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Motivation: Regression Problems

We have to specify a model that may depend on parameters w.
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The Standard Linear Model

We may consider a standard linear regression model:

f (x) = wTx , y = f (x) + ϵ , ϵ ∼ N (0, σ2) ,

The task of interest is to infer w from data D = {(xi , yi )}Ni=1.

We follow a Bayesian approach to machine learning:

posterior =
likelihood× prior

marginal likelihood
, p(w|y,X) = p(y|w,X)p(w)

p(y|X)
.

Prior: Initial belief on the values of w before observing the data.

Likelihood: How well each value of w explains D.

Posterior: Updated belief on the values of w after observing D.

Marginal Likelihood: Probability of observing y under the model.
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The Standard Linear Model

Prior: We consider an isometric Gaussian prior N (w|0, I).
Likelihood: Defined by the model as N (y|Xw, σ2I).

Posterior: Given by N (w|σ−2A−1XTy,A−1) with A = XTXσ−2 + I.

Marginal Likelihood: Given by N (y|0,XXT + Iσ2).

(Bishop, 2006)
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Multivariate Gaussian Distribution

p(w|µ,Σ) = (2π)−
N
2 |Σ|−

1
2 exp

{
−0.5 · (w − µ)TΣ−1(w − µ)

}
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The Standard Linear Model

The predictive distribution is obtained by marginalizing w:

p(y⋆|x⋆) =
∫

p(y⋆|x⋆,w)p(w|X, y)dw = N (y⋆|σ−2xT⋆A
−1XTy, xT⋆A

−1x⋆ + σ2)

−5 0 5
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 y

Predictive dist.

(Rasmussen & Williams, 2006)
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Non-Linear Regression

Non-linear problems can be addressed by performing feature expansions:

ϕ(x) = (1, x , x2, x3, . . .)T

X

Y

X

Simple linear model Polynomial model

Any other non-linear feature expansion is possible!
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Non-Linear Regression

Consider working with ϕ(x) instead of x. The model is:

y = f (x) + ϵ = wTϕ(x) + ϵ ϵ ∼ N (0, σ2) .

The posterior and predictive distribution are:

p(w|X, y) = N (w|σ−2A−1ΦTy,A−1) ,

p(y⋆|X, x⋆) = N (y⋆|σ−2ϕ(x⋆)
TA−1ΦTy), ϕ(x⋆)

TA−1ϕ(x⋆) + σ2),

where Φ = ϕ(X) and A = ΦTΦσ−2 + I.

All computations are tractable and result in Gaussian distributions!
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Non-Linear Regression

x

t

0 1

−1

0

1

The predictive distribution tells us what our model does not know!
(Bishop,2006)
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Function Space View

An equivalent way of reaching identical results is possible by
considering inference in function space.
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Gaussian Processes

The previous random functions are samples from a Gaussian process.

Distribution over functions f (·) so that for any finite {xi}Ni=1,
(f (x1), . . . , f (xN))

T follows an N-dimensional Gaussian distribution.
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Straight-forward for the prior and posterior. Since the they are Gaussian
for w, y is the sum of Gaussian random variables and is also Gaussian!

12 / 65



Gaussian Processes

The previous random functions are samples from a Gaussian process.

Distribution over functions f (·) so that for any finite {xi}Ni=1,
(f (x1), . . . , f (xN))

T follows an N-dimensional Gaussian distribution.

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

f(3)

−3
−2

−1
0

1
2

3

f(4
)

−3

−2

−1
0

1
2

3

Prob. Density

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Straight-forward for the prior and posterior. Since the they are Gaussian
for w, y is the sum of Gaussian random variables and is also Gaussian!

12 / 65



Gaussian Processes

The previous random functions are samples from a Gaussian process.

Distribution over functions f (·) so that for any finite {xi}Ni=1,
(f (x1), . . . , f (xN))

T follows an N-dimensional Gaussian distribution.

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

f(3)

−3
−2

−1
0

1
2

3

f(4
)

−3

−2

−1
0

1
2

3

Prob. Density

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Straight-forward for the prior and posterior. Since the they are Gaussian
for w, y is the sum of Gaussian random variables and is also Gaussian!

12 / 65



Gaussian Processes

The previous random functions are samples from a Gaussian process.

