
Part II: Sparse Gaussian Processes

Daniel Hernández–Lobato
Computer Science Department

Universidad Autónoma de Madrid

http://dhnzl.org, daniel.hernandez@uam.es

1 / 61

http://dhnzl.org
mailto:daniel.hernandez@uam.es

Computational Cost of Gaussian Processes

The memory cost is in O(N2) since we have to compute Σ.

The computational cost is in O(N3) since we have to invert Σ.

● ● ● ●
●

●

1000 2000 3000 4000 5000

0
20

40
60

N

Ti
m

e
(in

 s
ec

on
ds

)

We can handle just a few thousand data instances at most!

2 / 61

Computational Cost of Gaussian Processes

The memory cost is in O(N2) since we have to compute Σ.

The computational cost is in O(N3) since we have to invert Σ.

● ● ● ●
●

●

1000 2000 3000 4000 5000

0
20

40
60

N

Ti
m

e
(in

 s
ec

on
ds

)

We can handle just a few thousand data instances at most!

2 / 61

Computational Cost of Gaussian Processes

The memory cost is in O(N2) since we have to compute Σ.

The computational cost is in O(N3) since we have to invert Σ.

● ● ● ●
●

●

1000 2000 3000 4000 5000

0
20

40
60

N

Ti
m

e
(in

 s
ec

on
ds

)

We can handle just a few thousand data instances at most!

2 / 61

Computational Cost of Gaussian Processes

The memory cost is in O(N2) since we have to compute Σ.

The computational cost is in O(N3) since we have to invert Σ.

● ● ● ●
●

●

1000 2000 3000 4000 5000

0
20

40
60

N

Ti
m

e
(in

 s
ec

on
ds

)

We can handle just a few thousand data instances at most!

2 / 61

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

GPs are the limiting case (H → ∞) of Bayesian Neural Networks!

Idea: go back to the parametric model, but in such a way that we can
still make inference easily!

• Nyström, Random Features and FITC: approximate GP prior!
• VFE: does approximate inference with a simplified distribution q.

3 / 61

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

GPs are the limiting case (H → ∞) of Bayesian Neural Networks!

Idea: go back to the parametric model, but in such a way that we can
still make inference easily!

• Nyström, Random Features and FITC: approximate GP prior!
• VFE: does approximate inference with a simplified distribution q.

3 / 61

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

GPs are the limiting case (H → ∞) of Bayesian Neural Networks!

Idea: go back to the parametric model, but in such a way that we can
still make inference easily!

• Nyström, Random Features and FITC: approximate GP prior!
• VFE: does approximate inference with a simplified distribution q.

3 / 61

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

GPs are the limiting case (H → ∞) of Bayesian Neural Networks!

Idea: go back to the parametric model, but in such a way that we can
still make inference easily!

...
... ...

...

Neural Network
(parametric model)

• Nyström, Random Features and FITC: approximate GP prior!
• VFE: does approximate inference with a simplified distribution q.

3 / 61

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

GPs are the limiting case (H → ∞) of Bayesian Neural Networks!

Idea: go back to the parametric model, but in such a way that we can
still make inference easily!

...
... ...

...

Neural Network
(parametric model)

Gaussian Process
(non-parametric model)

• Nyström, Random Features and FITC: approximate GP prior!
• VFE: does approximate inference with a simplified distribution q.

3 / 61

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

GPs are the limiting case (H → ∞) of Bayesian Neural Networks!

Idea: go back to the parametric model, but in such a way that we can
still make inference easily!

...
... ...

...

Neural Network
(parametric model)

Gaussian Process
(non-parametric model)

Sparse Gaussian Process
(parametric model)

Approximations

• Nyström, Random Features and FITC: approximate GP prior!
• VFE: does approximate inference with a simplified distribution q.

3 / 61

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

GPs are the limiting case (H → ∞) of Bayesian Neural Networks!

Idea: go back to the parametric model, but in such a way that we can
still make inference easily!

...
... ...

...

Neural Network
(parametric model)

Gaussian Process
(non-parametric model)

Sparse Gaussian Process
(parametric model)

Approximations

• Nyström, Random Features and FITC: approximate GP prior!

• VFE: does approximate inference with a simplified distribution q.

3 / 61

Improving the Cost of Gaussian Processes

GPs are non-parametric models whose flexibility grows with N!

GPs are the limiting case (H → ∞) of Bayesian Neural Networks!

Idea: go back to the parametric model, but in such a way that we can
still make inference easily!

...
... ...

...

Neural Network
(parametric model)

Gaussian Process
(non-parametric model)

Sparse Gaussian Process
(parametric model)

Approximations

• Nyström, Random Features and FITC: approximate GP prior!
• VFE: does approximate inference with a simplified distribution q.

3 / 61

The Nyström Method

Motivation: The posterior mean and covariances require (Iσ2 +Σ)−1.

Can we approximate the inverse of Iσ2 +Σ with a cheaper cost?

A low rank m approximation of Σ does the job:

Σ =



















The Woodbury formula gives (Iσ2 +UΛUT)−1 with cost O(M2N)!

4 / 61

The Nyström Method

Motivation: The posterior mean and covariances require (Iσ2 +Σ)−1.

Can we approximate the inverse of Iσ2 +Σ with a cheaper cost?

A low rank m approximation of Σ does the job:

Σ =



















The Woodbury formula gives (Iσ2 +UΛUT)−1 with cost O(M2N)!

4 / 61

The Nyström Method

Motivation: The posterior mean and covariances require (Iσ2 +Σ)−1.

Can we approximate the inverse of Iσ2 +Σ with a cheaper cost?

A low rank m approximation of Σ does the job:

Σ =



















The Woodbury formula gives (Iσ2 +UΛUT)−1 with cost O(M2N)!

4 / 61

The Nyström Method

Motivation: The posterior mean and covariances require (Iσ2 +Σ)−1.

Can we approximate the inverse of Iσ2 +Σ with a cheaper cost?

A low rank m approximation of Σ does the job:

Σ =



















The Woodbury formula gives (Iσ2 +UΛUT)−1 with cost O(M2N)!

4 / 61

The Nyström Method

Motivation: The posterior mean and covariances require (Iσ2 +Σ)−1.

Can we approximate the inverse of Iσ2 +Σ with a cheaper cost?

A low rank m approximation of Σ does the job:

Σ =



















The Woodbury formula gives (Iσ2 +UΛUT)−1 with cost O(M2N)!

4 / 61

Woodbury Formula

(A+ PCQ)−1 = A−1 − A−1P
(
C−1 +QA−1P

)−1
QA−1

Let us now use A = Iσ2, P = U, Q = UT and C = Λ.

Note that A and C are diagonal with sizes N × N and M ×M!

C−1 +QA−1P = Λ−1 +UTUσ−2 has size M ×M!

(Iσ2 +UΛUT)−1 = Iσ−2 − σ−2U
(
Λ−1 +UTσ−2U

)−1
UTσ−2

Computing the whole expression has cost O(NM2)!

5 / 61

Woodbury Formula

(A+ PCQ)−1 = A−1 − A−1P
(
C−1 +QA−1P

)−1
QA−1

Let us now use A = Iσ2, P = U, Q = UT and C = Λ.

Note that A and C are diagonal with sizes N × N and M ×M!

C−1 +QA−1P = Λ−1 +UTUσ−2 has size M ×M!

(Iσ2 +UΛUT)−1 = Iσ−2 − σ−2U
(
Λ−1 +UTσ−2U

)−1
UTσ−2

Computing the whole expression has cost O(NM2)!

5 / 61

Woodbury Formula

(A+ PCQ)−1 = A−1 − A−1P
(
C−1 +QA−1P

)−1
QA−1

Let us now use A = Iσ2, P = U, Q = UT and C = Λ.

Note that A and C are diagonal with sizes N × N and M ×M!

C−1 +QA−1P = Λ−1 +UTUσ−2 has size M ×M!

(Iσ2 +UΛUT)−1 = Iσ−2 − σ−2U
(
Λ−1 +UTσ−2U

)−1
UTσ−2

Computing the whole expression has cost O(NM2)!

5 / 61

Woodbury Formula

(A+ PCQ)−1 = A−1 − A−1P
(
C−1 +QA−1P

)−1
QA−1

Let us now use A = Iσ2, P = U, Q = UT and C = Λ.

Note that A and C are diagonal with sizes N × N and M ×M!

C−1 +QA−1P = Λ−1 +UTUσ−2 has size M ×M!

(Iσ2 +UΛUT)−1 = Iσ−2 − σ−2U
(
Λ−1 +UTσ−2U

)−1
UTσ−2

Computing the whole expression has cost O(NM2)!

5 / 61

Woodbury Formula

(A+ PCQ)−1 = A−1 − A−1P
(
C−1 +QA−1P

)−1
QA−1

Let us now use A = Iσ2, P = U, Q = UT and C = Λ.

Note that A and C are diagonal with sizes N × N and M ×M!

C−1 +QA−1P = Λ−1 +UTUσ−2 has size M ×M!

(Iσ2 +UΛUT)−1 = Iσ−2 − σ−2U
(
Λ−1 +UTσ−2U

)−1
UTσ−2

Computing the whole expression has cost O(NM2)!

5 / 61

Woodbury Formula

(A+ PCQ)−1 = A−1 − A−1P
(
C−1 +QA−1P

)−1
QA−1

Let us now use A = Iσ2, P = U, Q = UT and C = Λ.

Note that A and C are diagonal with sizes N × N and M ×M!

C−1 +QA−1P = Λ−1 +UTUσ−2 has size M ×M!

(Iσ2 +UΛUT)−1 = Iσ−2 − σ−2U
(
Λ−1 +UTσ−2U

)−1
UTσ−2

Computing the whole expression has cost O(NM2)!

5 / 61

Eigenfunction Analysis of Covariance Functions

GPs are equivalent to a Bayesian linear model on an extended
input space given by the eigenfunctions of the covariance function.

Extended input space: A function ϕ(·) that obeys∫
C (x, x′)ϕ(x)p(x)dx = λϕ(x′) ,

is an eigenfunction of C (·, ·) with eigenvalue λ, w.r.t., p(x).

Mercer’s theorem:

C (x, x′) =
∞∑
i=1

λiϕi (x)ϕi (x
′) .

6 / 61

Eigenfunction Analysis of Covariance Functions

GPs are equivalent to a Bayesian linear model on an extended
input space given by the eigenfunctions of the covariance function.

Extended input space: A function ϕ(·) that obeys∫
C (x, x′)ϕ(x)p(x)dx = λϕ(x′) ,

is an eigenfunction of C (·, ·) with eigenvalue λ, w.r.t., p(x).

Mercer’s theorem:

C (x, x′) =
∞∑
i=1

λiϕi (x)ϕi (x
′) .

6 / 61

Eigenfunction Analysis of Covariance Functions

GPs are equivalent to a Bayesian linear model on an extended
input space given by the eigenfunctions of the covariance function.

Extended input space: A function ϕ(·) that obeys∫
C (x, x′)ϕ(x)p(x)dx = λϕ(x′) ,

is an eigenfunction of C (·, ·) with eigenvalue λ, w.r.t., p(x).

Mercer’s theorem:

C (x, x′) =
∞∑
i=1

λiϕi (x)ϕi (x
′) .

6 / 61

An Analytic Example

Consider:

p(x) = N (x |0, σ2) , C (x , x ′) = exp

{
− 1

2ℓ2
(x − x ′)2

}
.

Then,

λk =

√
2a

A
Bk , ϕk(x) = exp

{
−(c − a)x2

}
Hk(

√
2cx) ,

for k = 0, 1, 2, . . ., with

a−1 = 4σ2 , b−1 = 2ℓ2 , c =
√
a2 + 2ab , A = a+ b + c , B = b/a ,

and Hk(·), the k-th order Hermite polynomial.

7 / 61

An Analytic Example

Consider:

p(x) = N (x |0, σ2) , C (x , x ′) = exp

{
− 1

2ℓ2
(x − x ′)2

}
.

Then,

λk =

√
2a

A
Bk , ϕk(x) = exp

{
−(c − a)x2

}
Hk(

√
2cx) ,

for k = 0, 1, 2, . . ., with

a−1 = 4σ2 , b−1 = 2ℓ2 , c =
√

a2 + 2ab , A = a+ b + c , B = b/a ,

and Hk(·), the k-th order Hermite polynomial.

7 / 61

Hermite Polynomials

−2 0 2
−0.2

0

0.2

0.4

8 / 61

Covariance Function Approximation

Considering only the first eigenfunctions and eigenvalues is
expected to give a good approximation of the covariance function!

5 10 15 20 25

0
.0

0
.3

0
.6

Number of Eigenfunction

E
ig

e
n
va

lu
e

Exact Covariance Matrix Approx. Covariance Matrix

9 / 61

Covariance Function Approximation

Considering only the first eigenfunctions and eigenvalues is
expected to give a good approximation of the covariance function!

5 10 15 20 25

0
.0

0
.3

0
.6

Number of Eigenfunction

E
ig

e
n
va

lu
e

Exact Covariance Matrix Approx. Covariance Matrix

9 / 61

Covariance Function Approximation

Considering only the first eigenfunctions and eigenvalues is
expected to give a good approximation of the covariance function!

5 10 15 20 25

0
.0

0
.3

0
.6

Number of Eigenfunction

E
ig

e
n
va

lu
e

Exact Covariance Matrix Approx. Covariance Matrix

9 / 61

Nyström Approximation of Eigenfunctions

Let p(x) be the distribution of the observed data.

Consider the Monte Carlo estimator:

λiϕi (x
′) =

∫
C (x, x′)ϕi (x)p(x)dx ≈ 1

N

N∑
n=1

C (xn, x
′)ϕi (xn) .

This motivates the following eigenvalue problem:

λmat
i ui = Σui ,

with Σi ,j = C (xi , xj). Then, we approximate ϕi (xj) ≈
√
N(ui)j = ϕ̃i (xj),

and λi ≈ λmat
i /N = λ̃i , which guarantees that Σ = Φ̃Λ̃Φ̃T.

