Part I: Gaussian Processes for Regression and Classification

Daniel Hernández-Lobato
Computer Science Department Universidad Autónoma de Madrid

http://dhnzl.org, daniel.hernandez@uam.es

Motivation: Regression Problems

Motivation: Regression Problems

Motivation: Regression Problems

We have to specify a model that may depend on parameters \mathbf{w}.

The Standard Linear Model

We may consider a standard linear regression model:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}, \quad y=f(\mathbf{x})+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

The Standard Linear Model

We may consider a standard linear regression model:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}, \quad y=f(\mathbf{x})+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

The task of interest is to infer \mathbf{w} from data $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$.

The Standard Linear Model

We may consider a standard linear regression model:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}, \quad y=f(\mathbf{x})+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

The task of interest is to infer \mathbf{w} from data $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$.
We follow a Bayesian approach to machine learning:

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}, \quad p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\frac{p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w})}{p(\mathbf{y} \mid \mathbf{X})} .
$$

The Standard Linear Model

We may consider a standard linear regression model:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}, \quad y=f(\mathbf{x})+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

The task of interest is to infer \mathbf{w} from data $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$.
We follow a Bayesian approach to machine learning:

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}, \quad p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\frac{p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w})}{p(\mathbf{y} \mid \mathbf{X})} .
$$

Prior: Initial belief on the values of \mathbf{w} before observing the data.

The Standard Linear Model

We may consider a standard linear regression model:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}, \quad y=f(\mathbf{x})+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

The task of interest is to infer \mathbf{w} from data $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$.
We follow a Bayesian approach to machine learning:

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}, \quad p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\frac{p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w})}{p(\mathbf{y} \mid \mathbf{X})} .
$$

Prior: Initial belief on the values of \mathbf{w} before observing the data.
Likelihood: How well each value of \mathbf{w} explains \mathcal{D}.

The Standard Linear Model

We may consider a standard linear regression model:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}, \quad y=f(\mathbf{x})+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

The task of interest is to infer \mathbf{w} from data $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$.
We follow a Bayesian approach to machine learning:

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}, \quad p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\frac{p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w})}{p(\mathbf{y} \mid \mathbf{X})} .
$$

Prior: Initial belief on the values of \mathbf{w} before observing the data.
Likelihood: How well each value of \mathbf{w} explains \mathcal{D}.
Posterior: Updated belief on the values of \mathbf{w} after observing \mathcal{D}.

The Standard Linear Model

We may consider a standard linear regression model:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}, \quad y=f(\mathbf{x})+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

The task of interest is to infer \mathbf{w} from data $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$.
We follow a Bayesian approach to machine learning:

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}, \quad p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\frac{p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w})}{p(\mathbf{y} \mid \mathbf{X})} .
$$

Prior: Initial belief on the values of \mathbf{w} before observing the data.
Likelihood: How well each value of \mathbf{w} explains \mathcal{D}.
Posterior: Updated belief on the values of \mathbf{w} after observing \mathcal{D}.
Marginal Likelihood: Probability of observing y under the model.

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.

Multivariate Gaussian Distribution

$$
p(\mathbf{w} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-\frac{N}{2}}|\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp \left\{-0.5 \cdot(\mathbf{w}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{w}-\boldsymbol{\mu})\right\}
$$

$\boldsymbol{\Sigma}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$\boldsymbol{\Sigma}=\left[\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right]$
$\boldsymbol{\Sigma}=\left[\begin{array}{cc}1 & -0.8 \\ -0.8 & 1\end{array}\right]$

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.
Likelihood: Defined by the model as $\mathcal{N}\left(\mathbf{y} \mid \mathbf{X w}, \sigma^{2} \mathbf{I}\right)$.

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.
Likelihood: Defined by the model as $\mathcal{N}\left(\mathbf{y} \mid \mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)$.
Posterior: Given by $\mathcal{N}\left(\mathbf{w} \mid \sigma^{-2} \mathbf{A}^{-1} \mathbf{X}^{\top} \mathbf{y}, \mathbf{A}^{-1}\right)$ with $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X} \sigma^{-2}+\mathbf{I}$.

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.
Likelihood: Defined by the model as $\mathcal{N}\left(\mathbf{y} \mid \mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)$.
Posterior: Given by $\mathcal{N}\left(\mathbf{w} \mid \sigma^{-2} \mathbf{A}^{-1} \mathbf{X}^{\top} \mathbf{y}, \mathbf{A}^{-1}\right)$ with $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X} \sigma^{-2}+\mathbf{I}$.
Marginal Likelihood: Given by $\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\mathbf{I} \sigma^{2}\right)$.

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.
Likelihood: Defined by the model as $\mathcal{N}\left(\mathbf{y} \mid \mathbf{X w}, \sigma^{2} \mathbf{I}\right)$.
Posterior: Given by $\mathcal{N}\left(\mathbf{w} \mid \sigma^{-2} \mathbf{A}^{-1} \mathbf{X}^{\top} \mathbf{y}, \mathbf{A}^{-1}\right)$ with $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X} \sigma^{-2}+\mathbf{I}$.
Marginal Likelihood: Given by $\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \mathbf{X X}^{\top}+\mathbf{I} \sigma^{2}\right)$.
likelihood

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.
Likelihood: Defined by the model as $\mathcal{N}\left(\mathbf{y} \mid \mathbf{X w}, \sigma^{2} \mathbf{I}\right)$.
Posterior: Given by $\mathcal{N}\left(\mathbf{w} \mid \sigma^{-2} \mathbf{A}^{-1} \mathbf{X}^{\top} \mathbf{y}, \mathbf{A}^{-1}\right)$ with $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X} \sigma^{-2}+\mathbf{I}$. Marginal Likelihood: Given by $\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\mathbf{I} \sigma^{2}\right)$.

prior/posterior

data space

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.
Likelihood: Defined by the model as $\mathcal{N}\left(\mathbf{y} \mid \mathbf{X w}, \sigma^{2} \mathbf{I}\right)$.
Posterior: Given by $\mathcal{N}\left(\mathbf{w} \mid \sigma^{-2} \mathbf{A}^{-1} \mathbf{X}^{\top} \mathbf{y}, \mathbf{A}^{-1}\right)$ with $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X} \sigma^{-2}+\mathbf{I}$. Marginal Likelihood: Given by $\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \mathbf{X X}^{\top}+\mathbf{I} \sigma^{2}\right)$.

The Standard Linear Model

Prior: We consider an isometric Gaussian prior $\mathcal{N}(\mathbf{w} \mid \mathbf{0}, \mathbf{I})$.
Likelihood: Defined by the model as $\mathcal{N}\left(\mathbf{y} \mid \mathbf{X w}, \sigma^{2} \mathbf{I}\right)$.
Posterior: Given by $\mathcal{N}\left(\mathbf{w} \mid \sigma^{-2} \mathbf{A}^{-1} \mathbf{X}^{\top} \mathbf{y}, \mathbf{A}^{-1}\right)$ with $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X} \sigma^{-2}+\mathbf{I}$. Marginal Likelihood: Given by $\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\mathbf{I} \sigma^{2}\right)$.

data space

The Standard Linear Model

The predictive distribution is obtained by marginalizing \mathbf{w} :
$p\left(y_{\star} \mid \mathbf{x}_{\star}\right)=\int p\left(y_{\star} \mid \mathbf{x}_{\star}, \mathbf{w}\right) p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) d \mathbf{w}=\mathcal{N}\left(y_{\star} \mid \sigma^{-2} \mathbf{x}_{\star}^{\top} \mathbf{A}^{-1} \mathbf{X}^{\top} \mathbf{y}, \mathbf{x}_{\star}^{\top} \mathbf{A}^{-1} \mathbf{x}_{\star}+\sigma^{2}\right)$

The Standard Linear Model

The predictive distribution is obtained by marginalizing w:
$p\left(y_{\star} \mid \mathbf{x}_{\star}\right)=\int p\left(y_{\star} \mid \mathbf{x}_{\star}, \mathbf{w}\right) p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) d \mathbf{w}=\mathcal{N}\left(y_{\star} \mid \sigma^{-2} \mathbf{x}_{\star}^{\top} \mathbf{A}^{-1} \mathbf{X}^{\top} \mathbf{y}, \mathbf{x}_{\star}^{\top} \mathbf{A}^{-1} \mathbf{x}_{\star}+\sigma^{2}\right)$

Non-Linear Regression

Non-linear problems can be addressed by performing feature expansions:

$$
\phi(x)=\left(1, x, x^{2}, x^{3}, \ldots\right)^{\top}
$$

Non-Linear Regression

Non-linear problems can be addressed by performing feature expansions:

$$
\phi(x)=\left(1, x, x^{2}, x^{3}, \ldots\right)^{\top}
$$

Polynomial model

Non-Linear Regression

Non-linear problems can be addressed by performing feature expansions:

$$
\phi(x)=\left(1, x, x^{2}, x^{3}, \ldots\right)^{\top}
$$

Any other non-linear feature expansion is possible!

