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We have to specify a model that may depend on parameters w.
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The Standard Linear Model

We may consider a standard linear regression model:

f(x):wa, y =f(x) +e, 6~N(0,02),

The task of interest is to infer w from data D = {(x;,y;)}" ;.

We follow a Bayesian approach to machine learning:

likelihood X prior ~ p(ylw, X)p(w)

P X) = 1)

osterior = . —
P marginal likelihood ’

Prior: Initial belief on the values of w before observing the data.
Likelihood: How well each value of w explains D.
Posterior: Updated belief on the values of w after observing D.

Marginal Likelihood: Probability of observing y under the model.
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The Standard Linear Model

Prior: We consider an isometric Gaussian prior N'(w|0,1).
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Multivariate Gaussian Distribution
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The Standard Linear Model

Prior: We consider an isometric Gaussian prior A/(w/|0,1).
Likelihood: Defined by the model as N (y|Xw, o?l).

Posterior: Given by N(w|oc2A~1XTy, A=1) with A = XTXo 2 +1I.
Marginal Likelihood: Given by A/(y|0, XX + 152).
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The Standard Linear Model

The predictive distribution is obtained by marginalizing w:

pyulx.) = /p(y*lx*, w)p(w|X,y)dw = N (y,|o>x] A" XTy, x] A" x, + o°)
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The Standard Linear Model
The predictive distribution is obtained by marginalizing w:

pyulx.) = /p(y*lx*, w)p(w|X,y)dw = N (y,|o>x] A" XTy, x] A" x, + o°)

Predictive dist.

output, y

(Rasmussen & Williams, 2006) 7/65



Non-Linear Regression
Non-linear problems can be addressed by performing feature expansions:
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Non-Linear Regression

Non-linear problems can be addressed by performing feature expansions:

$(x) = (Lx,x%, %3, ..)T

Simple linear model Polynomial model

Y = wy + wix

Y = wo +w1:v+w2x2

X X

Any other non-linear feature expansion is possible!
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Non-Linear Regression

Consider working with ¢(x) instead of x. The model is:

y="f(x)+e=w'¢(x)+e e ~N(0,0%).
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Non-Linear Regression

Consider working with ¢(x) instead of x. The model is:
y="f(x)+e=w'¢(x)+e e~ N(0,0°).

The posterior and predictive distribution are:

p(wX,y) = N(wloc>A~'@Ty A7),
P(yalX, %) = N (vulo 2 (x) TATI®Ty), (x.) TA  (x,) + 02),

where & = $(X) and A = ®TPs2 + 1.

All computations are tractable and result in Gaussian distributions!
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Non-Linear Regression
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(Bishop,2006)
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Non-Linear Regression

0 " 1

The predictive distribution tells us what our model does not know!

(Bishop,2006)
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Function Space View

An equivalent way of reaching identical results is possible by
considering inference in function space.
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An equivalent way of reaching identical results is possible by
considering inference in function space.

Prior Likelihood Posterior
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Gaussian Processes

The previous random functions are samples from a Gaussian process.
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Gaussian Processes

The previous random functions are samples from a Gaussian process.

Distribution over functions f(-) so that for any finite {x;}",

(f(x1),...,f(xn))T follows an N-dimensional Gaussian distribution.

f(x)

Straight-forward for the prior and posterior. Since the they are Gaussian
for w, y is the sum of Gaussian random variables and is also Gaussian!
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Advantages of the Function Space Inference

® We can compute the predictive distribution without explicitly
computing the posterior for w!

13/65



Advantages of the Function Space Inference

® We can compute the predictive distribution without explicitly
computing the posterior for w!

® Due to Gaussian form of the process values, there are many
closed-form solutions for questions about the data.

13/65



Advantages of the Function Space Inference

® We can compute the predictive distribution without explicitly
computing the posterior for w!

® Due to Gaussian form of the process values, there are many
closed-form solutions for questions about the data.

©® We need not compute ¢(x), only ¢(x;)T¢(x;). This allows to
use feature expansions of infinite size!

13/65



Advantages of the Function Space Inference

® We can compute the predictive distribution without explicitly
computing the posterior for w!

® Due to Gaussian form of the process values, there are many
closed-form solutions for questions about the data.

©® We need not compute ¢(x), only ¢(x;)T¢(x;). This allows to
use feature expansions of infinite size!