For an arbitrary x′ not in the training set, then:

ϕ̃i (x
′) =

1

Nλi

N∑
n=1

C (x′, xn)ϕi (xn) ≈
√
N

λmat
i

N∑
n=1

C (x′, xn)(ui)n =

√
N

λmat
i

Σ(x′)Tui .

10 / 61

Nyström Approximation of Eigenfunctions

Let p(x) be the distribution of the observed data.

Consider the Monte Carlo estimator:

λiϕi (x
′) =

∫
C (x, x′)ϕi (x)p(x)dx ≈ 1

N

N∑
n=1

C (xn, x
′)ϕi (xn) .

This motivates the following eigenvalue problem:

λmat
i ui = Σui ,

with Σi ,j = C (xi , xj). Then, we approximate ϕi (xj) ≈
√
N(ui)j = ϕ̃i (xj),

and λi ≈ λmat
i /N = λ̃i , which guarantees that Σ = Φ̃Λ̃Φ̃T.

For an arbitrary x′ not in the training set, then:

ϕ̃i (x
′) =

1

Nλi

N∑
n=1

C (x′, xn)ϕi (xn) ≈
√
N

λmat
i

N∑
n=1

C (x′, xn)(ui)n =

√
N

λmat
i

Σ(x′)Tui .

10 / 61

Nyström Approximation of Eigenfunctions

Let p(x) be the distribution of the observed data.

Consider the Monte Carlo estimator:

λiϕi (x
′) =

∫
C (x, x′)ϕi (x)p(x)dx ≈ 1

N

N∑
n=1

C (xn, x
′)ϕi (xn) .

This motivates the following eigenvalue problem:

λmat
i ui = Σui ,

with Σi ,j = C (xi , xj). Then, we approximate ϕi (xj) ≈
√
N(ui)j = ϕ̃i (xj),

and λi ≈ λmat
i /N = λ̃i , which guarantees that Σ = Φ̃Λ̃Φ̃T.

For an arbitrary x′ not in the training set, then:

ϕ̃i (x
′) =

1

Nλi

N∑
n=1

C (x′, xn)ϕi (xn) ≈
√
N

λmat
i

N∑
n=1

C (x′, xn)(ui)n =

√
N

λmat
i

Σ(x′)Tui .

10 / 61

Nyström Approximation of Eigenfunctions

Let p(x) be the distribution of the observed data.

Consider the Monte Carlo estimator:

λiϕi (x
′) =

∫
C (x, x′)ϕi (x)p(x)dx ≈ 1

N

N∑
n=1

C (xn, x
′)ϕi (xn) .

This motivates the following eigenvalue problem:

λmat
i ui = Σui ,

with Σi ,j = C (xi , xj). Then, we approximate ϕi (xj) ≈
√
N(ui)j = ϕ̃i (xj),

and λi ≈ λmat
i /N = λ̃i , which guarantees that Σ = Φ̃Λ̃Φ̃T.

For an arbitrary x′ not in the training set, then:

ϕ̃i (x
′) =

1

Nλi

N∑
n=1

C (x′, xn)ϕi (xn) ≈
√
N

λmat
i

N∑
n=1

C (x′, xn)(ui)n =

√
N

λmat
i

Σ(x′)Tui .

10 / 61

Putting All Together

We choose a random subset of size M < N of the training data, to
approximate the eigenfunctions and eigenvalues!

Using Mercer’s theorem and the previous approximation, we approximate
the covariance function as:

C (x, x′) =
∞∑
i=1

λiϕi (x)ϕi (x
′) ≈

M∑
i=1

λ̃i ϕ̃i (x)ϕ̃i (x
′) .

which results in a rank M approximation of the covariance matrix Σ:

Σ ≈ Σ̃ = Φ̃Λ̃Φ̃T = ΣN,MΣ−1
M,MΣM,N .

The inverse of Iσ2 + Σ̃ can be efficiently computed using the
Woodbury formula with cost O(NM2)!

11 / 61

Putting All Together

We choose a random subset of size M < N of the training data, to
approximate the eigenfunctions and eigenvalues!

Using Mercer’s theorem and the previous approximation, we approximate
the covariance function as:

C (x, x′) =
∞∑
i=1

λiϕi (x)ϕi (x
′) ≈

M∑
i=1

λ̃i ϕ̃i (x)ϕ̃i (x
′) .

which results in a rank M approximation of the covariance matrix Σ:

Σ ≈ Σ̃ = Φ̃Λ̃Φ̃T = ΣN,MΣ−1
M,MΣM,N .

The inverse of Iσ2 + Σ̃ can be efficiently computed using the
Woodbury formula with cost O(NM2)!

11 / 61

Putting All Together

We choose a random subset of size M < N of the training data, to
approximate the eigenfunctions and eigenvalues!

Using Mercer’s theorem and the previous approximation, we approximate
the covariance function as:

C (x, x′) =
∞∑
i=1

λiϕi (x)ϕi (x
′) ≈

M∑
i=1

λ̃i ϕ̃i (x)ϕ̃i (x
′) .

which results in a rank M approximation of the covariance matrix Σ:

Σ ≈ Σ̃ = Φ̃Λ̃Φ̃T = ΣN,MΣ−1
M,MΣM,N .

The inverse of Iσ2 + Σ̃ can be efficiently computed using the
Woodbury formula with cost O(NM2)!

11 / 61

Putting All Together

We choose a random subset of size M < N of the training data, to
approximate the eigenfunctions and eigenvalues!

Using Mercer’s theorem and the previous approximation, we approximate
the covariance function as:

C (x, x′) =
∞∑
i=1

λiϕi (x)ϕi (x
′) ≈

M∑
i=1

λ̃i ϕ̃i (x)ϕ̃i (x
′) .

which results in a rank M approximation of the covariance matrix Σ:

Σ ≈ Σ̃ = Φ̃Λ̃Φ̃T = ΣN,MΣ−1
M,MΣM,N .

The inverse of Iσ2 + Σ̃ can be efficiently computed using the
Woodbury formula with cost O(NM2)!

11 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σff⋆

Σf⋆f Σf⋆f⋆

])

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

x

●

●

●

●

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1|y2) = N
(
y1

∣∣∣a+ CB−1(y2 − b),A− CB−1CT
)

p(f⋆|f) = N (f⋆| Σf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Σf⋆fΣ̃

−1
ff ΣT

f⋆f

)

12 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σff⋆

Σf⋆f Σf⋆f⋆

])

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

x

●

●

●

●

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1|y2) = N
(
y1

∣∣∣a+ CB−1(y2 − b),A− CB−1CT
)

p(f⋆|f) = N (f⋆| Σf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Σf⋆fΣ̃

−1
ff ΣT

f⋆f

)

12 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σff⋆

Σf⋆f Σf⋆f⋆

])

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

x

●

●

●

●

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1|y2) = N
(
y1

∣∣∣a+ CB−1(y2 − b),A− CB−1CT
)

p(f⋆|f) = N (f⋆| Σf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Σf⋆fΣ̃

−1
ff ΣT

f⋆f

)

12 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σff⋆

Σf⋆f Σf⋆f⋆

])

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

x

●

●

●

●

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1|y2) = N
(
y1

∣∣∣a+ CB−1(y2 − b),A− CB−1CT
)

p(f⋆|f) = N (f⋆| Σf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Σf⋆fΣ̃

−1
ff ΣT

f⋆f

)

12 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σff⋆

Σf⋆f Σf⋆f⋆

])

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

x

●

●

●

●

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1|y2) = N
(
y1

∣∣∣a+ CB−1(y2 − b),A− CB−1CT
)

p(f⋆|f) = N (f⋆| Σf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Σf⋆fΣ̃

−1
ff ΣT

f⋆f

)

12 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σff⋆

Σf⋆f Σf⋆f⋆

])

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

x

●

●

●

●

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1|y2) = N
(
y1

∣∣∣a+ CB−1(y2 − b),A− CB−1CT
)

p(f⋆|f) = N (f⋆| Σf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Σf⋆fΣ̃

−1
ff ΣT

f⋆f

)
12 / 61

Nyström Approximation: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2
Full GP

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

The approximation is similar to the full GP in some regions!

13 / 61

Nyström Approximation: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2
Nystrom GP (M = 10)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

The approximation is similar to the full GP in some regions!

13 / 61

Nyström Approximation: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2
Nystrom GP (M = 10)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

The approximation is similar to the full GP in some regions!

13 / 61

Summary of Nyström Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• If M = N the method is exact since Σ̃ = Σ.

• For small M it can give bad results according to empirical evidence.

• It can perform well if Σ is dominated by a few eigenvalues.

• As the M points are chosen at random it may give different results.

• Since the approximation is done only over the covariance matrix of
the training data, negative predictive variances are possible, but rare.

14 / 61

Summary of Nyström Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• If M = N the method is exact since Σ̃ = Σ.

• For small M it can give bad results according to empirical evidence.

• It can perform well if Σ is dominated by a few eigenvalues.

• As the M points are chosen at random it may give different results.

• Since the approximation is done only over the covariance matrix of
the training data, negative predictive variances are possible, but rare.

14 / 61

Summary of Nyström Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• If M = N the method is exact since Σ̃ = Σ.

• For small M it can give bad results according to empirical evidence.

• It can perform well if Σ is dominated by a few eigenvalues.

• As the M points are chosen at random it may give different results.

• Since the approximation is done only over the covariance matrix of
the training data, negative predictive variances are possible, but rare.

14 / 61

Summary of Nyström Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• If M = N the method is exact since Σ̃ = Σ.

• For small M it can give bad results according to empirical evidence.

• It can perform well if Σ is dominated by a few eigenvalues.

• As the M points are chosen at random it may give different results.

• Since the approximation is done only over the covariance matrix of
the training data, negative predictive variances are possible, but rare.

14 / 61

Summary of Nyström Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• If M = N the method is exact since Σ̃ = Σ.

• For small M it can give bad results according to empirical evidence.

• It can perform well if Σ is dominated by a few eigenvalues.

• As the M points are chosen at random it may give different results.

• Since the approximation is done only over the covariance matrix of
the training data, negative predictive variances are possible, but rare.

14 / 61

Summary of Nyström Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• If M = N the method is exact since Σ̃ = Σ.

• For small M it can give bad results according to empirical evidence.

• It can perform well if Σ is dominated by a few eigenvalues.

• As the M points are chosen at random it may give different results.

• Since the approximation is done only over the covariance matrix of
the training data, negative predictive variances are possible, but rare.

14 / 61

Random Features Approximations

They can be used to approximate any stationary covariance
function (only depends on the distance between points).

Bochner’s theorem:

A covariance function C (x, x′) = C (x− x′) on RD is positive definite if
and only if C (x− x′) is the Fourier transform of a distribution s(w).

C (x, x′) =

∫
exp{−iwT(x− x′)}s(w)dw ,

s(w) =
1

(2π)D

∫
exp{iwT}C (τ , 0)dτ .

s(w) is called the spectral density of the covariance function.

15 / 61

Random Features Approximations

They can be used to approximate any stationary covariance
function (only depends on the distance between points).

Bochner’s theorem:

A covariance function C (x, x′) = C (x− x′) on RD is positive definite if
and only if C (x− x′) is the Fourier transform of a distribution s(w).

C (x, x′) =

∫
exp{−iwT(x− x′)}s(w)dw ,

s(w) =
1

(2π)D

∫
exp{iwT}C (τ , 0)dτ .

s(w) is called the spectral density of the covariance function.

15 / 61

Random Features Approximations

They can be used to approximate any stationary covariance
function (only depends on the distance between points).

Bochner’s theorem:

A covariance function C (x, x′) = C (x− x′) on RD is positive definite if
and only if C (x− x′) is the Fourier transform of a distribution s(w).

C (x, x′) =

∫
exp{−iwT(x− x′)}s(w)dw ,

s(w) =
1

(2π)D

∫
exp{iwT}C (τ , 0)dτ .

s(w) is called the spectral density of the covariance function.

15 / 61

Random Features Approximations

They can be used to approximate any stationary covariance
function (only depends on the distance between points).

Bochner’s theorem:

A covariance function C (x, x′) = C (x− x′) on RD is positive definite if
and only if C (x− x′) is the Fourier transform of a distribution s(w).

C (x, x′) =

∫
exp{−iwT(x− x′)}s(w)dw ,

s(w) =
1

(2π)D

∫
exp{iwT}C (τ , 0)dτ .

s(w) is called the spectral density of the covariance function.

15 / 61

Covariances as Expectations of Cosines

Due to Bochner’s theorem, the covariance can be written as:

C (x, x′) = Es(w)

[
exp{−iwT(x− x′)}

]
= 2Es(w),b∼U[0,2π]

[
cos
(
wTx+ b

)
cos
(
wTx′ + b

)]
.

The expectation can be approximated by a Monte Carlo average!

We can reduce the variance of the estimator by generating M samples:

C (x, x′) ≈ 2

M

M∑
m=1

cos
(
wT

mx+ bm
)
cos
(
wT

mx
′ + bm

)
= ϕ(x)Tϕ(x′)

with ϕ(x) =
√

2
M cos

(
WTx+ b

)
a random M feature expansion.

For the squared exponential covariance function s(w) is Gaussian!

16 / 61

Covariances as Expectations of Cosines

Due to Bochner’s theorem, the covariance can be written as:

C (x, x′) = Es(w)

[
exp{−iwT(x− x′)}

]
= 2Es(w),b∼U[0,2π]

[
cos
(
wTx+ b

)
cos
(
wTx′ + b

)]
.

The expectation can be approximated by a Monte Carlo average!

We can reduce the variance of the estimator by generating M samples:

C (x, x′) ≈ 2

M

M∑
m=1

cos
(
wT

mx+ bm
)
cos
(
wT

mx
′ + bm

)
= ϕ(x)Tϕ(x′)

with ϕ(x) =
√

2
M cos

(
WTx+ b

)
a random M feature expansion.

For the squared exponential covariance function s(w) is Gaussian!

