in practice!

• $\max_{q} \min_{\tilde{f}_{1},...,\tilde{f}_{N}}$ problem $\rightarrow \max_{q}$ problem, **no double-loop needed!**

• $\max_{q} \min_{\tilde{f}_{1},...,\tilde{f}_{N}}$ problem $\rightarrow \max_{q}$ problem, **no double-loop needed!**

The final objective is:

$$\log Z_{\mathsf{EP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N \log Z_i + g(\eta_q) - g(\eta_q^{\mathsf{cav}})$$

which is suitable for standard optimization and mini-batch training.

• $\max_{q} \min_{\tilde{f}_{1},...,\tilde{f}_{N}}$ problem $\rightarrow \max_{q}$ problem, **no double-loop needed!**

The final objective is:

$$\log Z_{\mathsf{EP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N \log \widetilde{\mathcal{Z}}_i + g(\eta_q) - g(\eta_q^{\mathsf{cav}})$$

which is suitable for standard optimization and mini-batch training.

Note that $\log Z_i = \log \int p(y_i | f_i^L) q^{\setminus i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L) q^{\setminus i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L) q^{\setminus i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L) q^{\setminus i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L) q^{\setminus i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L) q^{\setminus i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

We can use an iterative Gaussian approximation:

Doable for certain covariance functions, e.g., the squared exponential!
Gaussian Projection Example

DGP (L = 2, M = 10)

х

DGP (L = 2, M = 10)

The AEP method provides a similar predictive distribution to the previous method!

Limitations of Approx. EP for DGPs

• The approximate predictive distribution of *q* at each layer is a Gaussian projection, which can be a crude approximation.

Limitations of Approx. EP for DGPs

- The approximate predictive distribution of *q* at each layer is a Gaussian projection, which can be a crude approximation.
- It is limited to certain covariance functions, *e.g.*, the squared exponential covariance function.

Limitations of Approx. EP for DGPs

- The approximate predictive distribution of *q* at each layer is a Gaussian projection, which can be a crude approximation.
- It is limited to certain covariance functions, *e.g.*, the squared exponential covariance function.
- It modifies the deep GP prior and hence the model, by introducing the FITC approximation.

Features:

• Considers dependencies between inputs and outputs at each layer.

Features:

- Considers dependencies between inputs and outputs at each layer.
- Does not change the DGP prior, which is kept intact.

Features:

- Considers dependencies between inputs and outputs at each layer.
- Does not change the DGP prior, which is kept intact.
- Uses stochastic variational inference to approximate the posterior.

Features:

- Considers dependencies between inputs and outputs at each layer.
- Does not change the DGP prior, which is kept intact.
- Uses stochastic variational inference to approximate the posterior.
- Each layer predictive distribution is approximated by Monte Carlo.

(Salimbeni, 2017)

VI works when we can compute $\mathbb{E}_q[\log p(\mathbf{f}, \mathbf{y})]$ in closed form!

VI works when we can compute $\mathbb{E}_q[\log p(\mathbf{f}, \mathbf{y})]$ in closed form!

In some situations that is not the case!

VI works when we can compute $\mathbb{E}_q[\log p(\mathbf{f}, \mathbf{y})]$ in closed form! In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of $\partial \mathcal{L}(q_{\theta})/d\theta$ and stochastic optimization techniques to maximize \mathcal{L} !

VI works when we can compute $\mathbb{E}_q[\log p(\mathbf{f}, \mathbf{y})]$ in closed form! In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of $\partial \mathcal{L}(q_{\theta})/d\theta$ and stochastic optimization techniques to maximize \mathcal{L} !

Black-box VI can be used with arbitrarily complicated models:

$$\begin{aligned} \frac{\partial \mathcal{L}(q_{\theta})}{\partial \theta} &= \frac{\partial}{\partial \theta} \mathbb{E}_{q} [\log p(\mathbf{f}, \mathbf{y})] + \frac{\partial H_{q}}{\partial \theta} \\ &= \mathbb{E}_{q} \left[\log p(\mathbf{f}, \mathbf{y}) \frac{\partial}{\partial \theta} \log q_{\theta}(\mathbf{f}) \right] + \frac{\partial H_{q}}{\partial \theta} \\ &\approx \frac{1}{S} \sum_{s=1}^{S} \log p(\mathbf{f}_{s}, \mathbf{y}) \frac{\partial}{\partial \theta} \log q_{\theta}(\mathbf{f}_{s}) + \frac{\partial H_{q}}{\partial \theta} \end{aligned}$$

VI works when we can compute $\mathbb{E}_q[\log p(\mathbf{f}, \mathbf{y})]$ in closed form! In some situations that is not the case!