O This results in a non-parametric model that becomes more
flexible as more data is observed!
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Gaussian Distribution
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Two Dimensional Example

) [1.0 o.9)
-~ 10.91.0

15/65



Two Dimensional Example

_ [1.00.9) ¥ -
- 1091.0) _ | '
l 1
1 2

Variable Index

15/65



Two Dimensional Example

-2
|

i [1.00.9)
- 1091.0) _ | ' Vv

Variable Index

15/65



Two Dimensional Example

[ @ 7
N o
— r—
™

2

-2
|

) [1.0 o.9}
-~ 10.91.0

-3

Variable Index

15/65



Two Dimensional Example

_ [1.00.9[
- H.91.0H

™

N

Variable Index

16 /65



Two Dimensional Example

_ [1.00.9[
- H.91.0H

™

2

Variable Index

17/65



Two Dimensional Example

-3 0 2
Y1
. [1.00.90

~ 1.9 1.05

™

N

Variable Index

17/65



Two Dimensional Example

-3 0 2
Y1
. [1.00.90

~ 1.9 1.05

™

N

Variable Index

17/65



Two Dimensional Example

-3 0 2
Y1
_ [1.00.90

~ 1.9 1.05

™

N

Variable Index

18/65



Five Dimensional Example
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Predictive Distribution

— (o] © 7
&
1l o
=
o— o -
™
|
-3 0 2 - - L= .- =
/
f(x=1.0) P
o — 4
)
T S T
o
> =
© _]

FTTTTTTTTTTTTTTTTTT
1 83 5 7 9 11 13 15 17 19

X

25 /65



Predictive Distribution

—~ ®
S
$roe Predictive
= N Mean
?
-3 0 2 - —
f(x=1.0)
o F
[/
T S T
(\Il —
> =
© _|

FTTTTTTTTTTTTTTTTTT
1 83 5 7 9 11 13 15 17 19

25 /65



Predictive Distribution

—~ ®

&

$roe Predictive

=4 o Mean

?
-3 0 2 - -
f(x=1.0)

o
‘T —
o
! Predictive

2= Standard Dev.
© _]

FTTTTTTTTTTTTTTTTTT
1 83 5 7 9 11 13 15 17 19

25 /65



Predictive Distribution
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Predictive Distribution
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Predictive Distribution
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Predictive Distribution

—— Ground Truth

The model becomes more flexible as we observe more data!
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Summary so Far...

® A GP is like a Gaussian distribution with an infinitely long mean
vector and an co X oo covariance matrix.
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Summary so Far...

A GP is like a Gaussian distribution with an infinitely long mean
vector and an co X oo covariance matrix.

® The covariance matrix often enforces that function values
corresponding to near-by points take similar values.

® Due to the Gaussian distribution of finite function values, there are
many closed form expressions like the predictive distribution.

® GPs are non-parametric models and become more expressive the
more data we have.

® The predictive uncertainty is high in regions with no data!
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A Gaussian process is a collection of random variables, any finite
number of which have a Gaussian distribution.
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Definition

A Gaussian process is a collection of random variables, any finite
number of which have a Gaussian distribution.

A Gaussian distribution is fully specified by a mean vector, p, and
covariance matrix 3:

f=(f,....fn)T ~N(p,X) indices i=1,...,N.
A Gaussian process is fully specified by a mean function m(x) and

covariance function C(x,x’):

f(x) ~ GP(m(x), C(x,x’)), indices x.
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GP Prior Mean

The GP prior mean m(-) can be specified by any function!

E[f(x)] = m(x).
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GP Prior Mean

The GP prior mean m(-) can be specified by any function!
E[f (x)] = m(x).

It determines the global tendency of the latent function before
observing the data. Often, simply set to zero.

m(x)=2sin(2x) ' /

2
|

[EE—
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GP Prior Covariances

The covariance function sets prior covariances among function values!

E{(f(xi) = m(xi))(f(x;) = m(x;))] = C(xi,x})-
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GP Prior Covariances

The covariance function sets prior covariances among function values!
E[(f(xi) = m(x:))(f(x;) — m(x;))] = C(xi, %;)-

It determines the global properties of the latent function before
observing the data.

OOOOoddd
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Marginalization

If the GP mean has infinite length and the GP covariance matrix
is co X oo, how do we represent a GP on a computer?
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Marginalization

If the GP mean has infinite length and the GP covariance matrix

is oo X oo, how do we represent a GP on a computer?