Non-Linear Regression

Consider working with $\phi(\mathbf{x})$ instead of \mathbf{x}. The model is:

$$
y=f(\mathbf{x})+\epsilon=\mathbf{w}^{\top} \phi(\mathbf{x})+\epsilon \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Non-Linear Regression

Consider working with $\phi(\mathbf{x})$ instead of \mathbf{x}. The model is:

$$
y=f(\mathbf{x})+\epsilon=\mathbf{w}^{\top} \phi(\mathbf{x})+\epsilon \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

The posterior and predictive distribution are:

$$
\begin{aligned}
p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) & =\mathcal{N}\left(\mathbf{w} \mid \sigma^{-2} \mathbf{A}^{-1} \mathbf{\Phi}^{\top} \mathbf{y}, \mathbf{A}^{-1}\right) \\
p\left(y_{\star} \mid \mathbf{X}, \mathbf{x}_{\star}\right) & \left.=\mathcal{N}\left(y_{\star} \mid \sigma^{-2} \phi\left(\mathbf{x}_{\star}\right)^{\top} \mathbf{A}^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}\right), \phi\left(\mathbf{x}_{\star}\right)^{\top} \mathbf{A}^{-1} \phi\left(\mathbf{x}_{\star}\right)+\sigma^{2}\right),
\end{aligned}
$$

where $\boldsymbol{\Phi}=\phi(\mathbf{X})$ and $\mathbf{A}=\boldsymbol{\Phi}^{\boldsymbol{\top}} \boldsymbol{\Phi} \sigma^{-2}+\mathbf{I}$.

Non-Linear Regression

Consider working with $\phi(\mathbf{x})$ instead of \mathbf{x}. The model is:

$$
y=f(\mathbf{x})+\epsilon=\mathbf{w}^{\top} \phi(\mathbf{x})+\epsilon \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

The posterior and predictive distribution are:

$$
\begin{aligned}
p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) & =\mathcal{N}\left(\mathbf{w} \mid \sigma^{-2} \mathbf{A}^{-1} \mathbf{\Phi}^{\top} \mathbf{y}, \mathbf{A}^{-1}\right) \\
p\left(y_{\star} \mid \mathbf{X}, \mathbf{x}_{\star}\right) & \left.=\mathcal{N}\left(y_{\star} \mid \sigma^{-2} \phi\left(\mathbf{x}_{\star}\right)^{\top} \mathbf{A}^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}\right), \phi\left(\mathbf{x}_{\star}\right)^{\top} \mathbf{A}^{-1} \phi\left(\mathbf{x}_{\star}\right)+\sigma^{2}\right),
\end{aligned}
$$

where $\boldsymbol{\Phi}=\phi(\mathbf{X})$ and $\mathbf{A}=\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \sigma^{-2}+\mathbf{I}$.

All computations are tractable and result in Gaussian distributions!

Non-Linear Regression

(Bishop,2006)

Non-Linear Regression

(Bishop,2006)

Non-Linear Regression

(Bishop,2006)

Non-Linear Regression

(Bishop,2006)

Non-Linear Regression

The predictive distribution tells us what our model does not know!
(Bishop,2006)

Function Space View

An equivalent way of reaching identical results is possible by considering inference in function space.

Function Space View

An equivalent way of reaching identical results is possible by considering inference in function space.

Prior

Likelihood

Posterior

Function Space View

An equivalent way of reaching identical results is possible by considering inference in function space.

Gaussian Processes

The previous random functions are samples from a Gaussian process.

Gaussian Processes

The previous random functions are samples from a Gaussian process.
Distribution over functions $f(\cdot)$ so that for any finite $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$, $\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right)^{\boldsymbol{\top}}$ follows an N-dimensional Gaussian distribution.

Gaussian Processes

The previous random functions are samples from a Gaussian process.
Distribution over functions $f(\cdot)$ so that for any finite $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$, $\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right)^{\top}$ follows an N-dimensional Gaussian distribution.

Gaussian Processes

The previous random functions are samples from a Gaussian process.
Distribution over functions $f(\cdot)$ so that for any finite $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$, $\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right)^{\top}$ follows an N-dimensional Gaussian distribution.

Straight-forward for the prior and posterior. Since the they are Gaussian for \mathbf{w}, y is the sum of Gaussian random variables and is also Gaussian!

Advantages of the Function Space Inference

(1) We can compute the predictive distribution without explicitly computing the posterior for w !

Advantages of the Function Space Inference

(1) We can compute the predictive distribution without explicitly computing the posterior for w !
(2) Due to Gaussian form of the process values, there are many closed-form solutions for questions about the data.

Advantages of the Function Space Inference

(1) We can compute the predictive distribution without explicitly computing the posterior for w !
(2) Due to Gaussian form of the process values, there are many closed-form solutions for questions about the data.

3 We need not compute $\phi(\mathrm{x})$, only $\phi\left(\mathrm{x}_{i}\right)^{\top} \phi\left(\mathrm{x}_{j}\right)$. This allows to use feature expansions of infinite size!

Advantages of the Function Space Inference

(1) We can compute the predictive distribution without explicitly computing the posterior for w !
(2) Due to Gaussian form of the process values, there are many closed-form solutions for questions about the data.

3 We need not compute $\phi(\mathrm{x})$, only $\phi\left(\mathrm{x}_{i}\right)^{\top} \phi\left(\mathrm{x}_{j}\right)$. This allows to use feature expansions of infinite size!
(4) This results in a non-parametric model that becomes more flexible as more data is observed!

Gaussian Distribution

$p(\mathbf{y} \mid \boldsymbol{\Sigma}) \propto \exp \left\{-0.5 \mathbf{y}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{y}\right\}$
$\Sigma=\left[\begin{array}{ll}1.0 & 0.7 \\ 0.7 & 1.0\end{array}\right]$.

Gaussian Distribution

$p(\mathbf{y} \mid \boldsymbol{\Sigma}) \propto \exp \left\{-0.5 \mathbf{y}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{y}\right\}$
$\Sigma=\left[\begin{array}{ll}1.0 & 0.7 \\ 0.7 & 1.0\end{array}\right]$.

Gaussian Distribution

$p\left(y_{2} \mid y_{1}, \Sigma\right) \propto \exp \left\{-0.5\left(y_{2}-\mu_{\star}\right) \Sigma_{\star}^{-1}\left(y_{2}-\mu_{\star}\right)\right\} \quad \Sigma=\left[\begin{array}{cc}1.0 & 0.7 \\ 0.7 & 1.0\end{array}\right]$.

Gaussian Distribution

$p\left(y_{2} \mid y_{1}, \Sigma\right) \propto \exp \left\{-0.5\left(y_{2}-\mu_{\star}\right) \Sigma_{\star}^{-1}\left(y_{2}-\mu_{\star}\right)\right\} \quad \Sigma=\left[\begin{array}{cc}1.0 & 0.7 \\ 0.7 & 1.0\end{array}\right]$.

Gaussian Distribution

$p\left(y_{2} \mid y_{1}, \Sigma\right) \propto \exp \left\{-0.5\left(y_{2}-\mu_{\star}\right) \Sigma_{\star}^{-1}\left(y_{2}-\mu_{\star}\right)\right\} \quad \Sigma=\left[\begin{array}{cc}1.0 & 0.7 \\ 0.7 & 1.0\end{array}\right]$.