Black-box VI uses a Monte Carlo estimator of $\partial \mathcal{L}(q_{\theta})/d\theta$ and stochastic optimization techniques to maximize \mathcal{L} !

Black-box VI can be used with arbitrarily complicated models:

$$\begin{aligned} \frac{\partial \mathcal{L}(q_{\theta})}{\partial \theta} &= \frac{\partial}{\partial \theta} \mathbb{E}_{q} [\log p(\mathbf{f}, \mathbf{y})] + \frac{\partial H_{q}}{\partial \theta} \\ &= \mathbb{E}_{q} \left[\log p(\mathbf{f}, \mathbf{y}) \frac{\partial}{\partial \theta} \log q_{\theta}(\mathbf{f}) \right] + \frac{\partial H_{q}}{\partial \theta} \\ &\approx \frac{1}{S} \sum_{s=1}^{S} \log p(\mathbf{f}_{s}, \mathbf{y}) \frac{\partial}{\partial \theta} \log q_{\theta}(\mathbf{f}_{s}) + \frac{\partial H_{q}}{\partial \theta} \end{aligned}$$

This is an unbiased estimate of the gradient and can be plugged in any stochastic optimization algorithm!

Stochastic Optimization

Stochastic Optimization

To converge to a local neighborhood of the optimum stochastic methods only require an unbiased estimate of the gradient!

The previous estimator of the gradient can have high variance and exhibit low convergence!

The previous estimator of the gradient can have high variance and exhibit low convergence!

Sometimes the randomness can be separated from the parameters:

$$f \sim \mathcal{N}(\mu, \sigma^2), \qquad f = \mu + \sigma \epsilon, \qquad \epsilon \sim \mathcal{N}(0, 1)$$

The previous estimator of the gradient can have high variance and exhibit low convergence!

Sometimes the randomness can be separated from the parameters:

$$f \sim \mathcal{N}(\mu, \sigma^2) \,, \qquad \quad f = \mu + \sigma \epsilon \,, \qquad \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$$

This allows to obtain another estimator of the gradient:

$$\begin{split} \frac{\partial \mathcal{L}(\boldsymbol{q}_{\theta})}{\partial \theta} &= \frac{\partial}{\partial \theta} \mathbb{E}_{\boldsymbol{q}}[\log p(\mathbf{f}, \mathbf{y})] + \frac{\partial H_{\boldsymbol{q}}}{\partial \theta} \\ &\approx \frac{\partial}{\partial \theta} \frac{1}{S} \sum_{s=1}^{S} \log p(\phi(\boldsymbol{\epsilon}_{s}; \theta), \mathbf{y}) + \frac{\partial H_{\boldsymbol{q}}}{\partial \theta} \end{split}$$

where $\mathbf{f}_{s} = \phi(\boldsymbol{\epsilon}_{s}; \theta)$ for some function $\phi(\cdot; \theta)$.

The previous estimator of the gradient can have high variance and exhibit low convergence!

Sometimes the randomness can be separated from the parameters:

$$f \sim \mathcal{N}(\mu, \sigma^2), \qquad \quad f = \mu + \sigma \epsilon, \qquad \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$$

This allows to obtain another estimator of the gradient:

$$egin{aligned} rac{\partial \mathcal{L}(m{q}_{ heta})}{\partial heta} &= rac{\partial}{\partial heta} \mathbb{E}_{m{q}}[\log p(m{f},m{y})] + rac{\partial H_{m{q}}}{\partial heta} \ &pprox rac{\partial}{\partial heta} rac{1}{S} \sum_{s=1}^{S} \log p(\phi(m{\epsilon}_{s};m{ heta}),m{y}) + rac{\partial H_{m{q}}}{\partial heta} \end{aligned}$$

where $\mathbf{f}_{s} = \phi(\boldsymbol{\epsilon}_{s}; \theta)$ for some function $\phi(\cdot; \theta)$.

This other estimator has less variance and leads to better results!

Deep GPs Joint Distribution

Deep GPs Joint Distribution

No change in the model is made at all!