16 / 61

Covariances as Expectations of Cosines

Due to Bochner’s theorem, the covariance can be written as:

C (x, x′) = Es(w)

[
exp{−iwT(x− x′)}

]
= 2Es(w),b∼U[0,2π]

[
cos
(
wTx+ b

)
cos
(
wTx′ + b

)]
.

The expectation can be approximated by a Monte Carlo average!

We can reduce the variance of the estimator by generating M samples:

C (x, x′) ≈ 2

M

M∑
m=1

cos
(
wT

mx+ bm
)
cos
(
wT

mx
′ + bm

)
= ϕ(x)Tϕ(x′)

with ϕ(x) =
√

2
M cos

(
WTx+ b

)
a random M feature expansion.

For the squared exponential covariance function s(w) is Gaussian!

16 / 61

Covariances as Expectations of Cosines

Due to Bochner’s theorem, the covariance can be written as:

C (x, x′) = Es(w)

[
exp{−iwT(x− x′)}

]
= 2Es(w),b∼U[0,2π]

[
cos
(
wTx+ b

)
cos
(
wTx′ + b

)]
.

The expectation can be approximated by a Monte Carlo average!

We can reduce the variance of the estimator by generating M samples:

C (x, x′) ≈ 2

M

M∑
m=1

cos
(
wT

mx+ bm
)
cos
(
wT

mx
′ + bm

)
= ϕ(x)Tϕ(x′)

with ϕ(x) =
√

2
M cos

(
WTx+ b

)
a random M feature expansion.

For the squared exponential covariance function s(w) is Gaussian!

16 / 61

Approximate Covariance Function

The covariance matrix can be simply approximated as:

Σ ≈ Σ̃ = ΦΦT

and hence Iσ2 + Σ̃ can be inverted with cost O(NM2).

−6 −4 −2 0 2 4 6

−
0
.2

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Distance between x and x'

C
o
va

ri
a
n
ce

Exact Sq. Exp. Covariance
Approx Covariance M = 50

17 / 61

Approximate Covariance Function

The covariance matrix can be simply approximated as:

Σ ≈ Σ̃ = ΦΦT

and hence Iσ2 + Σ̃ can be inverted with cost O(NM2).

−6 −4 −2 0 2 4 6

−
0
.2

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Distance between x and x'

C
o
va

ri
a
n
ce

Exact Sq. Exp. Covariance
Approx Covariance M = 50

17 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σ̃ff⋆

Σ̃f⋆f Σ̃f⋆f⋆

])

All prior covariances are now approximated using dot products
with the random features computed before!

p(f⋆|f) = N (f⋆| Σ̃f⋆fΣ̃
−1
ff f, Σ̃f⋆f⋆ − Σ̃f⋆fΣ̃

−1
ff Σ̃T

f⋆f

)

The computational cost is O(NM2)!

18 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σ̃ff⋆

Σ̃f⋆f Σ̃f⋆f⋆

])

All prior covariances are now approximated using dot products
with the random features computed before!

p(f⋆|f) = N (f⋆| Σ̃f⋆fΣ̃
−1
ff f, Σ̃f⋆f⋆ − Σ̃f⋆fΣ̃

−1
ff Σ̃T

f⋆f

)

The computational cost is O(NM2)!

18 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σ̃ff⋆

Σ̃f⋆f Σ̃f⋆f⋆

])

All prior covariances are now approximated using dot products
with the random features computed before!

p(f⋆|f) = N (f⋆| Σ̃f⋆fΣ̃
−1
ff f, Σ̃f⋆f⋆ − Σ̃f⋆fΣ̃

−1
ff Σ̃T

f⋆f

)

The computational cost is O(NM2)!

18 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σ̃ff⋆

Σ̃f⋆f Σ̃f⋆f⋆

])

All prior covariances are now approximated using dot products
with the random features computed before!

p(f⋆|f) = N (f⋆| Σ̃f⋆fΣ̃
−1
ff f, Σ̃f⋆f⋆ − Σ̃f⋆fΣ̃

−1
ff Σ̃T

f⋆f

)

The computational cost is O(NM2)!

18 / 61

Predictive Distribution

We want to compute the value of f ⋆ at a new x⋆:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ Σ̃ff⋆

Σ̃f⋆f Σ̃f⋆f⋆

])

All prior covariances are now approximated using dot products
with the random features computed before!

p(f⋆|f) = N (f⋆| Σ̃f⋆fΣ̃
−1
ff f, Σ̃f⋆f⋆ − Σ̃f⋆fΣ̃

−1
ff Σ̃T

f⋆f

)

The computational cost is O(NM2)!

18 / 61

Random Features: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2
Full GP

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

In regions with no data the approximation may be wiggling a lot!

19 / 61

Random Features: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2
Random Features GP (M = 10)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

In regions with no data the approximation may be wiggling a lot!

19 / 61

Random Features: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2
Random Features GP (M = 50)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

In regions with no data the approximation may be wiggling a lot!

19 / 61

Random Features: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2
Random Features GP (M = 50)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

In regions with no data the approximation may be wiggling a lot!

19 / 61

Summary of Random Features Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• For small M it can give bad results due to the wiggling effect of
cosine features.

• Guaranteed to be exact only for M → ∞.

• It is restricted to stationary covariance functions.

• Very simple to implement!

• Equivalent to a neural network with a hidden layer with M units and
cosine activations, and a Bayesian linear model in the last layer!

20 / 61

Summary of Random Features Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• For small M it can give bad results due to the wiggling effect of
cosine features.

• Guaranteed to be exact only for M → ∞.

• It is restricted to stationary covariance functions.

• Very simple to implement!

• Equivalent to a neural network with a hidden layer with M units and
cosine activations, and a Bayesian linear model in the last layer!

20 / 61

Summary of Random Features Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• For small M it can give bad results due to the wiggling effect of
cosine features.

• Guaranteed to be exact only for M → ∞.

• It is restricted to stationary covariance functions.

• Very simple to implement!

• Equivalent to a neural network with a hidden layer with M units and
cosine activations, and a Bayesian linear model in the last layer!

20 / 61

Summary of Random Features Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• For small M it can give bad results due to the wiggling effect of
cosine features.

• Guaranteed to be exact only for M → ∞.

• It is restricted to stationary covariance functions.

• Very simple to implement!

• Equivalent to a neural network with a hidden layer with M units and
cosine activations, and a Bayesian linear model in the last layer!

20 / 61

Summary of Random Features Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• For small M it can give bad results due to the wiggling effect of
cosine features.

• Guaranteed to be exact only for M → ∞.

• It is restricted to stationary covariance functions.

• Very simple to implement!

• Equivalent to a neural network with a hidden layer with M units and
cosine activations, and a Bayesian linear model in the last layer!

20 / 61

Summary of Random Features Approximation

• Reduces the cost to O(MN2) with M ≪ N.

• For small M it can give bad results due to the wiggling effect of
cosine features.

• Guaranteed to be exact only for M → ∞.

• It is restricted to stationary covariance functions.

• Very simple to implement!

• Equivalent to a neural network with a hidden layer with M units and
cosine activations, and a Bayesian linear model in the last layer!

20 / 61

Full Independent Training Conditional (FITC)

1. Extend model with M ≪ N inducing points
and outputs at X.

p(f,u) = N
([

f
u

]∣∣∣∣ [0
0

]
,

[
Σff Σfu

Σuf Σuu

])

2. Introduce conditional independences:

p(f|u) =
N∏
i=1

p(fi |u)

3. Marginalize u to obtain an approximate GP prior for f.

p(f) =

∫
p(f|u)p(u)du =

N∏
i=1

p(fi |u)p(u)du = N (f|0, Σ̃ff)

where Σ̃ff = D+Qff with D diagonal and Qff = ΣfuΣ
−1
uu Σuf of rank M.

21 / 61

Full Independent Training Conditional (FITC)

1. Extend model with M ≪ N inducing points
and outputs at X.

p(f,u) = N
([

f
u

]∣∣∣∣ [0
0

]
,

[
Σff Σfu

Σuf Σuu

])

2. Introduce conditional independences:

p(f|u) =
N∏
i=1

p(fi |u)

3. Marginalize u to obtain an approximate GP prior for f.

p(f) =

∫
p(f|u)p(u)du =

N∏
i=1

p(fi |u)p(u)du = N (f|0, Σ̃ff)

where Σ̃ff = D+Qff with D diagonal and Qff = ΣfuΣ
−1
uu Σuf of rank M.

21 / 61

Full Independent Training Conditional (FITC)

1. Extend model with M ≪ N inducing points
and outputs at X.

p(f,u) = N
([

f
u

]∣∣∣∣ [0
0

]
,

[
Σff Σfu

Σuf Σuu

])

2. Introduce conditional independences:

p(f|u) =
N∏
i=1

p(fi |u)

3. Marginalize u to obtain an approximate GP prior for f.

p(f) =

∫
p(f|u)p(u)du =

N∏
i=1

p(fi |u)p(u)du = N (f|0, Σ̃ff)

where Σ̃ff = D+Qff with D diagonal and Qff = ΣfuΣ
−1
uu Σuf of rank M.

21 / 61

Full Independent Training Conditional (FITC)

1. Extend model with M ≪ N inducing points
and outputs at X.

p(f,u) = N
([

f
u

]∣∣∣∣ [0
0

]
,

[
Σff Σfu

Σuf Σuu

])

2. Introduce conditional independences:

p(f|u) =
N∏
i=1

p(fi |u)

3. Marginalize u to obtain an approximate GP prior for f.

p(f) =

∫
p(f|u)p(u)du =

N∏
i=1

p(fi |u)p(u)du = N (f|0, Σ̃ff)

where Σ̃ff = D+Qff with D diagonal and Qff = ΣfuΣ
−1
uu Σuf of rank M.

21 / 61

Full Independent Training Conditional (FITC)

1. Extend model with M ≪ N inducing points
and outputs at X.

p(f,u) = N
([

f
u

]∣∣∣∣ [0
0

]
,

[
Σff Σfu

Σuf Σuu

])

2. Introduce conditional independences:

p(f|u) =
N∏
i=1

p(fi |u)

3. Marginalize u to obtain an approximate GP prior for f.

p(f) =

∫
p(f|u)p(u)du =

N∏
i=1

p(fi |u)p(u)du = N (f|0, Σ̃ff)

where Σ̃ff = D+Qff with D diagonal and Qff = ΣfuΣ
−1
uu Σuf of rank M.

21 / 61

Full Independent Training Conditional (FITC)

5. We make the prediction of f ⋆ at x⋆ by
considering the approximate GP prior:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ff Qff⋆

Qf⋆f Σf⋆f⋆

])

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃

−1
ff QT

f⋆f

)
Due to the structure in Σ̃ff all computations have cost in O(NM2).

6. How do we find the location of the inducing points X?

Simply treat them as prior parameters and maximize the
approximate marginal likelihood p(f|0, Σ̃ff)!

22 / 61

Full Independent Training Conditional (FITC)

5. We make the prediction of f ⋆ at x⋆ by
considering the approximate GP prior:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ff Qff⋆

Qf⋆f Σf⋆f⋆

])

�✸ �✷ �✶ ✵ ✶ ✷ ✸

✁
✂

✁
✄

✁
☎

✆

☎

✄

✂

①

✝

✝

✝

✝

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1|y2) =
p(y1, y2)

p(y2)
,

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃

−1
ff QT

f⋆f

)
Due to the structure in Σ̃ff all computations have cost in O(NM2).

6. How do we find the location of the inducing points X?

Simply treat them as prior parameters and maximize the
approximate marginal likelihood p(f|0, Σ̃ff)!

22 / 61

Full Independent Training Conditional (FITC)

5. We make the prediction of f ⋆ at x⋆ by
considering the approximate GP prior:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ff Qff⋆

Qf⋆f Σf⋆f⋆

])

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃

−1
ff QT

f⋆f

)

Due to the structure in Σ̃ff all computations have cost in O(NM2).

6. How do we find the location of the inducing points X?

Simply treat them as prior parameters and maximize the
approximate marginal likelihood p(f|0, Σ̃ff)!

22 / 61

Full Independent Training Conditional (FITC)

5. We make the prediction of f ⋆ at x⋆ by
considering the approximate GP prior:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ff Qff⋆

Qf⋆f Σf⋆f⋆

])

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃

−1
ff QT

f⋆f

)
Due to the structure in Σ̃ff all computations have cost in O(NM2).

6. How do we find the location of the inducing points X?

Simply treat them as prior parameters and maximize the
approximate marginal likelihood p(f|0, Σ̃ff)!

22 / 61

Full Independent Training Conditional (FITC)

5. We make the prediction of f ⋆ at x⋆ by
considering the approximate GP prior:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ff Qff⋆

Qf⋆f Σf⋆f⋆

])

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃

−1
ff QT

f⋆f

)
Due to the structure in Σ̃ff all computations have cost in O(NM2).

6. How do we find the location of the inducing points X?

Simply treat them as prior parameters and maximize the
approximate marginal likelihood p(f|0, Σ̃ff)!

22 / 61

Full Independent Training Conditional (FITC)

5. We make the prediction of f ⋆ at x⋆ by
considering the approximate GP prior:

p(f, f⋆) = N
([

f
f⋆

]∣∣∣∣ [0
0

]
,

[
Σ̃ff Qff⋆

Qf⋆f Σf⋆f⋆

])

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃

−1
ff QT

f⋆f

)
Due to the structure in Σ̃ff all computations have cost in O(NM2).

6. How do we find the location of the inducing points X?

Simply treat them as prior parameters and maximize the
approximate marginal likelihood p(f|0, Σ̃ff)!

22 / 61

FITC: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2

Full GP

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

The inducing points cover the regions where the function changes!

23 / 61

FITC: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2

FITC (M = 10)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

+ ++ ++ + ++++

++++++++++

The inducing points cover the regions where the function changes!

23 / 61

FITC: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2

FITC (M = 10)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

+ ++ ++ + ++++

++++++++++

The inducing points cover the regions where the function changes!

23 / 61

Summary of FITC

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It can be understood as considering heteroscedastic (input
dependent) noise!

24 / 61

Summary of FITC

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It can be understood as considering heteroscedastic (input
dependent) noise!