Two Dimensional Example

$$
\begin{aligned}
& y_{1}
\end{aligned}
$$

$$
\Sigma=\left(\begin{array}{ll}
1.0 & 0.9 \\
0.9 & 1.0
\end{array}\right)
$$

Two Dimensional Example

Two Dimensional Example

Two Dimensional Example

Variable Index

Two Dimensional Example

$$
\left.\begin{array}{c}
\sim \\
\sim \\
\sim \\
\sim \\
\sim
\end{array}\right)
$$

Variable Index

Two Dimensional Example

Variable Index

Two Dimensional Example

$$
\begin{gathered}
\sim \\
\sim \\
\sim
\end{gathered}
$$

Variable Index

Two Dimensional Example

$$
\begin{gathered}
\sim \\
\sim
\end{gathered}
$$

Variable Index

Two Dimensional Example

$$
\begin{gathered}
\sim \\
\sim
\end{gathered}
$$

Variable Index

Five Dimensional Example

Five Dimensional Example

Five Dimensional Example

	1				
1	2	3	4	5	
	Variable Index				

Twenty Dimensional Example

Twenty Dimensional Example

Twenty Dimensional Example

Twenty Dimensional Example

Infinite Dimensional Example

Infinite Dimensional Example

Infinite Dimensional Example

Infinite Dimensional Example

Predictive Distribution

The model becomes more flexible as we observe more data!

Summary so Far...

- A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.

Summary so Far...

- A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.
- The covariance matrix often enforces that function values corresponding to near-by points take similar values.

Summary so Far...

- A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.
- The covariance matrix often enforces that function values corresponding to near-by points take similar values.
- Due to the Gaussian distribution of finite function values, there are many closed form expressions like the predictive distribution.

Summary so Far...

- A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.
- The covariance matrix often enforces that function values corresponding to near-by points take similar values.
- Due to the Gaussian distribution of finite function values, there are many closed form expressions like the predictive distribution.
- GPs are non-parametric models and become more expressive the more data we have.

Summary so Far...

- A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.
- The covariance matrix often enforces that function values corresponding to near-by points take similar values.
- Due to the Gaussian distribution of finite function values, there are many closed form expressions like the predictive distribution.
- GPs are non-parametric models and become more expressive the more data we have.
- The predictive uncertainty is high in regions with no data!

Definition

A Gaussian process is a collection of random variables, any finite number of which have a Gaussian distribution.

Definition

A Gaussian process is a collection of random variables, any finite number of which have a Gaussian distribution.

A Gaussian distribution is fully specified by a mean vector, $\boldsymbol{\mu}$, and covariance matrix $\boldsymbol{\Sigma}$:

$$
\mathbf{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \text { indices } \quad i=1, \ldots, N
$$

Definition

A Gaussian process is a collection of random variables, any finite number of which have a Gaussian distribution.

A Gaussian distribution is fully specified by a mean vector, $\boldsymbol{\mu}$, and covariance matrix $\boldsymbol{\Sigma}$:

$$
\mathbf{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \text { indices } \quad i=1, \ldots, N
$$

A Gaussian process is fully specified by a mean function $m(\mathbf{x})$ and covariance function $C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$:

$$
f(\mathbf{x}) \sim \mathcal{G} \mathcal{P}\left(m(\mathbf{x}), C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right), \quad \text { indices } \quad \mathbf{x} .
$$

GP Prior Mean

The GP prior mean $m(\cdot)$ can be specified by any function!

$$
\mathbb{E}[f(\mathbf{x})]=m(\mathbf{x})
$$

GP Prior Mean

The GP prior mean $m(\cdot)$ can be specified by any function!

$$
\mathbb{E}[f(\mathbf{x})]=m(\mathbf{x})
$$

It determines the global tendency of the latent function before observing the data. Often, simply set to zero.

GP Prior Mean

The GP prior mean $m(\cdot)$ can be specified by any function!

$$
\mathbb{E}[f(\mathbf{x})]=m(\mathbf{x})
$$

It determines the global tendency of the latent function before observing the data. Often, simply set to zero.

$$
m(x)=0
$$

GP Prior Mean

The GP prior mean $m(\cdot)$ can be specified by any function!

$$
\mathbb{E}[f(\mathbf{x})]=m(\mathbf{x})
$$

It determines the global tendency of the latent function before observing the data. Often, simply set to zero.

$$
m(x)=x
$$

GP Prior Mean

The GP prior mean $m(\cdot)$ can be specified by any function!

$$
\mathbb{E}[f(\mathbf{x})]=m(\mathbf{x})
$$

It determines the global tendency of the latent function before observing the data. Often, simply set to zero.

GP Prior Covariances

The covariance function sets prior covariances among function values!

$$
\mathbb{E}\left[\left(f\left(\mathbf{x}_{i}\right)-m\left(\mathbf{x}_{i}\right)\right)\left(f\left(\mathbf{x}_{j}\right)-m\left(\mathbf{x}_{j}\right)\right)\right]=C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

GP Prior Covariances

The covariance function sets prior covariances among function values!

$$
\mathbb{E}\left[\left(f\left(\mathbf{x}_{i}\right)-m\left(\mathbf{x}_{i}\right)\right)\left(f\left(\mathbf{x}_{j}\right)-m\left(\mathbf{x}_{j}\right)\right)\right]=C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) .
$$

It determines the global properties of the latent function before observing the data.

GP Prior Covariances

The covariance function sets prior covariances among function values!

$$
\mathbb{E}\left[\left(f\left(\mathbf{x}_{i}\right)-m\left(\mathbf{x}_{i}\right)\right)\left(f\left(\mathbf{x}_{j}\right)-m\left(\mathbf{x}_{j}\right)\right)\right]=C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

It determines the global properties of the latent function before observing the data.

GP Prior Covariances

The covariance function sets prior covariances among function values!

$$
\mathbb{E}\left[\left(f\left(\mathbf{x}_{i}\right)-m\left(\mathbf{x}_{i}\right)\right)\left(f\left(\mathbf{x}_{j}\right)-m\left(\mathbf{x}_{j}\right)\right)\right]=C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

It determines the global properties of the latent function before observing the data.

GP Prior Covariances

The covariance function sets prior covariances among function values!

$$
\mathbb{E}\left[\left(f\left(\mathbf{x}_{i}\right)-m\left(\mathbf{x}_{i}\right)\right)\left(f\left(\mathbf{x}_{j}\right)-m\left(\mathbf{x}_{j}\right)\right)\right]=C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

It determines the global properties of the latent function before observing the data.

GP Prior Covariances

The covariance function sets prior covariances among function values!

$$
\mathbb{E}\left[\left(f\left(\mathbf{x}_{i}\right)-m\left(\mathbf{x}_{i}\right)\right)\left(f\left(\mathbf{x}_{j}\right)-m\left(\mathbf{x}_{j}\right)\right)\right]=C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

It determines the global properties of the latent function before observing the data.

Marginalization

If the GP mean has infinite length and the GP covariance matrix is $\infty \times \infty$, how do we represent a GP on a computer?

Marginalization

If the GP mean has infinite length and the GP covariance matrix is $\infty \times \infty$, how do we represent a GP on a computer?

We can use the marginalization property of distributions:

$$
\begin{aligned}
p\left(\mathbf{y}_{1}\right) & =\int p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) d \mathbf{y}_{2}, \\
p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) & =\mathcal{N}\left(\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right),
\end{aligned}
$$

Marginalization

If the GP mean has infinite length and the GP covariance matrix is $\infty \times \infty$, how do we represent a GP on a computer?

We can use the marginalization property of distributions:

$$
\begin{aligned}
p\left(\mathbf{y}_{1}\right) & =\int p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) d \mathbf{y}_{2}, \\
p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) & =\mathcal{N}\left(\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right), \\
p\left(\mathbf{y}_{1}\right) & =\mathcal{N}\left(\mathbf{y}_{1} \mid \mathbf{a}, \mathbf{A}\right),
\end{aligned}
$$

Marginalization

If the GP mean has infinite length and the GP covariance matrix is $\infty \times \infty$, how do we represent a GP on a computer?