Graphical Model and Posterior Approximation

Graphical Model and Posterior Approximation

Based on minimizing $KL(q(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L})|p(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L}|\mathbf{y}))$

Based on minimizing $KL(q(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L})|p(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L}|\mathbf{y}))$

Equivalent to maximizing the lower bound on $\log p(\mathbf{y})$:

$$\mathcal{L} = \mathbb{E}_{q} \left[\log \frac{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L}) \prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{t}) p(\mathbf{u}^{l})}{\prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{t}) q(\mathbf{u}^{l})} \right]$$
$$= \sum_{i=1}^{N} \mathbb{E}_{q} [\log p(y_{i}|f_{i}^{L})] - \sum_{l=1}^{L} \mathsf{KL}(q(\mathbf{u}^{l})|p(\mathbf{u}^{l})).$$

٠

Based on minimizing $KL(q(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L})|p(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L}|\mathbf{y}))$

Equivalent to maximizing the lower bound on $\log p(\mathbf{y})$:

$$\mathcal{L} = \mathbb{E}_{q} \left[\log \frac{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L}) \prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{t}) p(\mathbf{u}^{l})}{\prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{t}) q(\mathbf{u}^{l})} \right]$$
$$= \sum_{i=1}^{N} \mathbb{E}_{q} [\log p(y_{i}|f_{i}^{L})] - \sum_{l=1}^{L} \mathsf{KL}(q(\mathbf{u}^{l})|p(\mathbf{u}^{l})).$$

• The expectations can be approximated by Monte Carlo.

(Salimbeni, 2017)

٠

Based on minimizing $KL(q(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L})|p(\{\mathbf{u}^{l}, \mathbf{f}^{l}\}_{l=1}^{L}|\mathbf{y}))$

Equivalent to maximizing the lower bound on $\log p(\mathbf{y})$:

$$\mathcal{L} = \mathbb{E}_{q} \left[\log \frac{\prod_{i=1}^{N} p(y_{i}|f_{i}^{L}) \prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{t}) p(\mathbf{u}^{l})}{\prod_{l=1}^{L} p(\mathbf{f}^{L}|\mathbf{u}^{t}) q(\mathbf{u}^{l})} \right]$$
$$= \sum_{i=1}^{N} \mathbb{E}_{q} [\log p(y_{i}|f_{i}^{L})] - \sum_{l=1}^{L} \mathsf{KL}(q(\mathbf{u}^{l})|p(\mathbf{u}^{l})).$$

- The expectations can be approximated by Monte Carlo.
- Suitable for mini-batch training by subsampling the data.

(Salimbeni, 2017)

Predictive Distribution via Monte Carlo Sampling

Used not only for testing, but also during training, unlike the previous methods!

DGP (L = 2, M = 10)

х

DGP (L = 2, M = 10)

DSVI provides better results than the previous methods!

44 / 59

DGPs via DSVI: LL Experimental Results

DGPs via DSVI: LL Experimental Results

DGPs perform similar or better than the sparse GP and adding more layers does not seem to overfit!

(Salimbeni, 2017)

DSVI and the approximate EP method for training DGPs target different divergences: KL[q|p] and KL[p|q]!

DSVI and the approximate EP method for training DGPs target different divergences: KL[q|p] and KL[p|q]!

DSVI and the approximate EP method for training DGPs target different divergences: KL[q|p] and KL[p|q]!

KL[q|p] may result in too compact approximations while KL[p|q] may put mass in regions with no posterior density.

DSVI and the approximate EP method for training DGPs target different divergences: KL[q|p] and KL[p|q]!

KL[q|p] may result in too compact approximations while KL[p|q]may put mass in regions with no posterior density. Can we have something in between?

$$\mathcal{D}_{lpha}(\pmb{p}||\pmb{q}) = rac{\int_{\pmb{ heta}} \left(lpha \pmb{p}(\pmb{ heta}) + (1-lpha) \pmb{q}(\pmb{ heta}) - \pmb{p}(\pmb{ heta})^{lpha} \pmb{q}(\pmb{ heta})^{1-lpha}
ight) \, d\pmb{ heta}}{lpha (1-lpha)}$$

(Amari, 1985).

•

$$D_{\alpha}(p||q) = \frac{\int_{\theta} \left(\alpha p(\theta) + (1-\alpha)q(\theta) - p(\theta)^{\alpha}q(\theta)^{1-\alpha} \right) d\theta}{\alpha(1-\alpha)}$$

(Amari, 1985).