24 / 61

Summary of FITC

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It can be understood as considering heteroscedastic (input
dependent) noise!

24 / 61

Summary of FITC

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It can be understood as considering heteroscedastic (input
dependent) noise!

24 / 61

Generalized FITC

Combines FITC with the use of Expectation Propagation to
address binary classification problems!

Expectation

Propagation

FITC
Approximation

Generalized
FITC

Assumes yi ∈ {−1, 1} and a probit likelihood:

p(yi |f (xi)) = ϕ(yi f (xi)) , ϕ(·) ≡ The c.d.f. of a standard Gaussian.

Approximates with a Gaussian distribution the intractable posterior:

p(f|y) =
∏N

i=1 ϕ(yi f (xi))N (f|0, Σ̃)

p(y)
,

where Σ̃ is the approximate FITC covariance matrix.

25 / 61

Generalized FITC

Combines FITC with the use of Expectation Propagation to
address binary classification problems!

Expectation

Propagation

FITC
Approximation

Generalized
FITC

Assumes yi ∈ {−1, 1} and a probit likelihood:

p(yi |f (xi)) = ϕ(yi f (xi)) , ϕ(·) ≡ The c.d.f. of a standard Gaussian.

Approximates with a Gaussian distribution the intractable posterior:

p(f|y) =
∏N

i=1 ϕ(yi f (xi))N (f|0, Σ̃)

p(y)
,

where Σ̃ is the approximate FITC covariance matrix.

25 / 61

Generalized FITC

Combines FITC with the use of Expectation Propagation to
address binary classification problems!

Expectation

Propagation

FITC
Approximation

Generalized
FITC

Assumes yi ∈ {−1, 1} and a probit likelihood:

p(yi |f (xi)) = ϕ(yi f (xi)) , ϕ(·) ≡ The c.d.f. of a standard Gaussian.

Approximates with a Gaussian distribution the intractable posterior:

p(f|y) =
∏N

i=1 ϕ(yi f (xi))N (f|0, Σ̃)

p(y)
,

where Σ̃ is the approximate FITC covariance matrix.

25 / 61

Generalized FITC

Combines FITC with the use of Expectation Propagation to
address binary classification problems!

Expectation

Propagation

FITC
Approximation

Generalized
FITC

Assumes yi ∈ {−1, 1} and a probit likelihood:

p(yi |f (xi)) = ϕ(yi f (xi)) , ϕ(·) ≡ The c.d.f. of a standard Gaussian.

Approximates with a Gaussian distribution the intractable posterior:

p(f|y) =
∏N

i=1 ϕ(yi f (xi))N (f|0, Σ̃)

p(y)
,

where Σ̃ is the approximate FITC covariance matrix.
25 / 61

Introduction to Expectation Propagation

Approximates an intractable distribution p by a parametric
distribution q.

It is based on the minimization of the KL-divergence, KL(p||q):∫
p(x) log

p(x)

q(x)
dx = KL(q|p) ≥ 0 .

q is restricted to belong to a family of distributions closed under the
product and ratio operation: The exponential family.

The exponential family:

q(x) = exp
(
ηTu(x)− g(η)

)
, g(η) = log

∫
exp

(
ηTu(x)

)
dx

where η is a vector of natural parameters of q, u(x) are the sufficient
statistics and g(η) is a log partition function.

26 / 61

Introduction to Expectation Propagation

Approximates an intractable distribution p by a parametric
distribution q.

It is based on the minimization of the KL-divergence, KL(p||q):∫
p(x) log

p(x)

q(x)
dx = KL(q|p) ≥ 0 .

q is restricted to belong to a family of distributions closed under the
product and ratio operation: The exponential family.

The exponential family:

q(x) = exp
(
ηTu(x)− g(η)

)
, g(η) = log

∫
exp

(
ηTu(x)

)
dx

where η is a vector of natural parameters of q, u(x) are the sufficient
statistics and g(η) is a log partition function.

26 / 61

Introduction to Expectation Propagation

Approximates an intractable distribution p by a parametric
distribution q.

It is based on the minimization of the KL-divergence, KL(p||q):∫
p(x) log

p(x)

q(x)
dx = KL(q|p) ≥ 0 .

q is restricted to belong to a family of distributions closed under the
product and ratio operation: The exponential family.

The exponential family:

q(x) = exp
(
ηTu(x)− g(η)

)
, g(η) = log

∫
exp

(
ηTu(x)

)
dx

where η is a vector of natural parameters of q, u(x) are the sufficient
statistics and g(η) is a log partition function.

26 / 61

Introduction to Expectation Propagation

Approximates an intractable distribution p by a parametric
distribution q.

It is based on the minimization of the KL-divergence, KL(p||q):∫
p(x) log

p(x)

q(x)
dx = KL(q|p) ≥ 0 .

q is restricted to belong to a family of distributions closed under the
product and ratio operation: The exponential family.

The exponential family:

q(x) = exp
(
ηTu(x)− g(η)

)
, g(η) = log

∫
exp

(
ηTu(x)

)
dx

where η is a vector of natural parameters of q, u(x) are the sufficient
statistics and g(η) is a log partition function.

26 / 61

Examples of Distributions in the Exponential Family

Gaussian:

N (x |µ, σ2) = 1/
√
2πσ2 exp

{
− 1

2σ2
(x − µ)2

}

Exponential form:

N (x |µ, σ2) = exp
(
ηTu(x)− g(η)

)

η = (µ/σ2, 1.0/σ2)T , u(x) = (x ,−0.5x2)T , g(η) = −1

2
log

2π

η2
+

η21
2η2

.

Most parametric distributions belong to the exponential family!

27 / 61

Examples of Distributions in the Exponential Family

Gaussian:

N (x |µ, σ2) = 1/
√
2πσ2 exp

{
− 1

2σ2
(x − µ)2

}

Exponential form:

N (x |µ, σ2) = exp
(
ηTu(x)− g(η)

)

η = (µ/σ2, 1.0/σ2)T , u(x) = (x ,−0.5x2)T , g(η) = −1

2
log

2π

η2
+

η21
2η2

.

Most parametric distributions belong to the exponential family!

27 / 61

Examples of Distributions in the Exponential Family

Gaussian:

N (x |µ, σ2) = 1/
√
2πσ2 exp

{
− 1

2σ2
(x − µ)2

}

Exponential form:

N (x |µ, σ2) = exp
(
ηTu(x)− g(η)

)

η = (µ/σ2, 1.0/σ2)T , u(x) = (x ,−0.5x2)T , g(η) = −1

2
log

2π

η2
+

η21
2η2

.

Most parametric distributions belong to the exponential family!

27 / 61

Product and Ratio of Gaussians

Consider these two Gaussian distributions:

p1(x) =
1√
2πσ2

1

exp

{
−1

2
σ2
1(x − µ1)

2

}
,

p2(x) =
1√
2πσ2

2

exp

{
−1

2
σ2
2(x − µ2)

2

}
.

• p1(x)p2(x) is Gaussian with natural parameters η1 + η2.

• The log-normalization constant of p1(x)p2(x) is
g(η1 + η2)− g(η1)− g(η2).

• p1(x)/p2(x) is Gaussian with natural parameters η1 − η2.

• The log-normalization constant of p1(x)/p2(x) is
g(η1 − η2)− g(η1) + g(η2).

28 / 61

Product and Ratio of Gaussians

Consider these two Gaussian distributions:

p1(x) =
1√
2πσ2

1

exp

{
−1

2
σ2
1(x − µ1)

2

}
,

p2(x) =
1√
2πσ2

2

exp

{
−1

2
σ2
2(x − µ2)

2

}
.

• p1(x)p2(x) is Gaussian with natural parameters η1 + η2.

• The log-normalization constant of p1(x)p2(x) is
g(η1 + η2)− g(η1)− g(η2).

• p1(x)/p2(x) is Gaussian with natural parameters η1 − η2.

• The log-normalization constant of p1(x)/p2(x) is
g(η1 − η2)− g(η1) + g(η2).

28 / 61

Product and Ratio of Gaussians

Consider these two Gaussian distributions:

p1(x) =
1√
2πσ2

1

exp

{
−1

2
σ2
1(x − µ1)

2

}
,

p2(x) =
1√
2πσ2

2

exp

{
−1

2
σ2
2(x − µ2)

2

}
.

• p1(x)p2(x) is Gaussian with natural parameters η1 + η2.

• The log-normalization constant of p1(x)p2(x) is
g(η1 + η2)− g(η1)− g(η2).

• p1(x)/p2(x) is Gaussian with natural parameters η1 − η2.

• The log-normalization constant of p1(x)/p2(x) is
g(η1 − η2)− g(η1) + g(η2).

28 / 61

Product and Ratio of Gaussians

Consider these two Gaussian distributions:

p1(x) =
1√
2πσ2

1

exp

{
−1

2
σ2
1(x − µ1)

2

}
,

p2(x) =
1√
2πσ2

2

exp

{
−1

2
σ2
2(x − µ2)

2

}
.

• p1(x)p2(x) is Gaussian with natural parameters η1 + η2.

• The log-normalization constant of p1(x)p2(x) is
g(η1 + η2)− g(η1)− g(η2).

• p1(x)/p2(x) is Gaussian with natural parameters η1 − η2.

• The log-normalization constant of p1(x)/p2(x) is
g(η1 − η2)− g(η1) + g(η2).

28 / 61

Product and Ratio of Gaussians

Consider these two Gaussian distributions:

p1(x) =
1√
2πσ2

1

exp

{
−1

2
σ2
1(x − µ1)

2

}
,

p2(x) =
1√
2πσ2

2

exp

{
−1

2
σ2
2(x − µ2)

2

}
.

• p1(x)p2(x) is Gaussian with natural parameters η1 + η2.

• The log-normalization constant of p1(x)p2(x) is
g(η1 + η2)− g(η1)− g(η2).

• p1(x)/p2(x) is Gaussian with natural parameters η1 − η2.

• The log-normalization constant of p1(x)/p2(x) is
g(η1 − η2)− g(η1) + g(η2).

28 / 61

KL-Divergence Minimization

Consider the KL-divergence between p and q (q in the exponential
family):

KL(p||q) = −
∫

p(x) log

{
q(x)

p(x)

}
dx = g(η)− ηTEp[u(x)] + Const .

When minimizing with respect to the natural parameters η of q:

∂KL(p||q)
∂η

= 0 ⇐⇒ ∂g(η)

∂η
= Ep[u(x)] ,

Furthermore, it is possible to show that:

∂g(η)

∂η
= Eq[u(x)] .

KL(p||q) is minimized by matching expected sufficient statistics.

If q is Gaussian, then we have to match Eq[x] = Ep[x] and
Eq[xxT] = Ep[xxT].

29 / 61

KL-Divergence Minimization

Consider the KL-divergence between p and q (q in the exponential
family):

KL(p||q) = −
∫

p(x) log

{
q(x)

p(x)

}
dx = g(η)− ηTEp[u(x)] + Const .

When minimizing with respect to the natural parameters η of q:

∂KL(p||q)
∂η

= 0 ⇐⇒ ∂g(η)

∂η
= Ep[u(x)] ,

Furthermore, it is possible to show that:

∂g(η)

∂η
= Eq[u(x)] .

KL(p||q) is minimized by matching expected sufficient statistics.

If q is Gaussian, then we have to match Eq[x] = Ep[x] and
Eq[xxT] = Ep[xxT].

29 / 61

KL-Divergence Minimization

Consider the KL-divergence between p and q (q in the exponential
family):

KL(p||q) = −
∫

p(x) log

{
q(x)

p(x)

}
dx = g(η)− ηTEp[u(x)] + Const .

When minimizing with respect to the natural parameters η of q:

∂KL(p||q)
∂η

= 0 ⇐⇒ ∂g(η)

∂η
= Ep[u(x)] ,

Furthermore, it is possible to show that:

∂g(η)

∂η
= Eq[u(x)] .

KL(p||q) is minimized by matching expected sufficient statistics.

If q is Gaussian, then we have to match Eq[x] = Ep[x] and
Eq[xxT] = Ep[xxT].

29 / 61

KL-Divergence Minimization

Consider the KL-divergence between p and q (q in the exponential
family):

KL(p||q) = −
∫

p(x) log

{
q(x)

p(x)

}
dx = g(η)− ηTEp[u(x)] + Const .

When minimizing with respect to the natural parameters η of q:

∂KL(p||q)
∂η

= 0 ⇐⇒ ∂g(η)

∂η
= Ep[u(x)] ,

Furthermore, it is possible to show that:

∂g(η)

∂η
= Eq[u(x)] .

KL(p||q) is minimized by matching expected sufficient statistics.

If q is Gaussian, then we have to match Eq[x] = Ep[x] and
Eq[xxT] = Ep[xxT].

29 / 61

KL-Divergence Minimization

Consider the KL-divergence between p and q (q in the exponential
family):

KL(p||q) = −
∫

p(x) log

{
q(x)

p(x)

}
dx = g(η)− ηTEp[u(x)] + Const .

When minimizing with respect to the natural parameters η of q:

∂KL(p||q)
∂η

= 0 ⇐⇒ ∂g(η)

∂η
= Ep[u(x)] ,

Furthermore, it is possible to show that:

∂g(η)

∂η
= Eq[u(x)] .

KL(p||q) is minimized by matching expected sufficient statistics.

If q is Gaussian, then we have to match Eq[x] = Ep[x] and
Eq[xxT] = Ep[xxT].

29 / 61

Joint Approximation

EP approximates this joint distribution by a product of simpler factors:

p(f, y) =
N∏
i=1

ϕi (yi f (xi)N (f|0, Σ̃) =
∏
i

ti (f) ≈
∏
i

t̃i (f) ,

where each t̃i approximates the corresponding ti . Each t̃i must belong
to the exponential family but need not be normalized.

The exponential family is closed under the product and
∏

i t̃i can be
easily normalized to compute an approximate distribution:

p(f|y) = 1

p(y)

∏
i

ti (f) ≈
1

Z

∏
i

t̃i (f) = q(f) ,

where Z =
∫ ∏

i t̃i (f)df can be used to approximate p(y).