We can use the marginalization property of distributions:

p(y1) = /p(yl,yz)dyz,

=[] (1] )

p(y1) = N(yila,A),

We only need to work with finite sets of random variables!
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Computing the Predictive Distribution
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Computing the Predictive Distribution
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Computing the Predictive Distribution

1C. ™,
M EE(AIRIEN

oy p(y1lys) = =222
2 i»/ (valy2) p(y2)

p(yily2) =N <Y1‘a +CB '(y2—b),A— CB—lcT)

® The predictive mean is linear in yo.
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Computing the Predictive Distribution

I\ g -z 5.

| yzi’/ p(yily2) = Tplya)

p(yily2) =N (ﬁ‘a +CB '(y2—b),A— CB—lcT)

® The predictive mean is linear in yo.

® The predictive covariance is more confident than the prior!.
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Considering Additive Noise
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Considering Additive Noise

Oy

. ()

| y(x) = f(x) + €oy
. p(e) = N(€]0,1).

X

Since f(x) follows a GP and ¢ is Gaussian y(x) is another GP!

y(x) ~ GP(m(x), C(x,x") + I(x = x’)aﬁ)

The predictive distribution is:

p(yly2) =N (v1[a+ C(B +102) X(y2 ~ b),A — C(B +157)'CT + 152
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An Example of a Covariance Function

lj

2
d ’
1 Xj — X;
al- AN 2 J J
Squared Exponential: C(x,x')= o exp{2 _El (l) }
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An Example of a Covariance Function

5 (5]

N =

Squared Exponential: C(x,x') = 0% exp {—

® Vertical scale

® Horizontal scale
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An Example of a Covariance Function

U

2
d ’
1 Xj — X;
al- AN 2 J J
Squared Exponential: C(x,x')= o exp{2 _El (1) }
=

0?=1.0 I=4.0
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How do we choose the hyper-parameters?

Intuition: find parameters 6 that are compatible with the observed data.

p(y|®)p(0)

p(fly) = o(y)
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How do we choose the hyper-parameters?

Intuition: find parameters 6 that are compatible with the observed data.

p(y|0)p(f)
p(oly) = PR
(ely) p(y)
what we know after what the data what we know before
seeing the data x tell us X seeing the data
(posterior) (likelihood) (prior)

p(y|@) = how well does € explain the observed data
=N (y|0,% + Ia}2,)

Often, with a reasonable amount of data, maximizing p(y|f) w.r.t.
0 gives good results as it favors the right model!
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Why maximizing the likelihood is robust?

log-likelhood

-10
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Why maximizing the likelihood is robust?

Simple model

p(y ‘ 9) e, Best model

: . Complex model
| s ] |

% Y. Allpossible datasets observed
vas

"best" model >
. .
Fits every data point A.IInear model
"complex" model O "

simple" model

log-likelhood
0
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Covariance Functions: Matérn

N 21-v) V2ur Y V2ur
C(x,x)—azr(y)< 7 >K,,( ] )

39/65



Covariance Functions: Matérn

C(x,x') = 0221—1/) <\/?> K, (\/ZI_W>

1
|

-1 0

-3

I B

39/65



Covariance Functions: Matérn

C(x,x') = 0221—1/) <\/?> K, (\/ZI_W>

1
|

-1 0

-3

I B

39/65



Covariance Functions: Matérn
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Covariance Functions: Neural Network

Ty, /
C(x,x) = 0®Zsin! X2
™ V(1 +2xTEx/)(1 + 2xTEx)
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Covariance Functions: Neural Network

Ty, /
C(x,x') = O‘ZESin_l x>
T V(I 1 2xT=x)(1 1 2T =X
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Covariance Functions: Periodic

. 2 [ m|x—x|
2sin (7,; )

C(x,x') =exp{ — 2
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Covariance Functions: Ornstein-Uhlenbeck

o
C(x,x) = exp {—|X2/2X |}
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Covariance Functions: Linear

C(x,xX)=(x—¢c)"(X —c)o? + o2
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Combining Covariance Functions: Multiplication

The product of two covariance functions is a covariance function!
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Combining Covariance Functions: Multiplication

The product of two covariance functions is a covariance function!

Can be thought of as an AND operation!

The resulting covariance function will have high value only if both
base covariances have a high value!
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Multiplication: Linear Times Periodic

sin? ( Tix=x1
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Multiplication: Linear Times Linear
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Combining Covariance Functions: Addition

The addition of two covariance functions is a covariance function!
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Combining Covariance Functions: Addition

The addition of two covariance functions is a covariance function!

Can be thought of as an OR operation!