Figure source: (Minka, 2005).

•

$$D_{\alpha}(p||q) = \frac{\int_{\theta} \left(\alpha p(\theta) + (1-\alpha)q(\theta) - p(\theta)^{\alpha}q(\theta)^{1-\alpha} \right) d\theta}{\alpha(1-\alpha)}$$

(Amari, 1985).

Figure source: (Minka, 2005).

$$D_{\alpha}(p||q) = \frac{\int_{\theta} \left(\alpha p(\theta) + (1-\alpha)q(\theta) - p(\theta)^{\alpha}q(\theta)^{1-\alpha} \right) d\theta}{\alpha(1-\alpha)}$$

(Amari, 1985).

Figure source: (Minka, 2005).

Approximates
$$p(\mathbf{f}|\mathbf{y}) \propto t_0(\mathbf{f}) \prod_{j=1}^N t_j(\mathbf{f})$$
 with $q(\mathbf{f}) \propto t_0(\mathbf{f}) \prod_{j=1}^N \tilde{t}_j(\mathbf{t})$

Approximates
$$p(\mathbf{f}|\mathbf{y}) \propto t_0(\mathbf{f}) \prod_{j=1}^N t_j(\mathbf{f})$$
 with $q(\mathbf{f}) \propto t_0(\mathbf{f}) \prod_{j=1}^N \tilde{t}_j(\mathbf{t})$

Approximates
$$p(\mathbf{f}|\mathbf{y}) \propto t_0(\mathbf{f}) \prod_{j=1}^N t_j(\mathbf{f})$$
 with $q(\mathbf{f}) \propto t_0(\mathbf{f}) \prod_{j=1}^N \tilde{t}_j(\mathbf{t})$

$$p(\mathbf{f}|\mathbf{y}) \propto t_0(\mathbf{f}) \quad t_1(\mathbf{f}) \quad t_2(\mathbf{f}) \quad t_3(\mathbf{f}) \approx q(\mathbf{f}) \propto t_0(\mathbf{f}) \quad \tilde{t}_1(\mathbf{f}) \quad \tilde{t}_2(\mathbf{f}) \quad \tilde{t}_3(\mathbf{f})$$

The \tilde{t}_j are tuned by minimizing local α -divergences

$$\mathsf{D}_{lpha}[\hat{p}_{j}||q] \quad ext{for } j=1,\ldots,N\,, \quad ext{where} \quad egin{array}{c} \hat{p}_{j}(\mathbf{f}) & \propto & t_{j}(\mathbf{f}) \prod_{i
eq j} ilde{t}_{i}(\mathbf{f}) \ q(\mathbf{f}) & \propto & ilde{t}_{j}(\mathbf{f}) \prod_{i
eq j} ilde{t}_{i}(\mathbf{f})\,. \end{cases}$$

Approximates
$$p(\mathbf{f}|\mathbf{y}) \propto t_0(\mathbf{f}) \prod_{j=1}^N t_j(\mathbf{f})$$
 with $q(\mathbf{f}) \propto t_0(\mathbf{f}) \prod_{j=1}^N \tilde{t}_j(\mathbf{t})$

$$p(\mathbf{f}|\mathbf{y}) \propto t_0(\mathbf{f}) \quad t_1(\mathbf{f}) \quad t_2(\mathbf{f}) \quad t_3(\mathbf{f}) \approx q(\mathbf{f}) \propto t_0(\mathbf{f}) \quad \tilde{t}_1(\mathbf{f}) \quad \tilde{t}_2(\mathbf{f}) \quad \tilde{t}_3(\mathbf{f})$$

The \tilde{t}_j are tuned by minimizing local α -divergences

$$\mathsf{D}_{\alpha}[\hat{p}_{j}||q] \quad \text{for}\, j=1,\ldots,N\,, \quad \text{where} \quad \begin{array}{c} \hat{p}_{j}(\mathbf{f}) & \propto & t_{j}(\mathbf{f})\prod_{i\neq j} \tilde{t}_{i}(\mathbf{f}) \\ q(\mathbf{f}) & \propto & \tilde{t}_{j}(\mathbf{f})\prod_{i\neq j} \tilde{t}_{i}(\mathbf{f}) \end{array}.$$

It turns out that the α -divergence can be minimized in terms of the KL-divergence!