Therefore q has the same form as the approximate factors!

30 / 61

Joint Approximation

EP approximates this joint distribution by a product of simpler factors:

p(f, y) =
N∏
i=1

ϕi (yi f (xi)N (f|0, Σ̃) =
∏
i

ti (f) ≈
∏
i

t̃i (f) ,

where each t̃i approximates the corresponding ti . Each t̃i must belong
to the exponential family but need not be normalized.

The exponential family is closed under the product and
∏

i t̃i can be
easily normalized to compute an approximate distribution:

p(f|y) = 1

p(y)

∏
i

ti (f) ≈
1

Z

∏
i

t̃i (f) = q(f) ,

where Z =
∫ ∏

i t̃i (f)df can be used to approximate p(y).

Therefore q has the same form as the approximate factors!

30 / 61

Joint Approximation

EP approximates this joint distribution by a product of simpler factors:

p(f, y) =
N∏
i=1

ϕi (yi f (xi)N (f|0, Σ̃) =
∏
i

ti (f) ≈
∏
i

t̃i (f) ,

where each t̃i approximates the corresponding ti . Each t̃i must belong
to the exponential family but need not be normalized.

The exponential family is closed under the product and
∏

i t̃i can be
easily normalized to compute an approximate distribution:

p(f|y) = 1

p(y)

∏
i

ti (f) ≈
1

Z

∏
i

t̃i (f) = q(f) ,

where Z =
∫ ∏

i t̃i (f)df can be used to approximate p(y).

Therefore q has the same form as the approximate factors!

30 / 61

Approximate Factors

How do we determine each approximate factor t̃i?

We would like to minimize KL(p||q), but this is intractable!

EP minimizes the KL divergence between pairs of ti and t̃i . This has
the risk that the product may not be a good approximation. EP tries to

circumvent this by an iterative procedure.

Suppose we wish to refine t̃j . We first remove this factor from the
product:

q\j(f) ∝
∏
i ̸=j

t̃i (f) ∝ q(f)/t̃j(f) ,

Then, t̃j is updated to minimize the KL-divergence between:

qnew(f) ∝ t̃j(f)q
\j(f) , p̂j(f) =

1

Zj
tj(f)q

\j(f) , Zj =

∫
tj(f)q

\j(f)df ,

where q\j is fixed. This ensures that t̃j is accurate where q\j is high.

31 / 61

Approximate Factors

How do we determine each approximate factor t̃i?

We would like to minimize KL(p||q), but this is intractable!

EP minimizes the KL divergence between pairs of ti and t̃i . This has
the risk that the product may not be a good approximation. EP tries to

circumvent this by an iterative procedure.

Suppose we wish to refine t̃j . We first remove this factor from the
product:

q\j(f) ∝
∏
i ̸=j

t̃i (f) ∝ q(f)/t̃j(f) ,

Then, t̃j is updated to minimize the KL-divergence between:

qnew(f) ∝ t̃j(f)q
\j(f) , p̂j(f) =

1

Zj
tj(f)q

\j(f) , Zj =

∫
tj(f)q

\j(f)df ,

where q\j is fixed. This ensures that t̃j is accurate where q\j is high.

31 / 61

Approximate Factors

How do we determine each approximate factor t̃i?

We would like to minimize KL(p||q), but this is intractable!

EP minimizes the KL divergence between pairs of ti and t̃i . This has
the risk that the product may not be a good approximation. EP tries to

circumvent this by an iterative procedure.

Suppose we wish to refine t̃j . We first remove this factor from the
product:

q\j(f) ∝
∏
i ̸=j

t̃i (f) ∝ q(f)/t̃j(f) ,

Then, t̃j is updated to minimize the KL-divergence between:

qnew(f) ∝ t̃j(f)q
\j(f) , p̂j(f) =

1

Zj
tj(f)q

\j(f) , Zj =

∫
tj(f)q

\j(f)df ,

where q\j is fixed. This ensures that t̃j is accurate where q\j is high.

31 / 61

Approximate Factors

How do we determine each approximate factor t̃i?

We would like to minimize KL(p||q), but this is intractable!

EP minimizes the KL divergence between pairs of ti and t̃i . This has
the risk that the product may not be a good approximation. EP tries to

circumvent this by an iterative procedure.

Suppose we wish to refine t̃j . We first remove this factor from the
product:

q\j(f) ∝
∏
i ̸=j

t̃i (f) ∝ q(f)/t̃j(f) ,

Then, t̃j is updated to minimize the KL-divergence between:

qnew(f) ∝ t̃j(f)q
\j(f) , p̂j(f) =

1

Zj
tj(f)q

\j(f) , Zj =

∫
tj(f)q

\j(f)df ,

where q\j is fixed. This ensures that t̃j is accurate where q\j is high.

31 / 61

Approximate Factors

How do we determine each approximate factor t̃i?

We would like to minimize KL(p||q), but this is intractable!

EP minimizes the KL divergence between pairs of ti and t̃i . This has
the risk that the product may not be a good approximation. EP tries to

circumvent this by an iterative procedure.

Suppose we wish to refine t̃j . We first remove this factor from the
product:

q\j(f) ∝
∏
i ̸=j

t̃i (f) ∝ q(f)/t̃j(f) ,

Then, t̃j is updated to minimize the KL-divergence between:

qnew(f) ∝ t̃j(f)q
\j(f) , p̂j(f) =

1

Zj
tj(f)q

\j(f) , Zj =

∫
tj(f)q

\j(f)df ,

where q\j is fixed. This ensures that t̃j is accurate where q\j is high.
31 / 61

Approximate Factors

In practice, t̃j is found by first minimizing with respect to qnew:

KL

(
tj(f)q

\j(f)

Zj

∣∣∣∣∣ qnew(f)
)

.

This is done by matching expected sufficient statistics. As q is
Gaussian, we only have to match the mean and the variance.

It is required that the moments of p̂j(f) = 1/Zj fj(f)q
\j(f) are

tractable.

The refined factor t̃j is set in practice to be:

t̃j(f) = Zj
qnew(f)

q\j(f)
, with t̃j(f)q

\j(f) ∝ qnew ,

which ensures that t̃j(f)q
\j(f) and tj(f)q

\j(f) integrate the same.

32 / 61

Approximate Factors

In practice, t̃j is found by first minimizing with respect to qnew:

KL

(
tj(f)q

\j(f)

Zj

∣∣∣∣∣ qnew(f)
)

.

This is done by matching expected sufficient statistics. As q is
Gaussian, we only have to match the mean and the variance.

It is required that the moments of p̂j(f) = 1/Zj fj(f)q
\j(f) are

tractable.

The refined factor t̃j is set in practice to be:

t̃j(f) = Zj
qnew(f)

q\j(f)
, with t̃j(f)q

\j(f) ∝ qnew ,

which ensures that t̃j(f)q
\j(f) and tj(f)q

\j(f) integrate the same.

32 / 61

Approximate Factors

In practice, t̃j is found by first minimizing with respect to qnew:

KL

(
tj(f)q

\j(f)

Zj

∣∣∣∣∣ qnew(f)
)

.

This is done by matching expected sufficient statistics. As q is
Gaussian, we only have to match the mean and the variance.

It is required that the moments of p̂j(f) = 1/Zj fj(f)q
\j(f) are

tractable.

The refined factor t̃j is set in practice to be:

t̃j(f) = Zj
qnew(f)

q\j(f)
, with t̃j(f)q

\j(f) ∝ qnew ,

which ensures that t̃j(f)q
\j(f) and tj(f)q

\j(f) integrate the same.

32 / 61

Approximate Factors

In practice, t̃j is found by first minimizing with respect to qnew:

KL

(
tj(f)q

\j(f)

Zj

∣∣∣∣∣ qnew(f)
)

.

This is done by matching expected sufficient statistics. As q is
Gaussian, we only have to match the mean and the variance.

It is required that the moments of p̂j(f) = 1/Zj fj(f)q
\j(f) are

tractable.

The refined factor t̃j is set in practice to be:

t̃j(f) = Zj
qnew(f)

q\j(f)
, with t̃j(f)q

\j(f) ∝ qnew ,

which ensures that t̃j(f)q
\j(f) and tj(f)q

\j(f) integrate the same.
32 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.

2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .

3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).

4 Compute and store the new factor t̃j = Zjqnew/q
\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Full Algorithm

Several passes are made trough the factors until they converge. The
model evidence is approximated by the normalizing constant of q.

EP Algorithm in General: Computes q and an approximation to p(y).

1 Initialize q and each t̃i to be uniform.

2 Repeat until convergence of the t̃i :

1 Choose a factor t̃j to refine.
2 Remove t̃j from q by division q\j ∝ q/t̃j .
3 Compute Zj and p̂j and find qnew by minimizing KL(p̂j ||qnew).
4 Compute and store the new factor t̃j = Zjqnew/q

\j .

3 Evaluate the approximation to the model evidence:

p(y) ≈ Z =

∫ ∏
j

t̃j(f)df .

The FITC prior results in a total cost of O(NM2)!

33 / 61

Graphical Illustration

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing the KL-divergence

KL[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

If the exact factor already belongs to the exponential family it
needs not be approximated!

34 / 61

Graphical Illustration

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing the KL-divergence

KL[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

If the exact factor already belongs to the exponential family it
needs not be approximated!

34 / 61

Graphical Illustration

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing the KL-divergence

KL[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

If the exact factor already belongs to the exponential family it
needs not be approximated!

34 / 61

Graphical Illustration

Approximates p(f|y) ∝ t0(f)
∏N

j=1 tj(f) with q(f) ∝ t0(f)
∏N

j=1 t̃j(t)

The t̃j are tuned by minimizing the KL-divergence

KL[p̂j ||q] for j = 1, . . . ,N , where
p̂j(f) ∝ tj(f)

∏
i ̸=j t̃i (f)

q(f) ∝ t̃j(f)
∏

i ̸=j t̃i (f)
.

If the exact factor already belongs to the exponential family it
needs not be approximated!

34 / 61

GFITC: Factor Approximation

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f(x_i)

Exact Factor
Approximate Factor
Cavity Distribution

The approximate factor is accurate in regions of high posterior
probability as indicated by the cavity distribution!

35 / 61

GFITC: Factor Approximation

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f(x_i)

Exact Factor
Approximate Factor
Cavity Distribution

The approximate factor is accurate in regions of high posterior
probability as indicated by the cavity distribution!

35 / 61

Hyper-parameters and Inducing Points

They are optimized by maximizing the EP estimate of the
log-marginal likelihood logZ ≈ log p(y).

Problem: The parameters θi of the approximate factors also depend on
the hyper-parameters (including the inducing points)!

• Direct dependence of logZ on the hyper-parameters.

• Indirect dependence of logZ on the hyper-parameters via each θi .

If EP converges the gradient of logZ w.r.t. each θi is zero, which
allows to easily compute the gradients of logZ !

36 / 61

Hyper-parameters and Inducing Points

They are optimized by maximizing the EP estimate of the
log-marginal likelihood logZ ≈ log p(y).

Problem: The parameters θi of the approximate factors also depend on
the hyper-parameters (including the inducing points)!

• Direct dependence of logZ on the hyper-parameters.

• Indirect dependence of logZ on the hyper-parameters via each θi .

If EP converges the gradient of logZ w.r.t. each θi is zero, which
allows to easily compute the gradients of logZ !

36 / 61

Hyper-parameters and Inducing Points

They are optimized by maximizing the EP estimate of the
log-marginal likelihood logZ ≈ log p(y).

Problem: The parameters θi of the approximate factors also depend on
the hyper-parameters (including the inducing points)!

• Direct dependence of logZ on the hyper-parameters.

• Indirect dependence of logZ on the hyper-parameters via each θi .

If EP converges the gradient of logZ w.r.t. each θi is zero, which
allows to easily compute the gradients of logZ !

36 / 61

Hyper-parameters and Inducing Points

They are optimized by maximizing the EP estimate of the
log-marginal likelihood logZ ≈ log p(y).

Problem: The parameters θi of the approximate factors also depend on
the hyper-parameters (including the inducing points)!

• Direct dependence of logZ on the hyper-parameters.

• Indirect dependence of logZ on the hyper-parameters via each θi .

If EP converges the gradient of logZ w.r.t. each θi is zero, which
allows to easily compute the gradients of logZ !

36 / 61

Hyper-parameters and Inducing Points

They are optimized by maximizing the EP estimate of the
log-marginal likelihood logZ ≈ log p(y).

Problem: The parameters θi of the approximate factors also depend on
the hyper-parameters (including the inducing points)!

• Direct dependence of logZ on the hyper-parameters.

• Indirect dependence of logZ on the hyper-parameters via each θi .

If EP converges the gradient of logZ w.r.t. each θi is zero, which
allows to easily compute the gradients of logZ !