We can use the marginalization property of distributions:

$$
\begin{aligned}
p\left(\mathbf{y}_{1}\right) & =\int p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) d \mathbf{y}_{2}, \\
p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) & =\mathcal{N}\left(\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right), \\
p\left(\mathbf{y}_{1}\right) & =\mathcal{N}\left(\mathbf{y}_{1} \mid \mathbf{a}, \mathbf{A}\right),
\end{aligned}
$$

We only need to work with finite sets of random variables!

Computing the Predictive Distribution

Computing the Predictive Distribution

$$
p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right)
$$

Computing the Predictive Distribution

$$
\begin{aligned}
& p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right) \\
& p\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\frac{p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)}{p\left(\mathbf{y}_{2}\right)}
\end{aligned}
$$

Computing the Predictive Distribution

$$
\begin{aligned}
& p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right) \\
& p\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\frac{p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)}{p\left(\mathbf{y}_{2}\right)}
\end{aligned}
$$

$$
p\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\mathcal{N}\left(\mathbf{y}_{1} \mid \mathbf{a}+\mathbf{C B}^{-1}\left(\mathbf{y}_{2}-\mathbf{b}\right), \mathbf{A}-\mathbf{C B}^{-1} \mathbf{C}^{\top}\right)
$$

Computing the Predictive Distribution

$$
\begin{aligned}
& p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right), \\
& p\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\frac{p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)}{p\left(\mathbf{y}_{2}\right)} \\
& p\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\mathcal{N}\left(\mathbf{y}_{1} \mid \mathbf{a}+\mathbf{C B}^{-1}\left(\mathbf{y}_{2}-\mathbf{b}\right), \mathbf{A}-\mathbf{C B}^{-1} \mathbf{C}^{\top}\right)
\end{aligned}
$$

- The predictive mean is linear in \mathbf{y}_{2}.

Computing the Predictive Distribution

$$
p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\mathcal{N}\left(\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right)
$$

$$
p\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\frac{p\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)}{p\left(\mathbf{y}_{2}\right)}
$$

$$
p\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\mathcal{N}\left(\mathbf{y}_{1} \mid \mathbf{a}+\mathbf{C B}^{-1}\left(\mathbf{y}_{2}-\mathbf{b}\right), \mathbf{A}-\mathbf{C B}^{-1} \mathbf{C}^{\top}\right)
$$

- The predictive mean is linear in \mathbf{y}_{2}.
- The predictive covariance is more confident than the prior!.

Considering Additive Noise

$$
\begin{aligned}
& y(\mathbf{x})=f(\mathbf{x})+\epsilon \sigma_{y} \\
& p(\epsilon)=\mathcal{N}(\epsilon \mid 0,1)
\end{aligned}
$$

Considering Additive Noise

$$
\begin{aligned}
y(\mathbf{x}) & =f(\mathbf{x})+\epsilon \sigma_{y} \\
p(\epsilon) & =\mathcal{N}(\epsilon \mid 0,1)
\end{aligned}
$$

Since $f(\mathbf{x})$ follows a GP and ϵ is Gaussian $y(\mathbf{x})$ is another GP!

Considering Additive Noise

$$
\begin{aligned}
y(\mathbf{x}) & =f(\mathbf{x})+\epsilon \sigma_{y} \\
p(\epsilon) & =\mathcal{N}(\epsilon \mid 0,1)
\end{aligned}
$$

Since $f(\mathbf{x})$ follows a GP and ϵ is Gaussian $y(\mathbf{x})$ is another GP!

$$
y(\mathbf{x}) \sim \mathcal{G} \mathcal{P}\left(m(\mathbf{x}), C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\mathbb{I}\left(\mathbf{x}=\mathbf{x}^{\prime}\right) \sigma_{y}^{2}\right)
$$

Considering Additive Noise

$$
\begin{aligned}
& y(\mathbf{x})=f(\mathbf{x})+\epsilon \sigma_{y} \\
& p(\epsilon)=N(\epsilon \mid 0,1)
\end{aligned}
$$

Since $f(\mathrm{x})$ follows a GP and ϵ is Gaussian $y(\mathrm{x})$ is another GP!

$$
y(\mathbf{x}) \sim \mathcal{G} \mathcal{P}\left(m(\mathbf{x}), C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\mathbb{I}\left(\mathbf{x}=\mathbf{x}^{\prime}\right) \sigma_{y}^{2}\right)
$$

The predictive distribution is:
$p\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\mathcal{N}\left(\mathbf{y}_{1} \mid \mathbf{a}+\mathbf{C}\left(\mathbf{B}+\mathbf{l} \sigma_{y}^{2}\right)^{-1}\left(\mathbf{y}_{2}-\mathbf{b}\right), \mathbf{A}-\mathbf{C}\left(\mathbf{B}+\mathbf{l} \sigma_{y}^{2}\right)^{-1} \mathbf{C}^{\boldsymbol{\top}}+\mathbf{I} \sigma_{y}^{2}\right)$

An Example of a Covariance Function

Squared Exponential: $\quad C\left(\mathbf{x}, \mathrm{x}^{\prime}\right)=\sigma^{2} \exp \left\{-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{x_{j}-x_{j}^{\prime}}{I_{j}}\right)^{2}\right\}$

An Example of a Covariance Function

Squared Exponential: $\quad C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \exp \left\{-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{x_{j}-x_{j}^{\prime}}{I_{j}}\right)^{2}\right\}$
ertical scale
orizontal scale

An Example of a Covariance Function

Squared Exponential: $\quad C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \exp \left\{-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{x_{j}-x_{j}^{\prime}}{I_{j}}\right)^{2}\right\}$

An Example of a Covariance Function

Squared Exponential: $\quad C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \exp \left\{-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{x_{j}-x_{j}^{\prime}}{I_{j}}\right)^{2}\right\}$

An Example of a Covariance Function

Squared Exponential: $\quad C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \exp \left\{-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{x_{j}-x_{j}^{\prime}}{I_{j}}\right)^{2}\right\}$

An Example of a Covariance Function

Squared Exponential: $\quad C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \exp \left\{-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{x_{j}-x_{j}^{\prime}}{I_{j}}\right)^{2}\right\}$

How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

$$
p(\theta \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \theta) p(\theta)}{p(\mathbf{y})}
$$

How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

$$
p(\theta \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \theta) p(\theta)}{p(\mathbf{y})}
$$

what we know after
seeing the data
(posterior)
:---:
tell us
(likelihood)
:---:
seeing the data

How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

$$
p(\theta \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \theta) p(\theta)}{p(\mathbf{y})}
$$

what we know after
seeing the data
(posterior)
:---:
tell us
(likelihood)
:---:
seeing the data

$p(\mathbf{y} \mid \theta) \equiv$ how well does θ explain the observed data

$$
=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \mathbf{\Sigma}+\mathbf{I} \sigma_{y}^{2}\right)
$$

How do we choose the hyper-parameters?

Intuition: find parameters θ that are compatible with the observed data.

$$
p(\theta \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \theta) p(\theta)}{p(\mathbf{y})}
$$

what we know after
seeing the data
(posterior)
:---:
tell us
(likelihood)
:---:
seeing the data

$p(\mathbf{y} \mid \theta) \equiv$ how well does θ explain the observed data

$$
=\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \boldsymbol{\Sigma}+\mathbf{I} \sigma_{y}^{2}\right)
$$

Often, with a reasonable amount of data, maximizing $p(y \mid \theta)$ w.r.t.
θ gives good results as it favors the right model!

How do we choose the hyper-parameters?

Why maximizing the likelihood is robust?

Why maximizing the likelihood is robust?

Why maximizing the likelihood is robust?

Why maximizing the likelihood is robust?

Why maximizing the likelihood is robust?

Why maximizing the likelihood is robust?

Why maximizing the likelihood is robust?