Distribution over functions f (·) so that for any finite {xi}Ni=1,
(f (x1), . . . , f (xN))

T follows an N-dimensional Gaussian distribution.

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

f(3)

−3
−2

−1
0

1
2

3

f(4
)

−3

−2

−1
0

1
2

3

Prob. Density

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Straight-forward for the prior and posterior. Since the they are Gaussian
for w, y is the sum of Gaussian random variables and is also Gaussian!

12 / 65



Advantages of the Function Space Inference

1 We can compute the predictive distribution without explicitly
computing the posterior for w!

2 Due to Gaussian form of the process values, there are many
closed-form solutions for questions about the data.

3 We need not compute ϕ(x), only ϕ(xi )
Tϕ(xj). This allows to

use feature expansions of infinite size!

4 This results in a non-parametric model that becomes more
flexible as more data is observed!
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Gaussian Distribution

p(y|Σ) ∝ exp
{
−0.5yTΣ−1y

}
Σ =

[
1.0 0.7
0.7 1.0

]
.
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Gaussian Distribution

p(y2|y1,Σ) ∝ exp
{
−0.5(y2 − µ⋆)Σ

−1
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Two Dimensional Example
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Two Dimensional Example
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Five Dimensional Example
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Five Dimensional Example
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Twenty Dimensional Example
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Infinite Dimensional Example
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Predictive Distribution
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Predictive Distribution

Ground Truth

The model becomes more flexible as we observe more data!
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Summary so Far...

• A GP is like a Gaussian distribution with an infinitely long mean
vector and an ∞×∞ covariance matrix.

• The covariance matrix often enforces that function values
corresponding to near-by points take similar values.

• Due to the Gaussian distribution of finite function values, there are
many closed form expressions like the predictive distribution.

• GPs are non-parametric models and become more expressive the
more data we have.

• The predictive uncertainty is high in regions with no data!
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Definition

A Gaussian process is a collection of random variables, any finite
number of which have a Gaussian distribution.

A Gaussian distribution is fully specified by a mean vector, µ, and
covariance matrix Σ:

f = (f1, . . . , fN)
T ∼ N (µ,Σ) indices i = 1, . . . ,N .

A Gaussian process is fully specified by a mean function m(x) and
covariance function C (x, x′):

f (x) ∼ GP(m(x),C (x, x′)), indices x .
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GP Prior Mean

The GP prior mean m(·) can be specified by any function!

E[f (x)] = m(x).

It determines the global tendency of the latent function before
observing the data. Often, simply set to zero.
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GP Prior Covariances

The covariance function sets prior covariances among function values!

E [(f (xi )−m(xi ))(f (xj)−m(xj))] = C (xi , xj).

It determines the global properties of the latent function before
observing the data.
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Marginalization

If the GP mean has infinite length and the GP covariance matrix
is ∞×∞, how do we represent a GP on a computer?

We can use the marginalization property of distributions:

p(y1) =

∫
p(y1, y2)dy2 ,

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1) = N (y1|a,A) ,

We only need to work with finite sets of random variables!
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Computing the Predictive Distribution

−3 −2 −1 0 1 2 3
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●
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●

p(y1, y2) = N
([

y1
y2

]
,

[
a
b

]
,

[
A C
CT B

])
,

p(y1|y2) =
p(y1, y2)

p(y2)
,

p(y1|y2) = N
(
y1

∣∣∣a+ CB−1(y2 − b),A− CB−1CT
)

• The predictive mean is linear in y2.

• The predictive covariance is more confident than the prior!.
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Considering Additive Noise

−3 −2 −1 0 1 2 3

−
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−
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−
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0
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3

x

y f(x)

σy

y(x) = f (x) + ϵσy ,

p(ϵ) = N (ϵ|0, 1) .