Power EP steps to refine \tilde{t}_i :

Power EP steps to refine \tilde{t}_i :

1 Compute cavity: $q^{\alpha i} \propto q/\tilde{t}_i^{\alpha}$.

Power EP steps to refine \tilde{t}_i :

1 Compute cavity: $q^{\alpha i} \propto q/\tilde{t}_i^{\alpha}$.

2 Minimize $KL(Z_i^{-1}t_i^{\alpha}q^{\setminus \alpha i}||q)$ to find q^{new} .

Power EP steps to refine \tilde{t}_i :

1 Compute cavity: $q^{\alpha i} \propto q/\tilde{t}_i^{\alpha}$.

2 Minimize $KL(Z_i^{-1}t_i^{\alpha}q^{\alpha i}||q)$ to find q^{new} .

3 Update factor: $\tilde{t}_i^{\text{new}} = (Z_i q^{\text{new}} / q^{\setminus \alpha i})^{\frac{1}{\alpha}}$.

Power EP steps to refine \tilde{t}_i :

1 Compute cavity: $q^{\alpha i} \propto q/\tilde{t}_i^{\alpha}$.

2 Minimize $KL(Z_i^{-1}t_i^{\alpha}q^{\alpha i}||q)$ to find q^{new} .

3 Update factor: $\tilde{t}_i^{\text{new}} = (Z_i q^{\text{new}} / q^{\setminus \alpha i})^{\frac{1}{\alpha}}$.

At convergence the moments of $\tilde{p} = Z_i^{-1} f_i^{\alpha} q^{\setminus \alpha i}$ and q match!

Power EP steps to refine \tilde{t}_i :

1 Compute cavity: $q^{\alpha i} \propto q/\tilde{t}_i^{\alpha}$.

2 Minimize $KL(Z_i^{-1}t_i^{\alpha}q^{\alpha i}||q)$ to find q^{new} .

3 Update factor: $\tilde{t}_i^{\text{new}} = (Z_i q^{\text{new}} / q^{\setminus \alpha i})^{\frac{1}{\alpha}}$.

At convergence the moments of $\tilde{p} = Z_i^{-1} f_i^{\alpha} q^{\setminus \alpha i}$ and q match!

$$\nabla_{\eta_q} D_{\alpha}[p_i||q] = \frac{Z_{\tilde{p}}}{\alpha} \left(\mathbb{E}_q[s(\theta)] - \mathbb{E}_{\tilde{p}}[s(\theta)] \right) \propto \nabla_{\eta_q} \mathsf{KL}[\tilde{p}||q]$$

where $\tilde{p} \propto (t_i q^{\setminus i})^{\alpha} q^{1-\alpha} = t_i^{\alpha} q^{\setminus \alpha i}$.

Power EP steps to refine \tilde{t}_i :

1 Compute cavity: $q^{\alpha i} \propto q/\tilde{t}_i^{\alpha}$.

2 Minimize $KL(Z_i^{-1}t_i^{\alpha}q^{\alpha i}||q)$ to find q^{new} .

3 Update factor: $\tilde{t}_i^{\text{new}} = (Z_i q^{\text{new}} / q^{\setminus \alpha i})^{\frac{1}{\alpha}}$.

At convergence the moments of $\tilde{p} = Z_i^{-1} f_i^{\alpha} q^{\setminus \alpha i}$ and q match!

$$\nabla_{\eta_q} D_{\alpha}[p_i||q] = \frac{Z_{\tilde{p}}}{\alpha} \left(\mathbb{E}_q[s(\theta)] - \mathbb{E}_{\tilde{p}}[s(\theta)] \right) \propto \nabla_{\eta_q} \mathsf{KL}[\tilde{p}||q]$$

where $\tilde{p} \propto (t_i q^{\setminus i})^{\alpha} q^{1-\alpha} = t_i^{\alpha} q^{\setminus \alpha i}$.

At convergence $\nabla_{\eta_q} D_{\alpha}[p_n||q]$ equals zero!