Covariance Functions: Matérn

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \frac{2^{1-\nu)}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu r}}{l}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{l}\right)
$$

Covariance Functions: Matérn

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2^{21-\nu}} \frac{\sqrt{2 \nu r}}{\Gamma(\nu)}\left(\frac{\nu}{l}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{l}\right)
$$

Covariance Functions: Matérn

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \frac{2^{1-\nu)}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu r}}{I}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{I}\right)
$$

Covariance Functions: Matérn

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \frac{2^{1-\nu)}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu r}}{I}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{I}\right)
$$

Covariance Functions: Neural Network

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \frac{2}{\pi} \sin ^{-1}\left(\frac{\mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}^{\prime}}{\sqrt{\left(1+2 \mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}^{\prime}\right)\left(1+2 \mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}^{\prime}\right)}}\right)
$$

Covariance Functions: Neural Network

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \frac{2}{\pi} \sin ^{-1}\left(\frac{\mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x}^{\prime}}{\sqrt{\left(1+2 \mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x}^{\prime}\right)\left(1+2 \mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}^{\prime}\right)}}\right)
$$

Covariance Functions: Neural Network

Covariance Functions: Neural Network

Covariance Functions: Periodic

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\frac{2 \sin ^{2}\left(\frac{\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{p}\right)}{l^{2}}\right\}
$$

Covariance Functions: Periodic

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\frac{2 \sin ^{2}\left(\frac{\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{p}\right)}{l^{2}}\right\}
$$

Covariance Functions: Periodic

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\frac{2 \sin ^{2}\left(\frac{\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{p}\right)}{l^{2}}\right\}
$$

Covariance Functions: Periodic

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\frac{2 \sin ^{2}\left(\frac{\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{p}\right)}{l^{2}}\right\}
$$

Covariance Functions: Ornstein-Uhlenbeck

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{2 /^{2}}\right\}
$$

Covariance Functions: Ornstein-Uhlenbeck

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{\left.2\right|^{2}}\right\}
$$

Covariance Functions: Ornstein-Uhlenbeck

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{\left.2\right|^{2}}\right\}
$$

Covariance Functions: Ornstein-Uhlenbeck

Covariance Functions: Linear

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=(\mathbf{x}-\mathbf{c})^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}\right) \sigma_{s}^{2}+\sigma_{b}^{2}
$$

Covariance Functions: Linear

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=(\mathbf{x}-\mathbf{c})^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}\right) \sigma_{s}^{2}+\sigma_{b}^{2}
$$

Covariance Functions: Linear

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=(\mathbf{x}-\mathbf{c})^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}\right) \sigma_{s}^{2}+\sigma_{b}^{2}
$$

Covariance Functions: Linear

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=(\mathbf{x}-\mathbf{c})^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}\right) \sigma_{s}^{2}+\sigma_{b}^{2}
$$

Combining Covariance Functions: Multiplication

The product of two covariance functions is a covariance function!

Combining Covariance Functions: Multiplication

The product of two covariance functions is a covariance function!

Can be thought of as an AND operation!

Combining Covariance Functions: Multiplication

The product of two covariance functions is a covariance function!

Can be thought of as an AND operation!

$=$

Combining Covariance Functions: Multiplication

The product of two covariance functions is a covariance function!

Can be thought of as an AND operation!

$=$

The resulting covariance function will have high value only if both base covariances have a high value!

Multiplication: Linear Times Periodic

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left((\mathbf{x}-\mathbf{c})^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}\right) \sigma_{s}^{2}+\sigma_{b}^{2}\right) \exp \left\{-\frac{2 \sin ^{2}\left(\frac{\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{p}\right)}{l^{2}}\right\}
$$

Multiplication: Linear Times Periodic

Multiplication: Linear Times Periodic

Multiplication: Linear Times Periodic

Multiplication: Linear Times Linear

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\left(\mathbf{x}-\mathbf{c}_{1}\right)^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}_{1}\right) \sigma_{s_{1}}^{2}+\sigma_{b_{1}}^{2}\right)\left(\left(\mathbf{x}-\mathbf{c}_{2}\right)^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}_{2}\right) \sigma_{s_{2}}^{2}+\sigma_{b_{2}}^{2}\right)
$$

Multiplication: Linear Times Linear

Multiplication: Linear Times Linear

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\left(\mathbf{x}-\mathbf{c}_{1}\right)^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}_{1}\right) \sigma_{s_{1}}^{2}+\sigma_{b_{1}}^{2}\right)\left(\left(\mathbf{x}-\mathbf{c}_{2}\right)^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}_{2}\right) \sigma_{s_{2}}^{2}+\sigma_{b_{2}}^{2}\right)
$$

Multiplication: Linear Times Linear

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\left(\mathbf{x}-\mathbf{c}_{1}\right)^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}_{1}\right) \sigma_{s_{1}}^{2}+\sigma_{b_{1}}^{2}\right)\left(\left(\mathbf{x}-\mathbf{c}_{2}\right)^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}_{2}\right) \sigma_{s_{2}}^{2}+\sigma_{b_{2}}^{2}\right)
$$

Combining Covariance Functions: Addition

The addition of two covariance functions is a covariance function!

Combining Covariance Functions: Addition

The addition of two covariance functions is a covariance function!

Can be thought of as an OR operation!

Combining Covariance Functions: Addition

The addition of two covariance functions is a covariance function!

Can be thought of as an OR operation!

Combining Covariance Functions: Addition

The addition of two covariance functions is a covariance function!

Can be thought of as an OR operation!

The resulting covariance function will have high value if either of the base covariances have a high value!

Multiplication: Linear Plus Periodic

$$
C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left((\mathbf{x}-\mathbf{c})^{\top}\left(\mathbf{x}^{\prime}-\mathbf{c}\right) \sigma_{s}^{2}+\sigma_{b}^{2}\right)+\exp \left\{-\frac{2 \sin ^{2}\left(\frac{\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{p}\right)}{l^{2}}\right\}
$$

Multiplication: Linear Plus Periodic

Multiplication: Linear Plus Periodic

Multiplication: Linear Plus Periodic

Summary about Covariance Functions

- Covariance functions include strong assumptions about $f(\mathbf{x})$.

Summary about Covariance Functions

- Covariance functions include strong assumptions about $f(\mathbf{x})$.
- Often the sq. exponential or Matérn work fine for regression.

Summary about Covariance Functions

- Covariance functions include strong assumptions about $f(\mathbf{x})$.
- Often the sq. exponential or Matérn work fine for regression.
- Covariance functions parameters allow to interpret the data.

Summary about Covariance Functions

- Covariance functions include strong assumptions about $f(\mathbf{x})$.
- Often the sq. exponential or Matérn work fine for regression.
- Covariance functions parameters allow to interpret the data.
- Covariance functions can be combined (sum + and product \times).

Summary about Covariance Functions

- Covariance functions include strong assumptions about $f(\mathbf{x})$.
- Often the sq. exponential or Matérn work fine for regression.
- Covariance functions parameters allow to interpret the data.
- Covariance functions can be combined (sum + and product \times).
- The likelihood $p(\mathbf{y})$ can discriminate among them (use with care).

Classification Problems and Decision Theory

A classification rule will divide the input space in regions \mathcal{R}_{k}.

Classification Problems and Decision Theory

A classification rule will divide the input space in regions \mathcal{R}_{k}.
What is the optimal rule in terms of the prediction error?

Classification Problems and Decision Theory

A classification rule will divide the input space in regions \mathcal{R}_{k}.
What is the optimal rule in terms of the prediction error?
Consider a binary problem. The probability of a mistake is:

$$
\begin{aligned}
p(\text { mistake }) & =p\left(\mathbf{x} \in \mathcal{R}_{1}, \mathcal{C}_{2}\right)+p\left(\mathbf{x} \in \mathcal{R}_{2}, \mathcal{C}_{1}\right) \\
& =\int_{\mathcal{R}_{1}} p\left(\mathbf{x}, \mathcal{C}_{2}\right) d \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathbf{x}, \mathcal{C}_{1}\right) d \mathbf{x} .
\end{aligned}
$$

Classification Problems and Decision Theory

A classification rule will divide the input space in regions \mathcal{R}_{k}.
What is the optimal rule in terms of the prediction error?
Consider a binary problem. The probability of a mistake is:

$$
\begin{aligned}
p(\text { mistake }) & =p\left(\mathbf{x} \in \mathcal{R}_{1}, \mathcal{C}_{2}\right)+p\left(\mathbf{x} \in \mathcal{R}_{2}, \mathcal{C}_{1}\right) \\
& =\int_{\mathcal{R}_{1}} p\left(\mathbf{x}, \mathcal{C}_{2}\right) d \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathbf{x}, \mathcal{C}_{1}\right) d \mathbf{x} .
\end{aligned}
$$