Since f (x) follows a GP and ϵ is Gaussian y(x) is another GP!

y(x) ∼ GP(m(x),C (x, x′) + I(x = x′)σ2
y )

The predictive distribution is:

p(y1|y2) = N
(
y1

∣∣∣a+ C(B+ Iσ2
y )

−1(y2 − b),A− C(B+ Iσ2
y )

−1CT + Iσ2
y

)
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An Example of a Covariance Function

Squared Exponential: C(x, x′) = σ2 exp

−1

2

d∑
j=1

xj − x ′
j

lj

2
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How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

p(θ|y) = p(y|θ)p(θ)
p(y)

what we know after
seeing the data
(posterior)

∝
what the data

tell us
(likelihood)

×
what we know before

seeing the data
(prior)

p(y|θ) ≡ how well does θ explain the observed data

= N
(
y|0,Σ+ Iσ2

y

)
Often, with a reasonable amount of data, maximizing p(y|θ) w.r.t.

θ gives good results as it favors the right model!
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Why maximizing the likelihood is robust?
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Covariance Functions: Neural Network

C (x, x′) = σ2 2

π
sin−1

(
xTΣx′√

(1 + 2xTΣx′)(1 + 2xTΣx′)
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Covariance Functions: Periodic

C (x, x′) = exp
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Covariance Functions: Ornstein-Uhlenbeck

C (x, x′) = exp

{
−|x− x′|

2l2

}
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Covariance Functions: Linear

C (x, x′) = (x− c)T(x′ − c)σ2
s + σ2

b
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Combining Covariance Functions: Multiplication

The product of two covariance functions is a covariance function!

Can be thought of as an AND operation!

× =

The resulting covariance function will have high value only if both
base covariances have a high value!
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Multiplication: Linear Times Periodic
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Multiplication: Linear Times Linear
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Combining Covariance Functions: Addition

The addition of two covariance functions is a covariance function!

Can be thought of as an OR operation!

+ =

The resulting covariance function will have high value if either of
the base covariances have a high value!
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Multiplication: Linear Plus Periodic
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Summary about Covariance Functions

• Covariance functions include strong assumptions about f (x).

• Often the sq. exponential or Matérn work fine for regression.

• Covariance functions parameters allow to interpret the data.

• Covariance functions can be combined (sum + and product ×).

• The likelihood p(y) can discriminate among them (use with care).
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Classification Problems and Decision Theory

A classification rule will divide the input space in regions Rk .

What is the optimal rule in terms of the prediction error?

Consider a binary problem. The probability of a mistake is:

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫
R1

p(x, C2)dx+
∫
R2

p(x, C1)dx .

Clearly the assign rule that minimizes p(mistake) is:

π(x) =

{
C1 if p(x, C1) ≥ p(x, C2)
C2 if p(x, C2) > p(x, C1)

i.e., we should assign the class for which p(Ck |x) ∝ p(x, C1) is larger.
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Classification Problems and Decision Theory

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

(Bishop, 2006)
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Binary Classification Problems

The goal is to estimate class {1,−1} posterior probabilities, e.g.,
p(yi = 1|xi ) from the observed data.

Gaussian processes are priors for functions that take values in R.

Function squashing to the interval [0, 1] via a link function:

• p(yi = 1|xi ) = I (f (xi ) > 0).

• p(yi = 1|xi ) = sigmoid(f (xi )) sigmoid(x) = (1 + exp(−x))−1.

• p(yi = 1|xi ) = probit(f (xi )) (c.d.f. of a standard Gaussian).

with f (·) a latent function modeled by a GP.
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• p(yi = 1|xi ) = I (f (xi ) > 0).

• p(yi = 1|xi ) = sigmoid(f (xi )) sigmoid(x) = (1 + exp(−x))−1.

• p(yi = 1|xi ) = probit(f (xi )) (c.d.f. of a standard Gaussian).

with f (·) a latent function modeled by a GP.
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The sigmoid and probit consider logistic and standard Gaussian
noise! p(yi = 1|xi ) = I (f (xi ) + ϵi > 0)
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Prior Samples Squashed via the Sigmoid Function
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Noise in The Labels

The previous link functions only allow for mislabeled instances
near the decision boundary!

Outliers may affect the inference process about f (·):

Outlier

Outlier

Robust likelihood with probability ϵ of label flip:

p(y |f (xi ), ϵ) = (1− ϵ) · σ(f (xi )) + ϵ · (1− σ(f (xi )))
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Bayesian Inference for GP Classification

Ideally, we would like to make inference about the latent variables,
i.e., process values at the observed data.