36 / 61

GFITC: Predictions

We want to compute the value of f⋆ at a new x⋆:

p(f⋆, f) = N
([

f⋆

f

]∣∣∣∣ [0
0

]
,

[
Σf⋆f⋆ Qf⋆f

Qff⋆ Σ̃ff

])

The conditional p(f⋆|f) is:

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃ff

−1
Qff⋆

)
After marginalizing f w.r.t. q(f), we obtain the predictive distribution:

p(f⋆|y) =
∫

p(f⋆|f)q(f)df

= N (f⋆| Qf⋆fΣ̃
−1
ff ỹ,Σf⋆f⋆ −Qf⋆f

(
Σ̃ff + Π̃

)−1
Qff⋆

)

37 / 61

GFITC: Predictions

We want to compute the value of f⋆ at a new x⋆:

p(f⋆, f) = N
([

f⋆

f

]∣∣∣∣ [0
0

]
,

[
Σf⋆f⋆ Qf⋆f

Qff⋆ Σ̃ff

])

The conditional p(f⋆|f) is:

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃ff

−1
Qff⋆

)
After marginalizing f w.r.t. q(f), we obtain the predictive distribution:

p(f⋆|y) =
∫

p(f⋆|f)q(f)df

= N (f⋆| Qf⋆fΣ̃
−1
ff ỹ,Σf⋆f⋆ −Qf⋆f

(
Σ̃ff + Π̃

)−1
Qff⋆

)

37 / 61

GFITC: Predictions

We want to compute the value of f⋆ at a new x⋆:

p(f⋆, f) = N
([

f⋆

f

]∣∣∣∣ [0
0

]
,

[
Σf⋆f⋆ Qf⋆f

Qff⋆ Σ̃ff

])

The conditional p(f⋆|f) is:

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃ff

−1
Qff⋆

)

After marginalizing f w.r.t. q(f), we obtain the predictive distribution:

p(f⋆|y) =
∫

p(f⋆|f)q(f)df

= N (f⋆| Qf⋆fΣ̃
−1
ff ỹ,Σf⋆f⋆ −Qf⋆f

(
Σ̃ff + Π̃

)−1
Qff⋆

)

37 / 61

GFITC: Predictions

We want to compute the value of f⋆ at a new x⋆:

p(f⋆, f) = N
([

f⋆

f

]∣∣∣∣ [0
0

]
,

[
Σf⋆f⋆ Qf⋆f

Qff⋆ Σ̃ff

])

The conditional p(f⋆|f) is:

p(f⋆|f) = N (f⋆| Qf⋆fΣ̃
−1
ff f,Σf⋆f⋆ −Qf⋆fΣ̃ff

−1
Qff⋆

)
After marginalizing f w.r.t. q(f), we obtain the predictive distribution:

p(f⋆|y) =
∫

p(f⋆|f)q(f)df

= N (f⋆| Qf⋆fΣ̃
−1
ff ỹ,Σf⋆f⋆ −Qf⋆f

(
Σ̃ff + Π̃

)−1
Qff⋆

)
37 / 61

GFITC: Illustrative Example

Full GP + EP

x1

x2

 0.
1

 0.1

 0.2

 0.2

 0.3

 0.3

 0
.4

 0.4

 0.5

 0.5 0.6

 0
.6

 0.7

 0.7

 0.8

 0.8

 0.9

 0.9

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.5

 0.5

The inducing points spread across the input space!

38 / 61

GFITC: Illustrative Example

GFITC (M=10)

x1

x2

 0.1

 0.1

 0.2

 0.2

 0.3

 0
.3

 0
.4

 0.4

 0.5

 0.5
 0.6

 0.6

 0.7

 0.7

 0.8

 0.8

 0.9

 0.9

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.5

 0.5

++++++++++

+ +

+

+
+

+

+
+

+

+

The inducing points spread across the input space!

38 / 61

GFITC: Illustrative Example

GFITC (M=10)

x1

x2

 0.1

 0.1

 0.2

 0.2

 0.3

 0
.3

 0
.4

 0.4

 0.5

 0.5
 0.6

 0.6

 0.7

 0.7

 0.8

 0.8

 0.9

 0.9

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.5

 0.5

++++++++++

+ +

+

+
+

+

+
+

+

+

The inducing points spread across the input space!

38 / 61

Variational Free Energy

Previous methods approximate the GP prior using a low rank
approximation of Σ, resulting in a cost O(NM2).

Variational Free Energy (VFE) Method:

• Keeps the GP prior intact and does not introduce any simplification!

• Carries out approximate inference to approximate the GP posterior.

• The particular approximate distribution q results in cost O(NM2).

• Variational inference is used to tune q.

Since the GP prior is not changed it tends to perform better than
the previous methods!

39 / 61

Variational Free Energy

Previous methods approximate the GP prior using a low rank
approximation of Σ, resulting in a cost O(NM2).

Variational Free Energy (VFE) Method:

• Keeps the GP prior intact and does not introduce any simplification!

• Carries out approximate inference to approximate the GP posterior.

• The particular approximate distribution q results in cost O(NM2).

• Variational inference is used to tune q.

Since the GP prior is not changed it tends to perform better than
the previous methods!

39 / 61

Variational Free Energy

Previous methods approximate the GP prior using a low rank
approximation of Σ, resulting in a cost O(NM2).

Variational Free Energy (VFE) Method:

• Keeps the GP prior intact and does not introduce any simplification!

• Carries out approximate inference to approximate the GP posterior.

• The particular approximate distribution q results in cost O(NM2).

• Variational inference is used to tune q.

Since the GP prior is not changed it tends to perform better than
the previous methods!

39 / 61

Variational Free Energy

Previous methods approximate the GP prior using a low rank
approximation of Σ, resulting in a cost O(NM2).

Variational Free Energy (VFE) Method:

• Keeps the GP prior intact and does not introduce any simplification!

• Carries out approximate inference to approximate the GP posterior.

• The particular approximate distribution q results in cost O(NM2).

• Variational inference is used to tune q.

Since the GP prior is not changed it tends to perform better than
the previous methods!

39 / 61

Variational Free Energy

Previous methods approximate the GP prior using a low rank
approximation of Σ, resulting in a cost O(NM2).

Variational Free Energy (VFE) Method:

• Keeps the GP prior intact and does not introduce any simplification!

• Carries out approximate inference to approximate the GP posterior.

• The particular approximate distribution q results in cost O(NM2).

• Variational inference is used to tune q.

Since the GP prior is not changed it tends to perform better than
the previous methods!

39 / 61

Variational Free Energy

Previous methods approximate the GP prior using a low rank
approximation of Σ, resulting in a cost O(NM2).

Variational Free Energy (VFE) Method:

• Keeps the GP prior intact and does not introduce any simplification!

• Carries out approximate inference to approximate the GP posterior.

• The particular approximate distribution q results in cost O(NM2).

• Variational inference is used to tune q.

Since the GP prior is not changed it tends to perform better than
the previous methods!

39 / 61

Variational Free Energy

Previous methods approximate the GP prior using a low rank
approximation of Σ, resulting in a cost O(NM2).

Variational Free Energy (VFE) Method:

• Keeps the GP prior intact and does not introduce any simplification!

• Carries out approximate inference to approximate the GP posterior.

• The particular approximate distribution q results in cost O(NM2).

• Variational inference is used to tune q.

Since the GP prior is not changed it tends to perform better than
the previous methods!

39 / 61

Variational Inference

Adjust the parameters of q to match p by minimizing KL(q|p) ≥ 0.

KL(q|p) = 0⇐⇒q(f) = p(f)

The expression for the KL divergence between q and p is:∫
q(f) log

q(f)

p(f)
df ≥ 0

KL(q|p) depends on p, which is assumed to be intractable!

Let the target be p(f|y). Consider the decomposition of p(y):

log p(y) = L(q) + KL(q|p) ,

where

L(q) =
∫

q(f) log
p(f, y)

q(f)
df , KL(q|p) =

∫
q(f) log

q(f)

p(f|y)
df .

40 / 61

Variational Inference

Adjust the parameters of q to match p by minimizing KL(q|p) ≥ 0.

KL(q|p) = 0⇐⇒q(f) = p(f)

The expression for the KL divergence between q and p is:∫
q(f) log

q(f)

p(f)
df ≥ 0

KL(q|p) depends on p, which is assumed to be intractable!

Let the target be p(f|y). Consider the decomposition of p(y):

log p(y) = L(q) + KL(q|p) ,

where

L(q) =
∫

q(f) log
p(f, y)

q(f)
df , KL(q|p) =

∫
q(f) log

q(f)

p(f|y)
df .

40 / 61

Variational Inference

Adjust the parameters of q to match p by minimizing KL(q|p) ≥ 0.

KL(q|p) = 0⇐⇒q(f) = p(f)

The expression for the KL divergence between q and p is:∫
q(f) log

q(f)

p(f)
df ≥ 0

KL(q|p) depends on p, which is assumed to be intractable!

Let the target be p(f|y). Consider the decomposition of p(y):

log p(y) = L(q) + KL(q|p) ,

where

L(q) =
∫

q(f) log
p(f, y)

q(f)
df , KL(q|p) =

∫
q(f) log

q(f)

p(f|y)
df .

40 / 61

Variational Inference

Adjust the parameters of q to match p by minimizing KL(q|p) ≥ 0.

KL(q|p) = 0⇐⇒q(f) = p(f)

The expression for the KL divergence between q and p is:∫
q(f) log

q(f)

p(f)
df ≥ 0

KL(q|p) depends on p, which is assumed to be intractable!

Let the target be p(f|y). Consider the decomposition of p(y):

log p(y) = L(q) + KL(q|p) ,

where

L(q) =
∫

q(f) log
p(f, y)

q(f)
df , KL(q|p) =

∫
q(f) log

q(f)

p(f|y)
df .

40 / 61

Variational Inference

Adjust the parameters of q to match p by minimizing KL(q|p) ≥ 0.

KL(q|p) = 0⇐⇒q(f) = p(f)

The expression for the KL divergence between q and p is:∫
q(f) log

q(f)

p(f)
df ≥ 0

KL(q|p) depends on p, which is assumed to be intractable!

Let the target be p(f|y). Consider the decomposition of p(y):

log p(y) = L(q) + KL(q|p) ,

where

L(q) =
∫

q(f) log
p(f, y)

q(f)
df , KL(q|p) =

∫
q(f) log

q(f)

p(f|y)
df .

40 / 61

Decomposition of the Marginal Likelihood

L(q) can be used to approximate log p(y) if KL(q|p) is small!

41 / 61

Decomposition of the Marginal Likelihood

L(q) can be used to approximate log p(y) if KL(q|p) is small!

41 / 61

Variational Free Energy (VFE)

Lower bound the log-likelihood:

log p(y|θ) = log

∫
p(y, f,u|θ)dfdu

Gap

= log

∫
p(y, f,u|θ)q(f,u)

q(f,u)
dfdu ≥

∫
p(y, f,u|θ) log q(f,u)

q(f,u)
dfdu ≡ L(q, θ)

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu = log p(y|θ)−KL[q(f,u)|p(f,u|y)]

KL ≡ Kullback-Leibler divergence

By maximizing L(q, θ) w.r.t q we are enforcing that q(f,u) looks
similar to p(f,u|y) in terms of the KL!

42 / 61

Variational Free Energy (VFE)

Lower bound the log-likelihood:

log p(y|θ) = log

∫
p(y, f,u|θ)dfdu

Gap

= log

∫
p(y, f,u|θ)q(f,u)

q(f,u)
dfdu≥

∫
p(y, f,u|θ) log q(f,u)

q(f,u)
df ≡ L(q, θ)

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu = log p(y|θ)−KL[q(f,u)|p(f,u|y)]

KL ≡ Kullback-Leibler divergence

By maximizing L(q, θ) w.r.t q we are enforcing that q(f,u) looks
similar to p(f,u|y) in terms of the KL!

42 / 61

Variational Free Energy (VFE)

Lower bound the log-likelihood:

log p(y|θ) = log

∫
p(y, f,u|θ)dfdu

Gap

= log

∫
p(y, f,u|θ)q(f,u)

q(f,u)
dfdu ≥

∫
q(f,u) log

p(y, f,u|θ)
q(f,u)

dfdu ≡ L(q, θ)

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu = log p(y|θ)−KL[q(f,u)|p(f,u|y)]

KL ≡ Kullback-Leibler divergence

By maximizing L(q, θ) w.r.t q we are enforcing that q(f,u) looks
similar to p(f,u|y) in terms of the KL!

42 / 61

Variational Free Energy (VFE)

Lower bound the log-likelihood:

log p(y|θ) = log

∫
p(y, f,u|θ)dfdu

Gap

= log

∫
p(y, f,u|θ)q(f,u)

q(f,u)
dfdu ≥

∫
q(f,u) log

p(y, f,u|θ)
q(f,u)

dfdu ≡ L(q, θ)

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu = log p(y|θ)−KL[q(f,u)|p(f,u|y)]

KL ≡ Kullback-Leibler divergence

By maximizing L(q, θ) w.r.t q we are enforcing that q(f,u) looks
similar to p(f,u|y) in terms of the KL!

42 / 61

Variational Free Energy (VFE)

Lower bound the log-likelihood:

log p(y|θ) = log

∫
p(y, f,u|θ)dfdu

Gap

= log

∫
p(y, f,u|θ)q(f,u)

q(f,u)
dfdu ≥

∫
q(f,u) log

p(y, f,u|θ)
q(f,u)

dfdu ≡ L(q, θ)

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu = log p(y|θ)−KL[q(f,u)|p(f,u|y)]

KL ≡ Kullback-Leibler divergence

By maximizing L(q, θ) w.r.t q we are enforcing that q(f,u) looks
similar to p(f,u|y) in terms of the KL!

42 / 61

Variational Free Energy (VFE)

Lower bound the log-likelihood:

log p(y|θ) = log

∫
p(y, f,u|θ)dfdu

Gap

= log

∫
p(y, f,u|θ)q(f,u)

q(f,u)
dfdu ≥

∫
q(f,u) log

p(y, f,u|θ)
q(f,u)

dfdu ≡ L(q, θ)

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu = log p(y|θ)−KL[q(f,u)|p(f,u|y)]

KL ≡ Kullback-Leibler divergence

By maximizing L(q, θ) w.r.t q we are enforcing that q(f,u) looks
similar to p(f,u|y) in terms of the KL!

42 / 61

Variational Free Energy (VFE)

Consider the following approximate distribution:

q(f,u) = p(f|u) q(u) = p(f|u) N (u|m,S)

• Fixed
• Tunable

Inducing points
locations

Inducing outputs
mean and covariances

Approximate posterior Exact GP posterior

The inducing points are now parameters of the approx. dist. q!

43 / 61

Variational Free Energy (VFE)

Consider the following approximate distribution:

q(f,u) = p(f|u) q(u) = p(f|u) N (u|m,S)

• Fixed
• Tunable

Inducing points
locations

Inducing outputs
mean and covariances

Approximate posterior Exact GP posterior

The inducing points are now parameters of the approx. dist. q!

43 / 61

Variational Free Energy (VFE)

Consider the following approximate distribution:

q(f,u) = p(f|u) q(u) = p(f|u) N (u|m,S)

• Fixed
• Tunable

Inducing points
locations

Inducing outputs
mean and covariances

Approximate posterior Exact GP posterior

The inducing points are now parameters of the approx. dist. q!