Clearly the assign rule that minimizes p (mistake) is:

$$
\pi(\mathbf{x})= \begin{cases}\mathcal{C}_{1} & \text { if } \quad p\left(\mathbf{x}, \mathcal{C}_{1}\right) \geq p\left(\mathbf{x}, \mathcal{C}_{2}\right) \\ \mathcal{C}_{2} & \text { if } \quad p\left(\mathbf{x}, \mathcal{C}_{2}\right)>p\left(\mathbf{x}, \mathcal{C}_{1}\right)\end{cases}
$$

Classification Problems and Decision Theory

A classification rule will divide the input space in regions \mathcal{R}_{k}.
What is the optimal rule in terms of the prediction error?
Consider a binary problem. The probability of a mistake is:

$$
\begin{aligned}
p(\text { mistake }) & =p\left(\mathbf{x} \in \mathcal{R}_{1}, \mathcal{C}_{2}\right)+p\left(\mathbf{x} \in \mathcal{R}_{2}, \mathcal{C}_{1}\right) \\
& =\int_{\mathcal{R}_{1}} p\left(\mathbf{x}, \mathcal{C}_{2}\right) d \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathbf{x}, \mathcal{C}_{1}\right) d \mathbf{x} .
\end{aligned}
$$

Clearly the assign rule that minimizes p (mistake) is:

$$
\pi(\mathbf{x})=\left\{\begin{array}{lll}
\mathcal{C}_{1} & \text { if } & p\left(\mathbf{x}, \mathcal{C}_{1}\right) \geq p\left(\mathbf{x}, \mathcal{C}_{2}\right) \\
\mathcal{C}_{2} & \text { if } & p\left(\mathbf{x}, \mathcal{C}_{2}\right)>p\left(\mathbf{x}, \mathcal{C}_{1}\right)
\end{array}\right.
$$

i.e., we should assign the class for which $p\left(\mathcal{C}_{k} \mid \mathbf{x}\right) \propto p\left(\mathbf{x}, \mathcal{C}_{1}\right)$ is larger.

Classification Problems and Decision Theory

Binary Classification Problems

The goal is to estimate class $\{1,-1\}$ posterior probabilities, e.g., $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)$ from the observed data.

Binary Classification Problems

The goal is to estimate class $\{1,-1\}$ posterior probabilities, e.g., $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)$ from the observed data.

Gaussian processes are priors for functions that take values in \mathbb{R}.

Binary Classification Problems

The goal is to estimate class $\{1,-1\}$ posterior probabilities, e.g., $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)$ from the observed data.

Gaussian processes are priors for functions that take values in \mathbb{R}.

Function squashing to the interval $[0,1]$ via a link function:

Binary Classification Problems

The goal is to estimate class $\{1,-1\}$ posterior probabilities, e.g., $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)$ from the observed data.

Gaussian processes are priors for functions that take values in \mathbb{R}.

Function squashing to the interval $[0,1]$ via a link function:

- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=I\left(f\left(\mathbf{x}_{i}\right)>0\right)$.

Binary Classification Problems

The goal is to estimate class $\{1,-1\}$ posterior probabilities, e.g., $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)$ from the observed data.

Gaussian processes are priors for functions that take values in \mathbb{R}.

Function squashing to the interval $[0,1]$ via a link function:

- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=I\left(f\left(\mathbf{x}_{i}\right)>0\right)$.
- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\operatorname{sigmoid}\left(f\left(\mathbf{x}_{i}\right)\right) \quad \operatorname{sigmoid}(x)=(1+\exp (-x))^{-1}$.

Binary Classification Problems

The goal is to estimate class $\{1,-1\}$ posterior probabilities, e.g., $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)$ from the observed data.

Gaussian processes are priors for functions that take values in \mathbb{R}.

Function squashing to the interval $[0,1]$ via a link function:

- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=I\left(f\left(\mathbf{x}_{i}\right)>0\right)$.
- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\operatorname{sigmoid}\left(f\left(\mathbf{x}_{i}\right)\right) \quad \operatorname{sigmoid}(x)=(1+\exp (-x))^{-1}$.
- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\operatorname{probit}\left(f\left(\mathbf{x}_{i}\right)\right)$ (c.d.f. of a standard Gaussian).

Binary Classification Problems

The goal is to estimate class $\{1,-1\}$ posterior probabilities, e.g., $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)$ from the observed data.

Gaussian processes are priors for functions that take values in \mathbb{R}.

Function squashing to the interval $[0,1]$ via a link function:

- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=I\left(f\left(\mathbf{x}_{i}\right)>0\right)$.
- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\operatorname{sigmoid}\left(f\left(\mathbf{x}_{i}\right)\right) \quad \operatorname{sigmoid}(x)=(1+\exp (-x))^{-1}$.
- $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\operatorname{probit}\left(f\left(\mathbf{x}_{i}\right)\right)$ (c.d.f. of a standard Gaussian).
with $f(\cdot)$ a latent function modeled by a GP.

Binary Classification Problems

Binary Classification Problems

The sigmoid and probit consider logistic and standard Gaussian noise! $p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=I\left(f\left(\mathbf{x}_{i}\right)+\epsilon_{i}>0\right)$

Prior Samples Squashed via the Sigmoid Function

Noise in The Labels

The previous link functions only allow for mislabeled instances
near the decision boundary!

Noise in The Labels

The previous link functions only allow for mislabeled instances near the decision boundary!

Outliers may affect the inference process about $f(\cdot)$:

Noise in The Labels

The previous link functions only allow for mislabeled instances near the decision boundary!

Outliers may affect the inference process about $f(\cdot)$:

Robust likelihood with probability ϵ of label flip:

$$
p\left(y \mid f\left(\mathbf{x}_{i}\right), \epsilon\right)=(1-\epsilon) \cdot \sigma\left(f\left(\mathbf{x}_{i}\right)\right)+\epsilon \cdot\left(1-\sigma\left(f\left(\mathbf{x}_{i}\right)\right)\right)
$$

Bayesian Inference for GP Classification

Ideally, we would like to make inference about the latent variables,
i.e., process values at the observed data.

Bayesian Inference for GP Classification

Ideally, we would like to make inference about the latent variables,
i.e., process values at the observed data.

Let $\mathbf{f}=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right)^{\top}$ and $y_{i} \in\{-1,1\}$:

$$
p(\mathbf{f} \mid \mathbf{y}, \mathbf{X})=\frac{p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{X})}{p(\mathbf{y} \mid \mathbf{X})}
$$

Bayesian Inference for GP Classification

Ideally, we would like to make inference about the latent variables, i.e., process values at the observed data.

Let $\mathbf{f}=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right)^{\top}$ and $y_{i} \in\{-1,1\}$:

$$
p(\mathbf{f} \mid \mathbf{y}, \mathbf{X})=\frac{p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{X})}{p(\mathbf{y} \mid \mathbf{X})}
$$

with

$$
p(\mathbf{y} \mid \mathbf{f})=\prod_{i=1}^{N} \sigma\left(y_{i} f\left(\mathbf{x}_{i}\right)\right), \quad \quad p(\mathbf{f} \mid \mathbf{X})=\mathcal{N}(\mathbf{f} \mid \mathbf{0}, \boldsymbol{\Sigma})
$$

Bayesian Inference for GP Classification

Ideally, we would like to make inference about the latent variables, i.e., process values at the observed data.

Let $\mathbf{f}=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right)^{\top}$ and $y_{i} \in\{-1,1\}$:

$$
p(\mathbf{f} \mid \mathbf{y}, \mathbf{X})=\frac{p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{X})}{p(\mathbf{y} \mid \mathbf{X})}
$$

with

$$
p(\mathbf{y} \mid \mathbf{f})=\prod_{i=1}^{N} \sigma\left(y_{i} f\left(\mathbf{x}_{i}\right)\right), \quad \quad p(\mathbf{f} \mid \mathbf{X})=\mathcal{N}(\mathbf{f} \mid \mathbf{0}, \boldsymbol{\Sigma})
$$

Unfortunately, the posterior is intractable since the likelihood is not Gaussian and must be approximated!

The Laplace Approximation: Univariate Case

The logarithm of a Gaussian is a quadratic function!