Let f = (f (x1), . . . , f (xN))
T and yi ∈ {−1, 1}:

p(f|y,X) = p(y|f)p(f|X)
p(y|X)

with

p(y|f) =
N∏
i=1

σ(yi f (xi )) , p(f|X) = N (f|0,Σ) ,

Unfortunately, the posterior is intractable since the likelihood is
not Gaussian and must be approximated!
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The Laplace Approximation: Univariate Case

The logarithm of a Gaussian is a quadratic function!

q(z) =
1√
2πσ2

exp

{
− 1

2σ2
(z − µ)2

}
Let f (z) be a target unormalized distribution. A truncated Taylor
expansion of log f (z) center at a mode is:

log f (z) ≈ log f (z0)−
1

2
A(z − z0)

2 , A = − d2

dz2
log f (z)

∣∣∣∣
z=z0

Taking the exponential we obtain:

f (z) ≈ f (z0) exp

{
−A

2
(z − z0)

2

}
= q̃ q(z) = N (z |z0,A−1)

The approximate normalization constant Zq is f (z0)
√

2π
A .
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Laplace Approximation: Illustration
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The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional
distribution p(z) = f (z)/Z .

log f (z0) ≈ log f (z0)−
1

2
(z− z0)

TA(z− z0) , A = − ∇T∇ log f (z)
∣∣∣
z=z0

Taking the exponential we have:

f (z) ≈ f (z0) exp

{
−1

2
(z− z0)

TA(z− z0))

}
= q̃ , q(z) = N (z|z0,A−1)

The approximate normalization constant Zq is f (z0)
√

(2π)M

|A| . The mean

of the Gaussian approximation q is z0 and the covariance matrix is A−1.

The posterior is unimodal and hence A is positive semidefinite.
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Approximate Predictive Distribution

Given the Gaussian approximation q(f), we can use the conditional
Gaussian to compute an approximate predictive distribution.

p(y⋆|y,X) ≈
∫

p(y⋆|f (x⋆))p(f (x⋆)|f)q(f)dfdf (x⋆) ,

=

∫
p(y⋆|f (x⋆))q(f (x⋆))df (x⋆) ,

with this last integral evaluated via quadrature and

q(f (x⋆)) = N (f (x⋆)|cT⋆C−1f0,C (x⋆, x⋆)− cT⋆C
−1c⋆ + cT⋆C

−1A−1C−1c⋆) ,

p(y⋆|f (x⋆)) = σ(y⋆f (x⋆)) .
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Approximate Predictive Distribution

Decision boundary and prediction uncertainty:

−2 0 2

−2

0

2

Prediction uncertainty is higher in regions with no observed data.

(Bishop, 2006)
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Multi-class Classification

There are latent process values at N training points for all C classes:

f = (f1(x1), . . . , f1(xN), f2(x1), . . . , f2(xN), . . . , fC (x1), . . . , fC (x1))
T

The prior for f is N (f|0,C) with C a block diagonal.

The likelihood uses a softmax function to obtain class label probabilities:

p(yi = c |xi ) =
exp(fc(xi ))∑C

c ′=1 exp(fc ′(xi ))
,

The posterior is approximated using the Laplace approximation
with linear cost in C !
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Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

• GPy: Gaussian Processes in Python. Easy-to-use and extend.
Supports multi-output GPs, different noise models and different
approximate inference methods.

• GPML: Gaussian Processes in Matlab. No longer maintained.
Implements the models and methods from the book ”Gaussian
Process for Machine learning”.

• GPflow: Gaussian processes in python using Tensorflow. Supports
GPU acceleration. Focuses on variational inference and MCMC for
approximate inference.

• GPyTorch: Gaussian processes in python using PyTorch. Supports
GPU acceleration. Also supports deep GPs.

Deep GPs: uses doubly stochastic variational inference and GPflow.
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Summary

1 A GP is like a Gaussian distribution with an infinitely long mean
vector and an ∞×∞ covariance matrix.

2 GPs are non-parametric models and become more expressive the
more data we have. They are also interpretable!

3 GPs provide predictive uncertainty that is high in regions with no
data! This allows to know what is not known.

4 The marginal likelihood enables finding good hyper-parameters,
as it penalizes too simple and too complex models.

5 GPs can address classification problems too, but approximate
inference is needed.
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