The PEP approximation to the evidence $p(\mathbf{y})$ is given by:

$$\log Z_{\mathsf{PEP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N \frac{1}{\alpha} \left(\log Z_i + g(\eta_q) - g(\eta_q^{\setminus \alpha i}) \right)$$

The PEP approximation to the evidence $p(\mathbf{y})$ is given by:

$$\log Z_{\mathsf{PEP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N rac{1}{lpha} \left(\log Z_i + g(\eta_q) - g(\eta_q^{\setminus lpha i})
ight)$$

Besides the PEP updates, the PEP solution for q is found by solving:

$$\max_{q} \min_{\tilde{t}_1,...,\tilde{t}_N} \log Z_{\mathsf{PEP}} \quad \text{subject to} \quad q \propto \tilde{p} \prod_{i=1}^N \tilde{t}_i \,.$$

The PEP approximation to the evidence $p(\mathbf{y})$ is given by:

$$\log Z_{\mathsf{PEP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N rac{1}{lpha} \left(\log Z_i + g(\eta_q) - g(\eta_q^{\setminus lpha i})
ight)$$

Besides the PEP updates, the PEP solution for q is found by solving:

$$\max_{q} \min_{ ilde{t}_1,..., ilde{t}_N} \log Z_{\mathsf{PEP}} \hspace{0.1 cm} ext{subject to} \hspace{0.1 cm} q \propto ilde{p} \prod_{i=1}^N ilde{t}_i \,.$$

Can be solved with a **double-loop** algorithm.

The PEP approximation to the evidence $p(\mathbf{y})$ is given by:

$$\log Z_{\mathsf{PEP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N rac{1}{lpha} \left(\log Z_i + g(\eta_q) - g(\eta_q^{\setminus lpha i})
ight)$$

Besides the PEP updates, the PEP solution for q is found by solving:

$$\max_{q} \min_{\tilde{t}_1,...,\tilde{t}_N} \log Z_{\mathsf{PEP}} \quad \text{subject to} \quad q \propto \tilde{p} \prod_{i=1}^N \tilde{t}_i \,.$$

Can be solved with a double-loop algorithm. Too slow in practice!

• $\max_{q} \min_{\tilde{f}_{1},...,\tilde{f}_{N}}$ problem $\rightarrow \max_{q}$ problem, no double-loop needed!

• $\max_{q} \min_{\tilde{f}_{1},...,\tilde{f}_{N}}$ problem $\rightarrow \max_{q}$ problem, no double-loop needed!

The final objective is:

$$\log Z_{\mathsf{PEP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^N rac{1}{lpha} \left(\log Z_i + g(\eta_q) - g(\eta_{q_{lpha}^{\mathsf{cav}}})\right)$$

which is suitable for standard optimization and mini-batch training. $_{\rm (Villacampa,\ 2022)(Li,\ 2017)}$

• $\max_{q} \min_{\tilde{f}_{1},...,\tilde{f}_{N}}$ problem $\rightarrow \max_{q}$ problem, no double-loop needed!

The final objective is:

$$\log Z_{\mathsf{PEP}} = g(\eta_q) - g(\eta_{\mathsf{prior}}) + \sum_{i=1}^{N} rac{1}{lpha} \left(\log ilde{Z}_i + g(\eta_q) - g(\eta_{q^{\mathsf{cav}}_{lpha}})
ight)$$

which is suitable for standard optimization and mini-batch training. $_{\rm (Villacampa,\ 2022)(Li,\ 2017)}$

Approximating $\log Z_i$

Note that $\log Z_i = \log \int p(y_i | f_i^L)^{\alpha} q^{\alpha i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.
Note that $\log Z_i = \log \int p(y_i | f_i^L)^{\alpha} q^{\alpha i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L)^{\alpha} q^{\alpha i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L)^{\alpha} q^{\alpha i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L)^{\alpha} q^{\alpha i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

Note that $\log Z_i = \log \int p(y_i | f_i^L)^{\alpha} q^{\alpha i} (f_i^L) df_i^L$ is the log predictive likelihood of instance *i* when removed from the training set.

We can use a Monte Carlo approximation:

Expected to be more accurate than the Gaussian projection method used by AEP!