The resulting covariance function will have high value if either of
the base covariances have a high value!
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Multiplication: Linear Plus Periodic

sin? (7=
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Multiplication: Linear Plus Periodic
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Summary about Covariance Functions

e Covariance functions include strong assumptions about f(x).
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Summary about Covariance Functions

Covariance functions include strong assumptions about f(x).

Often the sq. exponential or Matérn work fine for regression.
e Covariance functions parameters allow to interpret the data.

e Covariance functions can be combined (sum + and product X).

The likelihood p(y) can discriminate among them (use with care).

49 /65



Classification Problems and Decision Theory

A classification rule will divide the input space in regions Ry.
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Consider a binary problem. The probability of a mistake is:
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R1 R2
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Classification Problems and Decision Theory

A classification rule will divide the input space in regions Ry.
What is the optimal rule in terms of the prediction error?
Consider a binary problem. The probability of a mistake is:
p(mistake) = p(x € R1,C2) + p(x € R2,C1)
= /R p(x,Cz)dx +/ p(x,C1)dx.
1

R2
Clearly the assign rule that minimizes p(mistake) is:

(%) = C1 if p(x,C1) > p(x,C2)
Cr if p(x,C2) > p(x,C1)

i.e., we should assign the class for which p(Ck|x) o p(x,C1) is larger.
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Classification Problems and Decision Theory

p(z,Cy)

8)

p(z,Ca)

P

A

Ra

(Bishop, 2006)

v

L

R
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Binary Classification Problems

The goal is to estimate class {1, —1} posterior probabilities, e.g.,
p(y; = 1|x;) from the observed data.
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Binary Classification Problems

The goal is to estimate class {1, —1} posterior probabilities, e.g.,
p(y; = 1|x;) from the observed data.

Gaussian processes are priors for functions that take values in R.

Function squashing to the interval [0, 1] via a link function:
* plyi = 1|x;) = I(f(x;) > 0).
® p(yi = 1|x;) = sigmoid(f(x;)) sigmoid(x) = (1 + exp(—x))~L.
® p(y; = 1|x;) = probit(f(x;)) (c.d.f. of a standard Gaussian).

with f(-) a latent function modeled by a GP.
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Binary Classification Problems
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Binary Classification Problems

o A v
- = Step Function - -
. . R
o | = = Sigmoid Ny
© + + » Probit .
o/
© .
S J
- 5
< .
o /
(qV] ,..
o | /.
P4 _'
o | -
e T T T T T T T
-6 —4 -2 0 2 4 6
X

The sigmoid and probit consider logistic and standard Gaussian
noise! p(y; = 1|x;) = I(f(x;) + ¢ > 0)
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Prior Samples Squashed via the Sigmoid Function

0?=200 |=1.0

0°=20.0 1=4.00 0°=20.0 1=4.00|
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Noise in The Labels

The previous link functions only allow for mislabeled instances
near the decision boundary!
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Noise in The Labels

The previous link functions only allow for mislabeled instances
near the decision boundary!

Outliers may affect the inference process about f(-):

([ J o
o o © Outlier
©®. .00 09 ©

[ J

Robust likelihood with probability € of label flip:

p(yf(xi),€) = (1 =€) - o(f(xi)) + € (1 —a(f(x;)))
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Bayesian Inference for GP Classification

Ideally, we would like to make inference about the latent variables,
i.e., process values at the observed data.
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Bayesian Inference for GP Classification

Ideally, we would like to make inference about the latent variables,
i.e., process values at the observed data.

Let f = (f(x1),...,f(xn))" and y; € {~1,1}:

_ p(y[f)p(f]X)
P20 = "oy x)

with
N
p(yIf) = [[ o (vif(x)), p(fIX) = N(|0,%),
i=1

Unfortunately, the posterior is intractable since the likelihood is
not Gaussian and must be approximated!
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The Laplace Approximation: Univariate Case

The logarithm of a Gaussian is a quadratic function!
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q(z) = \/2;7 exp {—;z(z - u)z}

Let f(z) be a target unormalized distribution. A truncated Taylor
expansion of log f(z) center at a mode is:

2

1 d
log f(z) =~ log f(z) — EA(Z—20)2, A= —plog f(z)

z=29
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The Laplace Approximation: Univariate Case

The logarithm of a Gaussian is a quadratic function!

q(z) = \/2;7 exp {—;z(z - u)z}

Let f(z) be a target unormalized distribution. A truncated Taylor
expansion of log f(z) center at a mode is:

2

1 d
log f(z) =~ log f(z) — EA(z—zo)z, A= —plog f(z)

z=29

Taking the exponential we obtain:
A - _
(o) ~ Fa)e {522} =4 alz) = Nleln, A

The approximate normalization constant Z is f(z)y/2r.
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Laplace Approximation: lllustration
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log f(2)

log f(z) and log ¢(z) f(z) and ¢(z)



The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional
distribution p(z) = f(z)/Z.
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The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional
distribution p(z) = f(z)/Z.