The Laplace Approximation: Univariate Case

The logarithm of a Gaussian is a quadratic function!

$$
q(z)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(z-\mu)^{2}\right\}
$$

The Laplace Approximation: Univariate Case

The logarithm of a Gaussian is a quadratic function!

$$
q(z)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(z-\mu)^{2}\right\}
$$

Let $f(z)$ be a target unormalized distribution. A truncated Taylor expansion of $\log f(z)$ center at a mode is:

$$
\log f(z) \approx \log f\left(z_{0}\right)-\frac{1}{2} A\left(z-z_{0}\right)^{2}, \quad A=-\left.\frac{d^{2}}{d z^{2}} \log f(z)\right|_{z=z_{0}}
$$

The Laplace Approximation: Univariate Case

The logarithm of a Gaussian is a quadratic function!

$$
q(z)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(z-\mu)^{2}\right\}
$$

Let $f(z)$ be a target unormalized distribution. A truncated Taylor expansion of $\log f(z)$ center at a mode is:

$$
\log f(z) \approx \log f\left(z_{0}\right)-\frac{1}{2} A\left(z-z_{0}\right)^{2}, \quad A=-\left.\frac{d^{2}}{d z^{2}} \log f(z)\right|_{z=z_{0}}
$$

Taking the exponential we obtain:

$$
f(z) \approx f\left(z_{0}\right) \exp \left\{-\frac{A}{2}\left(z-z_{0}\right)^{2}\right\}=\tilde{q} \quad q(z)=\mathcal{N}\left(z \mid z_{0}, A^{-1}\right)
$$

The Laplace Approximation: Univariate Case

The logarithm of a Gaussian is a quadratic function!

$$
q(z)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(z-\mu)^{2}\right\}
$$

Let $f(z)$ be a target unormalized distribution. A truncated Taylor expansion of $\log f(z)$ center at a mode is:

$$
\log f(z) \approx \log f\left(z_{0}\right)-\frac{1}{2} A\left(z-z_{0}\right)^{2}, \quad A=-\left.\frac{d^{2}}{d z^{2}} \log f(z)\right|_{z=z_{0}}
$$

Taking the exponential we obtain:

$$
f(z) \approx f\left(z_{0}\right) \exp \left\{-\frac{A}{2}\left(z-z_{0}\right)^{2}\right\}=\tilde{q} \quad q(z)=\mathcal{N}\left(z \mid z_{0}, A^{-1}\right)
$$

The approximate normalization constant Z_{q} is $f\left(z_{0}\right) \sqrt{\frac{2 \pi}{A}}$.

Laplace Approximation: Illustration

Laplace Approximation: Illustration

$\log f(z)$

Laplace Approximation: Illustration

$\log f(z)$
$\log f(z)$ and $\log \tilde{q}(z)$

Laplace Approximation: Illustration

$\log f(z)$

$\log f(z)$ and $\log \tilde{q}(z)$
$f(z)$ and $q(z)$

The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional distribution $p(\mathbf{z})=f(\mathbf{z}) / Z$.

The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional distribution $p(\mathbf{z})=f(\mathbf{z}) / Z$.
$\log f\left(\mathbf{z}_{0}\right) \approx \log f\left(\mathbf{z}_{0}\right)-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right), \quad \mathbf{A}=-\left.\nabla^{\top} \nabla \log f(\mathbf{z})\right|_{\mathbf{z}=\mathbf{z}_{0}}$

The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional distribution $p(\mathbf{z})=f(\mathbf{z}) / Z$.
$\log f\left(\mathbf{z}_{0}\right) \approx \log f\left(\mathbf{z}_{0}\right)-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right), \quad \mathbf{A}=-\left.\nabla^{\top} \nabla \log f(\mathbf{z})\right|_{\mathbf{z}=\mathbf{z}_{0}}$
Taking the exponential we have:

The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional distribution $p(\mathbf{z})=f(\mathbf{z}) / Z$.
$\log f\left(\mathbf{z}_{0}\right) \approx \log f\left(\mathbf{z}_{0}\right)-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right), \quad \mathbf{A}=-\left.\nabla^{\top} \nabla \log f(\mathbf{z})\right|_{\mathbf{z}=\mathbf{z}_{0}}$
Taking the exponential we have:

$$
\left.f(\mathbf{z}) \approx f\left(\mathbf{z}_{0}\right) \exp \left\{-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right)\right)\right\}=\tilde{q}, \quad q(\mathbf{z})=\mathcal{N}\left(\mathbf{z} \mid \mathbf{z}_{0}, \mathbf{A}^{-1}\right)
$$

The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional distribution $p(\mathbf{z})=f(\mathbf{z}) / Z$.
$\log f\left(\mathbf{z}_{0}\right) \approx \log f\left(\mathbf{z}_{0}\right)-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right), \quad \mathbf{A}=-\left.\nabla^{\top} \nabla \log f(\mathbf{z})\right|_{\mathbf{z}=\mathbf{z}_{0}}$
Taking the exponential we have:
$\left.f(\mathbf{z}) \approx f\left(\mathbf{z}_{0}\right) \exp \left\{-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right)\right)\right\}=\tilde{q}, \quad q(\mathbf{z})=\mathcal{N}\left(\mathbf{z} \mid \mathbf{z}_{0}, \mathbf{A}^{-1}\right)$
The approximate normalization constant Z_{q} is $f\left(z_{0}\right) \sqrt{\frac{(2 \pi)^{M}}{|\mathbf{A}|}}$. The mean of the Gaussian approximation q is \mathbf{z}_{0} and the covariance matrix is \mathbf{A}^{-1}.

The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional distribution $p(\mathbf{z})=f(\mathbf{z}) / Z$.
$\log f\left(\mathbf{z}_{0}\right) \approx \log f\left(\mathbf{z}_{0}\right)-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right), \quad \mathbf{A}=-\left.\nabla^{\top} \nabla \log f(\mathbf{z})\right|_{\mathbf{z}=\mathbf{z}_{0}}$
Taking the exponential we have:

$$
\left.f(\mathbf{z}) \approx f\left(\mathbf{z}_{0}\right) \exp \left\{-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{z}-\mathbf{z}_{0}\right)\right)\right\}=\tilde{q}, \quad q(\mathbf{z})=\mathcal{N}\left(\mathbf{z} \mid \mathbf{z}_{0}, \mathbf{A}^{-1}\right)
$$

The approximate normalization constant Z_{q} is $f\left(z_{0}\right) \sqrt{\frac{(2 \pi)^{M}}{|\mathbf{A}|}}$. The mean of the Gaussian approximation q is \mathbf{z}_{0} and the covariance matrix is \mathbf{A}^{-1}.

The posterior is unimodal and hence \mathbf{A} is positive semidefinite.

Approximate Predictive Distribution

Given the Gaussian approximation $q(f)$, we can use the conditional Gaussian to compute an approximate predictive distribution.

Approximate Predictive Distribution

Given the Gaussian approximation $q(f)$, we can use the conditional Gaussian to compute an approximate predictive distribution.

$$
\begin{aligned}
p\left(y_{\star} \mid \mathbf{y}, \mathbf{X}\right) & \approx \int p\left(y_{\star} \mid f\left(\mathbf{x}_{\star}\right)\right) p\left(f\left(\mathbf{x}_{\star}\right) \mid \mathbf{f}\right) q(\mathbf{f}) d \mathbf{f} d f\left(\mathbf{x}_{\star}\right), \\
& =\int p\left(y_{\star} \mid f\left(\mathbf{x}_{\star}\right)\right) q\left(f\left(\mathbf{x}_{\star}\right)\right) d f\left(\mathbf{x}_{\star}\right),
\end{aligned}
$$

Approximate Predictive Distribution

Given the Gaussian approximation $q(f)$, we can use the conditional Gaussian to compute an approximate predictive distribution.