Further Approximations

Consider $\alpha \approx 0$ or $N \rightarrow \infty$ (*i.e.*, the cavity becomes q):

$$egin{aligned} \log Z_{\mathsf{PEP}} &pprox g(oldsymbol{\eta}_q) - g(oldsymbol{\eta}_{\mathsf{prior}}) + \sum_{i=1}^N rac{1}{lpha} ig(\log ilde{Z}_i + g(oldsymbol{\eta}_q) - g(oldsymbol{\eta}_{q_lpha^{\mathsf{cav}}}) ig) \ &= \sum_{i=1}^N rac{1}{lpha} \log ilde{Z}_i - \mathsf{R}_eta[q_{\mathsf{cav}}|\mathsf{prior}]\,, \end{aligned}$$

with $R_{\beta}[q_{cav}|prior]$ a Rényi divergence, becomes similar to

$$\log Z_{\text{PEP}} \approx \sum_{i=1}^{N} \frac{1}{\alpha} \log \tilde{Z}_i - \text{KL}[q|\text{prior}],$$

Further Approximations

Consider $\alpha \approx 0$ or $N \rightarrow \infty$ (*i.e.*, the cavity becomes q):

$$egin{aligned} \log Z_{\mathsf{PEP}} &pprox g(oldsymbol{\eta}_q) - g(oldsymbol{\eta}_{\mathsf{prior}}) + \sum_{i=1}^N rac{1}{lpha} ig(\log ilde{Z}_i + g(oldsymbol{\eta}_q) - g(oldsymbol{\eta}_{q^{\mathsf{cav}}}) ig) \ &= \sum_{i=1}^N rac{1}{lpha} \log ilde{Z}_i - \mathsf{R}_eta[q_{\mathsf{cav}}|\mathsf{prior}]\,, \end{aligned}$$

with $R_{\beta}[q_{cav}|prior]$ a Rényi divergence, becomes similar to

$$\log Z_{\mathsf{PEP}} \approx \sum_{i=1}^{N} \frac{1}{\alpha} \log \tilde{Z}_i - \mathsf{KL}[q|\mathsf{prior}],$$

Which for $\alpha \rightarrow 0$ gives the DVSVI objective and for $\alpha = 1$ is expected to give similar results to AEP (better estimating $\log Z_i$)!

DGP (L = 2, M = 10) (alpha = 1e-3)

х

DGP (L = 2, M = 10) (alpha = 0.5)

х

DGP (L = 2, M = 10) (alpha = 1.0)

х

The value of α has an impact on the final predictive distribution!

$\alpha\text{-}\mathsf{Divergence}$ Minimization: Toy Problems

α -Divergence Minimization: Toy Problems

The first problem has heteroscedastic noise. The second, a bimodal predictive distribution!

(Depeweng, 2016)

α -Divergence Minimization: Toy Problems

α -Divergence Minimization: Toy Problems

The value $\alpha = 1.0$ provides more sensible predictive distributions!

⁽Villacampa, 2022)

$\alpha\text{-}\mathsf{Divergence}$ Minimization: Average Ranks

α -Divergence Minimization: Average Ranks

The value $\alpha = 1.0$ provides better results in terms of the NLL and intermediate values of α give better RMSE!

(Villacampa, 2022)

• Useful for input warping: automatic, non-parametric kernel design.

- Useful for input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.

- Useful for input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.

- Useful for input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.
- Better cost scaling w.r.t. depth L rather than inducing points M.

- Useful for input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.
- Better cost scaling w.r.t. depth L rather than inducing points M.
- More complex inference: DSVI, AEP, α -divergence minimization.

- Useful for input warping: automatic, non-parametric kernel design.
- Repair damage done by sparse approximations to GPs.
- More accurate predictions and better uncertainty estimates.
- Better cost scaling w.r.t. depth *L* rather than inducing points *M*.
- More complex inference: DSVI, AEP, α -divergence minimization.
- α -divergence minimization generalizes the other methods.

References

- Damianou, A., & Lawrence, N. D. (2013, April). Deep Gaussian processes. In Artificial intelligence and statistics (pp. 207-215).
- Bui, T., Hernández-Lobato, D., Hernandez-Lobato, J., Li, Y., & Turner, R. (2016, June). Deep Gaussian processes for regression using approximate expectation propagation. In International conference on machine learning (pp. 1472-1481).
- Salimbeni, H., & Deisenroth, M. (2017). Doubly stochastic variational inference for deep Gaussian processes. Advances in neural information processing systems, 30.
- Li, Y., & Gal, Y. (2017, July). Dropout inference in Bayesian neural networks with alpha-divergences. In International conference on machine learning (pp. 2052-2061).
- Villacampa-Calvo, C., & Hernandez-Lobato, D. (2020). Alpha divergence minimization in multi-class Gaussian process classification. Neurocomputing, 378, 210-227.