1
log f(z0) ~ log f(zo) — E(Z —20)'A(z—2)), A=—-V'Vliogf(z)

2=z

Taking the exponential we have:

f(2) ~ flao)exp { 3z~ 20)"Alz ~ ) | = . a(2) = Nlelzo. A™)

. . . M
The approximate normalization constant Zg is f(zp) (2‘7;)‘ . The mean

of the Gaussian approximation q is zg and the covariance matrix is A~
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The Laplace Approximation: Multi-variate Case

The same principle can be applied to approximate a M-dimensional
distribution p(z) = f(z)/Z.

1
log f(z0) ~ log f(zo) — E(Z —20)'A(z—2)), A=—-V'Vliogf(z)

2=z

Taking the exponential we have:

f(2) ~ flao)exp { 3z~ 20)"Alz ~ ) | = . a(2) = Nlelzo. A™)

. . . M
The approximate normalization constant Zg is f(zp) (2‘7/:)‘ . The mean

of the Gaussian approximation q is zg and the covariance matrix is A~

The posterior is unimodal and hence A is positive semidefinite.
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Approximate Predictive Distribution

Given the Gaussian approximation g(f), we can use the conditional
Gaussian to compute an approximate predictive distribution.
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Given the Gaussian approximation g(f), we can use the conditional
Gaussian to compute an approximate predictive distribution.

p(yly. X) ~ / P(ye £ (x))p(F(x.) ) (F) dFf (x,)
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Approximate Predictive Distribution

Given the Gaussian approximation g(f), we can use the conditional
Gaussian to compute an approximate predictive distribution.

Py, X) % [ plon F(x.)p(Fx.) Da(F)dF i (x.).
:/p(y*|f(x*))q(f(x*))df(x*),

with this last integral evaluated via quadrature and

q(f(x)) = N(f(x:)|c] CHp, C(xy, %) — €] C e, + c]CIATIC  c,),
Plf(x4)) = o(yuf(x4)) -
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Decision boundary and prediction uncertainty:
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Approximate Predictive Distribution

Decision boundary and prediction uncertainty:

o

Prediction uncertainty is higher in regions with no observed data.

(Bishop, 2006)
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Multi-class Classification

There are latent process values at N training points for all C classes:

f = (ﬂ(xl), ey fl(XN), fz(Xl), ey fQ(XN), ey fc(Xl), ey fc(xl))T

The prior for f is AV/(f|0,C) with C a block diagonal.

The likelihood uses a softmax function to obtain class label probabilities:

plyi = c|x;) = Cexp(fc(x,-))

Yooy exp(fe(xi)

The posterior is approximated using the Laplace approximation
with linear cost in C!
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Software for GPs and Deep GPs

There are several packages providing implementations of GPs:
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Software for GPs and Deep GPs

There are several packages providing implementations of GPs:

® GPy: Gaussian Processes in Python. Easy-to-use and extend.
Supports multi-output GPs, different noise models and different
approximate inference methods.

® GPML: Gaussian Processes in Matlab. No longer maintained.
Implements the models and methods from the book " Gaussian
Process for Machine learning”.

e GPflow: Gaussian processes in python using Tensorflow. Supports
GPU acceleration. Focuses on variational inference and MCMC for
approximate inference.

® GPyTorch: Gaussian processes in python using PyTorch. Supports
GPU acceleration. Also supports deep GPs.

Deep GPs: uses doubly stochastic variational inference and GPflow.
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Summary

@ A GP is like a Gaussian distribution with an infinitely long mean
vector and an oo X oo covariance matrix.

® GPs are non-parametric models and become more expressive the
more data we have. They are also interpretable!

© GPs provide predictive uncertainty that is high in regions with no
data! This allows to know what is not known.

O The marginal likelihood enables finding good hyper-parameters,
as it penalizes too simple and too complex models.

@ GPs can address classification problems too, but approximate
inference is needed.
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