43 / 61

Variational Free Energy (VFE)

Consider the following approximate distribution:

q(f,u) = p(f|u) q(u) = p(f|u) N (u|m,S)

• Fixed
• Tunable

Inducing points
locations

Inducing outputs
mean and covariances

Approximate posterior Exact GP posterior

The inducing points are now parameters of the approx. dist. q!

43 / 61

Variational Free Energy (VFE)

Plugging q(f,u) into the lower bound we have:

L(q, θ)=
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu

=

∫
p(f|u)q(u) log p(y|f, θ)p(f|u)p(u)

p(f|u)q(u)
dfdu

L(q, θ) = Eq(f)[log p(y|f, θ)] − KL[q(u)|p(u)]

• Mean squared prediction error

• KL between Gaussians

• No change in the model is made and the cost is in O(M2N)!

• Predictions are made using p(f⋆|u)q(u) marginalizing out u.

44 / 61

Variational Free Energy (VFE)

Plugging q(f,u) into the lower bound we have:

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu

=

∫
p(f|u)q(u) log p(y|f, θ)p(f|u)p(u)

p(f|u)q(u)
dfdu

L(q, θ) = Eq(f)[log p(y|f, θ)] − KL[q(u)|p(u)]

• Mean squared prediction error

• KL between Gaussians

• No change in the model is made and the cost is in O(M2N)!

• Predictions are made using p(f⋆|u)q(u) marginalizing out u.

44 / 61

Variational Free Energy (VFE)

Plugging q(f,u) into the lower bound we have:

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu

=

∫
p(f|u)q(u) log p(y|f, θ)����p(f|u)p(u)

����p(f|u)q(u)
dfdu

L(q, θ) = Eq(f)[log p(y|f, θ)] − KL[q(u)|p(u)]

• Mean squared prediction error

• KL between Gaussians

• No change in the model is made and the cost is in O(M2N)!

• Predictions are made using p(f⋆|u)q(u) marginalizing out u.

44 / 61

Variational Free Energy (VFE)

Plugging q(f,u) into the lower bound we have:

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu

=

∫
p(f|u)q(u) log p(y|f, θ)����p(f|u)p(u)

����p(f|u)q(u)
dfdu

L(q, θ) = Eq(f)[log p(y|f, θ)] − KL[q(u)|p(u)]

• Mean squared prediction error

• KL between Gaussians

• No change in the model is made and the cost is in O(M2N)!

• Predictions are made using p(f⋆|u)q(u) marginalizing out u.

44 / 61

Variational Free Energy (VFE)

Plugging q(f,u) into the lower bound we have:

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu

=

∫
p(f|u)q(u) log p(y|f, θ)����p(f|u)p(u)

����p(f|u)q(u)
dfdu

L(q, θ) = Eq(f)[log p(y|f, θ)] − KL[q(u)|p(u)]

• Mean squared prediction error

• KL between Gaussians

• No change in the model is made and the cost is in O(M2N)!

• Predictions are made using p(f⋆|u)q(u) marginalizing out u.

44 / 61

Variational Free Energy (VFE)

Plugging q(f,u) into the lower bound we have:

L(q, θ) =
∫

q(f,u) log
p(y, f,u|θ)
q(f,u)

dfdu

=

∫
p(f|u)q(u) log p(y|f, θ)����p(f|u)p(u)

����p(f|u)q(u)
dfdu

L(q, θ) = Eq(f)[log p(y|f, θ)] − KL[q(u)|p(u)]

• Mean squared prediction error

• KL between Gaussians

• No change in the model is made and the cost is in O(M2N)!

• Predictions are made using p(f⋆|u)q(u) marginalizing out u.
44 / 61

VFE: Predictions for Test Instances

We want to compute the value of f⋆ at a new x⋆:

p(f⋆,u) = N
([

f⋆

u

]∣∣∣∣ [0
0

]
,

[
Σf⋆f⋆ Σf⋆u

Σuf⋆ Σuu

])

The conditional p(f⋆|u) is:

p(f⋆|u) = N (f⋆| Σf⋆uΣ
−1
uu u,Σf⋆f⋆ −Σf⋆uΣ

−1
uu Σuf⋆

)
After marginalizing u w.r.t. q(u), we obtain the predictive distribution:

p(f⋆|y) =
∫

p(f⋆|u)q(u)du

= N (f⋆| Σf⋆uΣ
−1
uu m,Σf⋆f⋆ −Σf⋆u

(
Σ−1

uu −Σ−1
uu SΣ

−1
uu

)
Σuf⋆

)

45 / 61

VFE: Predictions for Test Instances

We want to compute the value of f⋆ at a new x⋆:

p(f⋆,u) = N
([

f⋆

u

]∣∣∣∣ [0
0

]
,

[
Σf⋆f⋆ Σf⋆u

Σuf⋆ Σuu

])

The conditional p(f⋆|u) is:

p(f⋆|u) = N (f⋆| Σf⋆uΣ
−1
uu u,Σf⋆f⋆ −Σf⋆uΣ

−1
uu Σuf⋆

)
After marginalizing u w.r.t. q(u), we obtain the predictive distribution:

p(f⋆|y) =
∫

p(f⋆|u)q(u)du

= N (f⋆| Σf⋆uΣ
−1
uu m,Σf⋆f⋆ −Σf⋆u

(
Σ−1

uu −Σ−1
uu SΣ

−1
uu

)
Σuf⋆

)

45 / 61

VFE: Predictions for Test Instances

We want to compute the value of f⋆ at a new x⋆:

p(f⋆,u) = N
([

f⋆

u

]∣∣∣∣ [0
0

]
,

[
Σf⋆f⋆ Σf⋆u

Σuf⋆ Σuu

])

The conditional p(f⋆|u) is:

p(f⋆|u) = N (f⋆| Σf⋆uΣ
−1
uu u,Σf⋆f⋆ −Σf⋆uΣ

−1
uu Σuf⋆

)

After marginalizing u w.r.t. q(u), we obtain the predictive distribution:

p(f⋆|y) =
∫

p(f⋆|u)q(u)du

= N (f⋆| Σf⋆uΣ
−1
uu m,Σf⋆f⋆ −Σf⋆u

(
Σ−1

uu −Σ−1
uu SΣ

−1
uu

)
Σuf⋆

)

45 / 61

VFE: Predictions for Test Instances

We want to compute the value of f⋆ at a new x⋆:

p(f⋆,u) = N
([

f⋆

u

]∣∣∣∣ [0
0

]
,

[
Σf⋆f⋆ Σf⋆u

Σuf⋆ Σuu

])

The conditional p(f⋆|u) is:

p(f⋆|u) = N (f⋆| Σf⋆uΣ
−1
uu u,Σf⋆f⋆ −Σf⋆uΣ

−1
uu Σuf⋆

)
After marginalizing u w.r.t. q(u), we obtain the predictive distribution:

p(f⋆|y) =
∫

p(f⋆|u)q(u)du

= N (f⋆| Σf⋆uΣ
−1
uu m,Σf⋆f⋆ −Σf⋆u

(
Σ−1

uu −Σ−1
uu SΣ

−1
uu

)
Σuf⋆

)
45 / 61

VFE: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2

Full GP

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

The inducing points cover the regions where the function changes!

46 / 61

VFE: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2

VFE (M = 10)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

++ ++++ ++++

++++++++++

The inducing points cover the regions where the function changes!

46 / 61

VFE: Illustrative Example

−2 0 2 4 6 8

−
2

−
1

0
1

2

VFE (M = 10)

x

y ·

·

··

·

··
· ·

· · ·

·

·

·

·
··

·

·
· ·

··

···
·

·
·

·

··

·

··
··

·

·

·
· ··

·
· ·

·

···

·

·

·

·

·
·

··
·

·

·
·

· ·
·

·
·
·

·
·

·
··

·

·
·

·
·

·
·

·
·

··

·

··

·

·

·
·

·
·
·

·

·

·

·
·

··
·

·

·

·

·
·

· ·

·

·

··· · ·
·

··
·

· ·
·

·
··

···

·

·

·

·
·· ·

·

·
·

·

·

·
·

·
·

··· ·
·

··

·

· ·
·

·· ·
·

··

·

·· · ·

··

· ··

·
·

·
···

·
·

· ·

·

··

·

·

· ·
··

·
·

·

·
·

·
·

·

++ ++++ ++++

++++++++++

The inducing points cover the regions where the function changes!

46 / 61

VFE: Illustrative Classification Example

Full GP + EP

x1

x2

 0.
1

 0.1

 0.2

 0.2

 0.3

 0.3

 0
.4

 0.4

 0.5

 0.5 0.6

 0
.6

 0.7

 0.7

 0.8

 0.8

 0.9

 0.9

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.5

 0.5

The inducing points spread across the input space!

47 / 61

VFE: Illustrative Classification Example

VFE (M=10)

x1

x2

 0.1

 0.1

 0.2

 0.2

 0.3

 0.3

 0
.4

 0.4

 0.5
 0.5

 0.6

 0.6

 0.7

 0.7

 0.8

 0.8

 0
.9

 0.9

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.5
 0.5

++++++++++

+

+

+
+

+

+
+

+

+

+

The inducing points spread across the input space!

47 / 61

VFE: Illustrative Classification Example

VFE (M=10)

x1

x2

 0.1

 0.1

 0.2

 0.2

 0.3

 0.3

 0
.4

 0.4

 0.5
 0.5

 0.6

 0.6

 0.7

 0.7

 0.8

 0.8

 0
.9

 0.9

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.5
 0.5

++++++++++

+

+

+
+

+

+
+

+

+

+

The inducing points spread across the input space!

47 / 61

FITC vs. VFE

Two approaches:

• FITC: optimize the marginal likelihood of an approximate GP model.

• VFE: maximize fidelity to the original exact GP.

FITC VFE

• FITC: less local optima and easier to optimize, also less accurate.

• VFE: more accurate, more local optima, more difficult to optimize.

(Bui et al., 2017) (Bauer et al., 2016)

48 / 61

FITC vs. VFE

Two approaches:

• FITC: optimize the marginal likelihood of an approximate GP model.

• VFE: maximize fidelity to the original exact GP.

FITC VFE

• FITC: less local optima and easier to optimize, also less accurate.

• VFE: more accurate, more local optima, more difficult to optimize.

(Bui et al., 2017) (Bauer et al., 2016)

48 / 61

FITC vs. VFE

Two approaches:

• FITC: optimize the marginal likelihood of an approximate GP model.

• VFE: maximize fidelity to the original exact GP.

FITC VFE

• FITC: less local optima and easier to optimize, also less accurate.

• VFE: more accurate, more local optima, more difficult to optimize.

(Bui et al., 2017) (Bauer et al., 2016)

48 / 61

FITC vs. VFE

Two approaches:

• FITC: optimize the marginal likelihood of an approximate GP model.

• VFE: maximize fidelity to the original exact GP.

FITC VFE

• FITC: less local optima and easier to optimize, also less accurate.

• VFE: more accurate, more local optima, more difficult to optimize.

(Bui et al., 2017) (Bauer et al., 2016)

48 / 61

Whitened Parameterization for VFE

Alternative VFE objective expected to be easier to optimize!

Instead of making inference about u, the whitened VFE objective makes
inference about:

e such that u = Le , e ∼ N (0, I) ,

with u the latent process values at the inducing points and LTL = Σuu.

The VFE objective becomes:

N∑
i=1

Eq(e)p(f (xi)|e) [log p(yi |f (xi))]− KL(q(e)|N (0, I)) ,

with p(f (xi)|e) using the covariances between f (xi) and e.

49 / 61

Whitened Parameterization for VFE

Alternative VFE objective expected to be easier to optimize!

Instead of making inference about u, the whitened VFE objective makes
inference about:

e such that u = Le , e ∼ N (0, I) ,

with u the latent process values at the inducing points and LTL = Σuu.

The VFE objective becomes:

N∑
i=1

Eq(e)p(f (xi)|e) [log p(yi |f (xi))]− KL(q(e)|N (0, I)) ,

with p(f (xi)|e) using the covariances between f (xi) and e.

49 / 61

Whitened Parameterization for VFE

Alternative VFE objective expected to be easier to optimize!

Instead of making inference about u, the whitened VFE objective makes
inference about:

e such that u = Le , e ∼ N (0, I) ,

with u the latent process values at the inducing points and LTL = Σuu.

The VFE objective becomes:

N∑
i=1

Eq(e)p(f (xi)|e) [log p(yi |f (xi))]− KL(q(e)|N (0, I)) ,

with p(f (xi)|e) using the covariances between f (xi) and e.

49 / 61

Whitened Parameterization: Illustrative Example

0 100 200 300 400 500

−
20

0
−

16
0

−
12

0
−

80

Gradient Steps

E
LB

O

Standard Parameterization
Whitened Parameterization

Whitening significantly improves convergence!

50 / 61

Whitened Parameterization: Illustrative Example

0 100 200 300 400 500

−
20

0
−

16
0

−
12

0
−

80

Gradient Steps

E
LB

O

Standard Parameterization
Whitened Parameterization

Whitening significantly improves convergence!

50 / 61

Natural Gradient Ascent

Gradient ascent moves in the direction of the gradient ∇ξL(ξ).

Formally:

∇ξL(ξ) ∝ lim
ϵ→0

1

ϵ
arg max
d s.t.||d||≤ϵ

L(ξ + ϵd)

The steepest ascent direction picks d in the ϵ-vicinity of ξ
(measured by the Euclidean norm) that maximizes L(·).

If ξ represents the parameters of probability distributions, the Euclidean
norm may be problematic!

51 / 61

Natural Gradient Ascent

Gradient ascent moves in the direction of the gradient ∇ξL(ξ).

Formally:

∇ξL(ξ) ∝ lim
ϵ→0

1

ϵ
arg max
d s.t.||d||≤ϵ

L(ξ + ϵd)

The steepest ascent direction picks d in the ϵ-vicinity of ξ
(measured by the Euclidean norm) that maximizes L(·).