$$
\begin{aligned}
p\left(y_{\star} \mid \mathbf{y}, \mathbf{X}\right) & \approx \int p\left(y_{\star} \mid f\left(\mathbf{x}_{\star}\right)\right) p\left(f\left(\mathbf{x}_{\star}\right) \mid \mathbf{f}\right) q(\mathbf{f}) d \mathbf{f} d f\left(\mathbf{x}_{\star}\right), \\
& =\int p\left(y_{\star} \mid f\left(\mathbf{x}_{\star}\right)\right) q\left(f\left(\mathbf{x}_{\star}\right)\right) d f\left(\mathbf{x}_{\star}\right),
\end{aligned}
$$

with this last integral evaluated via quadrature and

$$
\begin{gathered}
q\left(f\left(\mathbf{x}_{\star}\right)\right)=\mathcal{N}\left(f\left(\mathbf{x}_{\star}\right) \mid \mathbf{c}_{\star}^{\top} \mathbf{C}^{-1} \mathbf{f}_{0}, C\left(\mathbf{x}_{\star}, \mathbf{x}_{\star}\right)-\mathbf{c}_{\star}^{\top} \mathbf{C}^{-1} \mathbf{c}_{\star}+\mathbf{c}_{\star}^{\top} \mathbf{C}^{-1} \mathbf{A}^{-1} \mathbf{C}^{-1} \mathbf{c}_{\star}\right) \\
p\left(y_{\star} \mid f\left(\mathbf{x}_{\star}\right)\right)=\sigma\left(y_{\star} f\left(\mathbf{x}_{\star}\right)\right)
\end{gathered}
$$

Approximate Predictive Distribution

Decision boundary and prediction uncertainty:

Approximate Predictive Distribution

Decision boundary and prediction uncertainty:

Prediction uncertainty is higher in regions with no observed data.
(Bishop, 2006)

Multi-class Classification

There are latent process values at N training points for all C classes:

$$
\mathbf{f}=\left(f_{1}\left(\mathbf{x}_{1}\right), \ldots, f_{1}\left(\mathbf{x}_{N}\right), f_{2}\left(\mathbf{x}_{1}\right), \ldots, f_{2}\left(\mathbf{x}_{N}\right), \ldots, f_{C}\left(\mathbf{x}_{1}\right), \ldots, f_{C}\left(\mathbf{x}_{1}\right)\right)^{\top}
$$

Multi-class Classification

There are latent process values at N training points for all C classes:

$$
\mathbf{f}=\left(f_{1}\left(\mathbf{x}_{1}\right), \ldots, f_{1}\left(\mathbf{x}_{N}\right), f_{2}\left(\mathbf{x}_{1}\right), \ldots, f_{2}\left(\mathbf{x}_{N}\right), \ldots, f_{C}\left(\mathbf{x}_{1}\right), \ldots, f_{C}\left(\mathbf{x}_{1}\right)\right)^{\top}
$$

The prior for \mathbf{f} is $\mathcal{N}(\mathbf{f} \mid 0, \mathbf{C})$ with \mathbf{C} a block diagonal.

Multi-class Classification

There are latent process values at N training points for all C classes:

$$
\mathbf{f}=\left(f_{1}\left(\mathbf{x}_{1}\right), \ldots, f_{1}\left(\mathbf{x}_{N}\right), f_{2}\left(\mathbf{x}_{1}\right), \ldots, f_{2}\left(\mathbf{x}_{N}\right), \ldots, f_{C}\left(\mathbf{x}_{1}\right), \ldots, f_{C}\left(\mathbf{x}_{1}\right)\right)^{\top}
$$

The prior for \mathbf{f} is $\mathcal{N}(\mathbf{f} \mid 0, \mathbf{C})$ with \mathbf{C} a block diagonal.

The likelihood uses a softmax function to obtain class label probabilities:

$$
p\left(y_{i}=c \mid \mathbf{x}_{i}\right)=\frac{\exp \left(f_{c}\left(\mathbf{x}_{i}\right)\right)}{\sum_{c^{\prime}=1}^{C} \exp \left(f_{c^{\prime}}\left(\mathbf{x}_{i}\right)\right)},
$$

Multi-class Classification

There are latent process values at N training points for all C classes:

$$
\mathbf{f}=\left(f_{1}\left(\mathbf{x}_{1}\right), \ldots, f_{1}\left(\mathbf{x}_{N}\right), f_{2}\left(\mathbf{x}_{1}\right), \ldots, f_{2}\left(\mathbf{x}_{N}\right), \ldots, f_{C}\left(\mathbf{x}_{1}\right), \ldots, f_{C}\left(\mathbf{x}_{1}\right)\right)^{\top}
$$

The prior for \mathbf{f} is $\mathcal{N}(\mathbf{f} \mid 0, \mathbf{C})$ with \mathbf{C} a block diagonal.

The likelihood uses a softmax function to obtain class label probabilities:

$$
p\left(y_{i}=c \mid \mathbf{x}_{i}\right)=\frac{\exp \left(f_{c}\left(\mathbf{x}_{i}\right)\right)}{\sum_{c^{\prime}=1}^{C} \exp \left(f_{c^{\prime}}\left(\mathbf{x}_{i}\right)\right)}
$$

The posterior is approximated using the Laplace approximation with linear cost in C!

Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

- GPy: Gaussian Processes in Python. Easy-to-use and extend. Supports multi-output GPs, different noise models and different approximate inference methods.

Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

- GPy: Gaussian Processes in Python. Easy-to-use and extend. Supports multi-output GPs, different noise models and different approximate inference methods.
- GPML: Gaussian Processes in Matlab. No longer maintained. Implements the models and methods from the book "Gaussian Process for Machine learning".

Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

- GPy: Gaussian Processes in Python. Easy-to-use and extend. Supports multi-output GPs, different noise models and different approximate inference methods.
- GPML: Gaussian Processes in Matlab. No longer maintained. Implements the models and methods from the book "Gaussian Process for Machine learning".
- GPflow: Gaussian processes in python using Tensorflow. Supports GPU acceleration. Focuses on variational inference and MCMC for approximate inference.

Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

- GPy: Gaussian Processes in Python. Easy-to-use and extend. Supports multi-output GPs, different noise models and different approximate inference methods.
- GPML: Gaussian Processes in Matlab. No longer maintained. Implements the models and methods from the book "Gaussian Process for Machine learning".
- GPflow: Gaussian processes in python using Tensorflow. Supports GPU acceleration. Focuses on variational inference and MCMC for approximate inference.
- GPyTorch: Gaussian processes in python using PyTorch. Supports GPU acceleration. Also supports deep GPs.

Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

- GPy: Gaussian Processes in Python. Easy-to-use and extend. Supports multi-output GPs, different noise models and different approximate inference methods.
- GPML: Gaussian Processes in Matlab. No longer maintained. Implements the models and methods from the book "Gaussian Process for Machine learning".
- GPflow: Gaussian processes in python using Tensorflow. Supports GPU acceleration. Focuses on variational inference and MCMC for approximate inference.
- GPyTorch: Gaussian processes in python using PyTorch. Supports GPU acceleration. Also supports deep GPs.

Deep GPs: uses doubly stochastic variational inference and GPflow.

Summary

(1) A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.

Summary

(1) A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.
(2) GPs are non-parametric models and become more expressive the more data we have. They are also interpretable!

Summary

(1) A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.
(2) GPs are non-parametric models and become more expressive the more data we have. They are also interpretable!
(3) GPs provide predictive uncertainty that is high in regions with no data! This allows to know what is not known.

Summary

(1) A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.
(2) GPs are non-parametric models and become more expressive the more data we have. They are also interpretable!
(3) GPs provide predictive uncertainty that is high in regions with no data! This allows to know what is not known.
(4) The marginal likelihood enables finding good hyper-parameters, as it penalizes too simple and too complex models.

Summary

(1) A GP is like a Gaussian distribution with an infinitely long mean vector and an $\infty \times \infty$ covariance matrix.
(2) GPs are non-parametric models and become more expressive the more data we have. They are also interpretable!
(3) GPs provide predictive uncertainty that is high in regions with no data! This allows to know what is not known.
4. The marginal likelihood enables finding good hyper-parameters, as it penalizes too simple and too complex models.
(5) GPs can address classification problems too, but approximate inference is needed.

References

- Williams, C. K., Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.
- Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics), Springer, 2006.
- Murphy, K. Machine Learning: a Probabilistic Perspective, The MIT Press, 2012.
- MacKay D. J. C. Information Theory, Inference \& Learning Algorithms, 2003, Cambridge University Press.