If ξ represents the parameters of probability distributions, the Euclidean
norm may be problematic!

51 / 61

Natural Gradient Ascent

Gradient ascent moves in the direction of the gradient ∇ξL(ξ).

Formally:

∇ξL(ξ) ∝ lim
ϵ→0

1

ϵ
arg max
d s.t.||d||≤ϵ

L(ξ + ϵd)

The steepest ascent direction picks d in the ϵ-vicinity of ξ
(measured by the Euclidean norm) that maximizes L(·).

If ξ represents the parameters of probability distributions, the Euclidean
norm may be problematic!

51 / 61

Natural Gradient Ascent

Gradient ascent moves in the direction of the gradient ∇ξL(ξ).

Formally:

∇ξL(ξ) ∝ lim
ϵ→0

1

ϵ
arg max
d s.t.||d||≤ϵ

L(ξ + ϵd)

The steepest ascent direction picks d in the ϵ-vicinity of ξ
(measured by the Euclidean norm) that maximizes L(·).

If ξ represents the parameters of probability distributions, the Euclidean
norm may be problematic!

51 / 61

Illustration with Two Gaussians

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

x

The Euclidean distance between parameters is 4 in both cases!

52 / 61

Illustration with Two Gaussians

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

The Euclidean distance between parameters is 4 in both cases!

52 / 61

Illustration with Two Gaussians

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

The Euclidean distance between parameters is 4 in both cases!

52 / 61

Illustration with Two Gaussians

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

A better alternative is the KL-divergence between distributions!

52 / 61

Natural Gradient Ascent

Considers the KL-divergence as a norm:

∇ξL(ξ)F−1
ξ ∝ lim

ϵ→0

1

ϵ
arg max

d s.t.KL[q(u|ξ)|q(u|ξ+d)]≤ϵ
L(ξ + ϵd)

with Fξ the Fisher information of q:

Fξ = −Eq(u|ξ)[∇2
ξ log q(u|ξ)]

Let η and θ be the natural and expectation parameters of q, respectively:

Fη=
∂θ

∂η
, Fξ =

(
∂η

∂ξ

)T ∂θ

∂η

∂η

∂ξ
.

Thus,

∇ξL(ξ)F−1
ξ =

∂L
∂θ

(
∂ξ

∂η

)T

.

53 / 61

Natural Gradient Ascent

Considers the KL-divergence as a norm:

∇ξL(ξ)F−1
ξ ∝ lim

ϵ→0

1

ϵ
arg max

d s.t.KL[q(u|ξ)|q(u|ξ+d)]≤ϵ
L(ξ + ϵd)

with Fξ the Fisher information of q:

Fξ = −Eq(u|ξ)[∇2
ξ log q(u|ξ)]

Let η and θ be the natural and expectation parameters of q, respectively:

Fη=
∂θ

∂η
, Fξ =

(
∂η

∂ξ

)T ∂θ

∂η

∂η

∂ξ
.

Thus,

∇ξL(ξ)F−1
ξ =

∂L
∂θ

(
∂ξ

∂η

)T

.

53 / 61

Natural Gradient Ascent

Considers the KL-divergence as a norm:

∇ξL(ξ)F−1
ξ ∝ lim

ϵ→0

1

ϵ
arg max

d s.t.KL[q(u|ξ)|q(u|ξ+d)]≤ϵ
L(ξ + ϵd)

with Fξ the Fisher information of q:

Fξ = −Eq(u|ξ)[∇2
ξ log q(u|ξ)]

Let η and θ be the natural and expectation parameters of q, respectively:

Fη=
∂θ

∂η
, Fξ =

(
∂η

∂ξ

)T ∂θ

∂η

∂η

∂ξ
.

Thus,

∇ξL(ξ)F−1
ξ =

∂L
∂θ

(
∂ξ

∂η

)T

.

53 / 61

Natural Gradient Ascent

0.475 0.500 0.525 0.550 0.575 0.600 0.625 0.650

0.75

0.80

0.85

0.90

0.95

1.00

1.05

standard deviation param eter σ

m
ea

n
pa

ra
m

et
er

µ

ord inary grad ient
natural grad ient

(Salimbeni et al., 2018)

54 / 61

Natural Gradient: Illustrative Example

0 20 40 60 80 100

−
1.

3
−

1.
2

−
1.

1
−

1.
0

−
0.

9
−

0.
8

Iteration

E
LB

O

Standard Gradient
Natural Gradient

The natural gradient achieves a faster convergence!

55 / 61

Natural Gradient: Illustrative Example

0 20 40 60 80 100

−
1.

3
−

1.
2

−
1.

1
−

1.
0

−
0.

9
−

0.
8

Iteration

E
LB

O

Standard Gradient
Natural Gradient

The natural gradient achieves a faster convergence!

55 / 61

GPs for Big Data

Can we further improve the computational cost in O(NM2)?

Minibatch training in NN allows to scale to massive datasets!

Straight forward to do that in the VFE approach:

L(q, θ) = Eq(f)[log p(y|f, θ)]−KL[q(u)|p(u)]

=
N∑
i=1

Eq(fi)[log p(yi |fi , θ)]−KL[q(u)|p(u)]

≈ B

N

∑
i∈B

Eq(fi)[log p(yi |fi , θ)]−KL[q(u)|p(u)]

The training cost goes down to O(M3) which allows to address
datasets with millions of instances!

(Hensman et al., 2013)

56 / 61

GPs for Big Data

Can we further improve the computational cost in O(NM2)?

Minibatch training in NN allows to scale to massive datasets!

Straight forward to do that in the VFE approach:

L(q, θ) = Eq(f)[log p(y|f, θ)]−KL[q(u)|p(u)]

=
N∑
i=1

Eq(fi)[log p(yi |fi , θ)]−KL[q(u)|p(u)]

≈ B

N

∑
i∈B

Eq(fi)[log p(yi |fi , θ)]−KL[q(u)|p(u)]

The training cost goes down to O(M3) which allows to address
datasets with millions of instances!

(Hensman et al., 2013)

56 / 61

GPs for Big Data

Can we further improve the computational cost in O(NM2)?

Minibatch training in NN allows to scale to massive datasets!

Straight forward to do that in the VFE approach:

L(q, θ) = Eq(f)[log p(y|f, θ)]−KL[q(u)|p(u)]

=
N∑
i=1

Eq(fi)[log p(yi |fi , θ)]−KL[q(u)|p(u)]

≈ B

N

∑
i∈B

Eq(fi)[log p(yi |fi , θ)]−KL[q(u)|p(u)]

The training cost goes down to O(M3) which allows to address
datasets with millions of instances!

(Hensman et al., 2013)

56 / 61

GPs for Big Data

Can we further improve the computational cost in O(NM2)?

Minibatch training in NN allows to scale to massive datasets!

Straight forward to do that in the VFE approach:

L(q, θ) = Eq(f)[log p(y|f, θ)]−KL[q(u)|p(u)]

=
N∑
i=1

Eq(fi)[log p(yi |fi , θ)]−KL[q(u)|p(u)]

≈ B

N

∑
i∈B

Eq(fi)[log p(yi |fi , θ)]−KL[q(u)|p(u)]

The training cost goes down to O(M3) which allows to address
datasets with millions of instances!

(Hensman et al., 2013)

56 / 61

GPs for Big Data

To converge to a local neighborhood of the optimum stochastic methods
require an estimate of the gradient which can be very cheap!

57 / 61

GPs for Big Data

To converge to a local neighborhood of the optimum stochastic methods
require an estimate of the gradient which can be very cheap!

57 / 61

GPs for Big Data

0 1 2 3 4

0.
00

0.
10

0.
20

0.
30

Training Time in Seconds in a log10 Scale

Av
g.

 T
es

t E
rro

r

SEP Batch
SEP Stochastic
SVI full-Batch
SVI mini-Batch

(Hernández-Lobato, 2015)
58 / 61

Summary about VFE

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It does not change the model. It relies on a particular posterior
approximation that speeds-up the computations.

• It allows for minibatch training which reduces the cost to O(M3).

• The objective is prone to local optima and difficult to optimize.

59 / 61

Summary about VFE

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It does not change the model. It relies on a particular posterior
approximation that speeds-up the computations.

• It allows for minibatch training which reduces the cost to O(M3).

• The objective is prone to local optima and difficult to optimize.

59 / 61

Summary about VFE

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It does not change the model. It relies on a particular posterior
approximation that speeds-up the computations.

• It allows for minibatch training which reduces the cost to O(M3).

• The objective is prone to local optima and difficult to optimize.

59 / 61

Summary about VFE

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It does not change the model. It relies on a particular posterior
approximation that speeds-up the computations.

• It allows for minibatch training which reduces the cost to O(M3).

• The objective is prone to local optima and difficult to optimize.

59 / 61

Summary about VFE

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It does not change the model. It relies on a particular posterior
approximation that speeds-up the computations.

• It allows for minibatch training which reduces the cost to O(M3).

• The objective is prone to local optima and difficult to optimize.

59 / 61

Summary about VFE

• Reduces the cost to O(MN2) with M ≪ N.

• The optimized inducing points spread over the input space where
the latent function changes.

• Guaranteed to be exact if M = N and the inducing points are not
optimized and located at the training points.

• It does not change the model. It relies on a particular posterior
approximation that speeds-up the computations.

• It allows for minibatch training which reduces the cost to O(M3).

• The objective is prone to local optima and difficult to optimize.

59 / 61

Sparse GP Conclusions

• Exact GPs have an O(N3) computational cost, making them
feasible on small datasets with a few thousand instances only.

• Sparse GPs provide an approximate solution with a smaller
computational cost that is O(NM2) with M ≪ N.

• The non-parametric property of GP is lost when using sparse
approximations. They are no longer more flexible with more data.

• The methods that approximate the GP prior often introduce a
low-rank structure in the covariance matrix.

• The best performing method seems to be the VFE method since it
does not modify the prior.

• Some methods allow for stochastic optimization and mini-batch
training that further reduce the cost to O(M3).

60 / 61

Sparse GP Conclusions

• Exact GPs have an O(N3) computational cost, making them
feasible on small datasets with a few thousand instances only.

• Sparse GPs provide an approximate solution with a smaller
computational cost that is O(NM2) with M ≪ N.

• The non-parametric property of GP is lost when using sparse
approximations. They are no longer more flexible with more data.

• The methods that approximate the GP prior often introduce a
low-rank structure in the covariance matrix.

• The best performing method seems to be the VFE method since it
does not modify the prior.

• Some methods allow for stochastic optimization and mini-batch
training that further reduce the cost to O(M3).

60 / 61

Sparse GP Conclusions

• Exact GPs have an O(N3) computational cost, making them
feasible on small datasets with a few thousand instances only.

• Sparse GPs provide an approximate solution with a smaller
computational cost that is O(NM2) with M ≪ N.

• The non-parametric property of GP is lost when using sparse
approximations. They are no longer more flexible with more data.

• The methods that approximate the GP prior often introduce a
low-rank structure in the covariance matrix.

• The best performing method seems to be the VFE method since it
does not modify the prior.

• Some methods allow for stochastic optimization and mini-batch
training that further reduce the cost to O(M3).

60 / 61

Sparse GP Conclusions

• Exact GPs have an O(N3) computational cost, making them
feasible on small datasets with a few thousand instances only.

• Sparse GPs provide an approximate solution with a smaller
computational cost that is O(NM2) with M ≪ N.

• The non-parametric property of GP is lost when using sparse
approximations. They are no longer more flexible with more data.

• The methods that approximate the GP prior often introduce a
low-rank structure in the covariance matrix.

• The best performing method seems to be the VFE method since it
does not modify the prior.

• Some methods allow for stochastic optimization and mini-batch
training that further reduce the cost to O(M3).

60 / 61

Sparse GP Conclusions

• Exact GPs have an O(N3) computational cost, making them
feasible on small datasets with a few thousand instances only.

• Sparse GPs provide an approximate solution with a smaller
computational cost that is O(NM2) with M ≪ N.

• The non-parametric property of GP is lost when using sparse
approximations. They are no longer more flexible with more data.

• The methods that approximate the GP prior often introduce a
low-rank structure in the covariance matrix.

• The best performing method seems to be the VFE method since it
does not modify the prior.

• Some methods allow for stochastic optimization and mini-batch
training that further reduce the cost to O(M3).

60 / 61

Sparse GP Conclusions

• Exact GPs have an O(N3) computational cost, making them
feasible on small datasets with a few thousand instances only.

• Sparse GPs provide an approximate solution with a smaller
computational cost that is O(NM2) with M ≪ N.

• The non-parametric property of GP is lost when using sparse
approximations. They are no longer more flexible with more data.

• The methods that approximate the GP prior often introduce a
low-rank structure in the covariance matrix.

• The best performing method seems to be the VFE method since it
does not modify the prior.

• Some methods allow for stochastic optimization and mini-batch
training that further reduce the cost to O(M3).

60 / 61

References

• Williams, C., & Seeger, M. (2000). Using the Nyström method to speed up kernel
machines. Advances in neural information processing systems, 13.

• Snelson, E., & Ghahramani, Z. (2005). Sparse Gaussian processes using pseudo-inputs.
Advances in neural information processing systems, 18.

• Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines.
Advances in neural information processing systems, 20.

• Naish-Guzman, A., & Holden, S. (2007). The generalized FITC approximation.
Advances in neural information processing systems, 20.

• Hernández-Lobato, D., & Hernández-Lobato, J. M. (2016, May). Scalable Gaussian
process classification via expectation propagation. In Artificial Intelligence and Statistics
(pp. 168-176).

• Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big data.
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence.

• Salimbeni, H., Eleftheriadis, S., & Hensman, J. (2018, March). Natural gradients in
practice: Non-conjugate variational inference in Gaussian process models. In
International Conference on Artificial Intelligence and Statistics (pp. 689-697).

• Wu, L., Miller, A., Anderson, L., Pleiss, G., Blei, D., & Cunningham, J. (2021).
Hierarchical inducing point gaussian process for inter-domian observations.
International Conference on Artificial Intelligence and Statistics (pp. 2926-2934).

61 / 61

