
Extending an XML environment definition language for
spoken dialogue and web-based interfaces

Pablo A.
Haya

EPS-UAM
Madrid, Spain

+34 91 497 22 67
Pablo.Haya
@uam.es

Germán
Montoro

EPS-UAM
Madrid, Spain

+34 91 497 22 10
German.Montoro

@uam.es

Xavier
Alamán

EPS-UAM
Madrid, Spain

+34 91 497 22 50
Xavier.Alaman

@uam.es

Rubén
Cabello

EPS-UAM
Madrid, Spain

+34 91 497 22 68
Ruben.Cabello

@uam.es

Javier
Martínez
EPS-UAM

Madrid, Spain
+34 91 497 22 54
Javier.Martinez

@uam.es

ABSTRACT
In this work we describe how we employ XML-compliant
languages to define an intelligent environment. This
language represents the environment, its entities and their
relationships. The XML environment definition is
transformed in a middleware layer that provides interaction
with the environment. Additionally, this XML definition
language has been extended to support two different user
interfaces. A spoken dialogue interface is created by means
of specific linguistic information. GUI interaction
information is converted in a web-based interface.

Keywords
Interface design, XML, UIDL, intelligent environments,
spoken dialogues, web interfaces.

INTRODUCTION
Within the ubiquitous computing [13] research area it is
necessary the study of the design of transparent user
interfaces for the interaction with intelligent environments
[4]. These interfaces provide new ways of interaction [14],
adapt to the users and the environment and offer new
challenges to interface designers [11].
Intelligent environment interfaces can range from a GUI
mobile-interface (for instance a web-based interface,
accessible from a computer or a PDA) to a higher-level
interface (such as a spoken dialogue or a gesture-based
interface).
Given the dynamic characteristics of intelligent
environments, these interfaces have to be easily
configurable and adaptable [7, 10] and have to provide
standard methods of definition and configuration.
Bearing in mind these conditions we have developed an
XML-compliant language that allows to define the
characteristics of an intelligent environment. Furthermore,
we have added interface information to the language,
creating a user interface description language (UIDL) that
permits to automatically create a web-based interface and a
spoken dialogue interface based on the environment
information.

Here we present the main ideas of our XML-based
language that defines the intelligent environment and these
two interfaces. Next sections are organized as follows:
first, we give brief overview of the user interface definition
languages; next, we describe the environment
representation through our XML language; after that, we
present the definition of the web-based and spoken
dialogue interfaces; next we explain the implemented
environment and, finally, we present the conclusions.

USER INTERFACE DEFINITION LANGUAGES
XML stands as a solution for the standardization of the
interoperability between applications. Therefore, new
XML-compliant languages are employed to define user
interfaces. These are the XML-compliant user interface
definition languages (XML-UIDL). They have the
advantage of being transparent to different interface
technologies and providing a homogeneous resource for
heterogeneous ways of interaction [1].
According to [12] these XML languages for interface
representation must be applicable to any target, any
delivery context, personalizable, flexible and extensible.
On the other hand, they should separate the interface
elements from their presentation. The user interface
elements must be explicitly represented and in a format that
can be rendered in any delivered context. The presentation
information should be provided in an abstract form that is
target and delivery-context independent.
Two representative languages are:
• UIML [2], an XML-compliant language which permits

the creation of user interfaces for any device, any target
language and any operating system. It describes the
appearance of the interface, the user interaction with the
interface and how it is connected to the application logic.

• XIML [9], an XML-based "interface representation
language for universal support of functionality across the
entire lifecycle of a user interface: design, development,
operation, management, organization, and evaluation".

Other languages are XUL [6], that allows to build easily
customizable graphical user interfaces for multiple

platforms. AAIML [15], an XML-based language used to
communicate an abstract user interface definition for a
service or device to a user's personal device. And XAML
[8], the Microsoft XML based language employed for
visual interfaces to define a layout of text, images and
controls.

XML ENVIRONMENT DEFINITION
The physical environment is represented in a document,
where each environment entity is described using an XML
format. Entities are not only formed by the physical devices
presented in the environment, but also by software
applications, people definition or abstract concepts.
This XML representation also allows to describe the
relationships between the environment entities. These
relationships define the distribution of the environment
(buildings, rooms, etc.), aggregations of people (by
workgroups, range, etc.) and dynamic links between
entities (the favorite paintings of a person, the output
speaker for a music source, etc.).
The XML information is processed by a parser and
transformed in a middleware layer, which will act as an
interaction layer between the user interfaces and the
physical environment.
The middleware implementation lies on a global data
structure, called blackboard [5]. This blackboard is a model
of the world, where all the prominent information related to
the environment is stored. The blackboard provides an
asynchronous communication mechanism. Senders publish
environment information in the blackboard, and receivers
can be subscribed to these changes or pull them directly
from the blackboard. This mechanism permits a loosely-
coupled interaction among senders and receivers given that
it is not needed that either both of them are active at the
same time or they know each other. Therefore, the
blackboard allows to communicate environment changes,
finding available devices and revealing if a device has been
added or removed.

Environment representation
The environment information stored in this blackboard can
be viewed as a two-layered structure. On the one hand, a
relationship layer has information about the relations
between entities. On the other hand, an entity layer stores
information about each particular entity.
The relationship layer is a non-directed graph where each
node is an entity. Each entity node represents relevant
environment information such as physical devices,
software applications, occupants or abstract concepts. Arcs
between entity nodes denote some kind of relationship
(composition, aggregation, association, etc.). For example,
the location of a person is modelled as an arc between that
person and the room where s/he is located. Given that we
employ non-directed arcs, reciprocal relations are also
modelled. Therefore, each room has a relationship with
every one of its occupants.

Every entity node has assigned a name. This is a unique
alphanumerical string. This way, the node name univocally
represents the entity. Moreover, entity nodes hold extra
information that indicates the entity type (an entity can be a
device, a person, a room, etc.).
The entity layer is composed as follows. Every entity has a
collection of properties. Entities of the same type inherit a
set of common properties, which defines their specific
characteristics. Besides, the entities can define new
common properties, called parameters, which represent
custom information for the entity.
The composition of each environment entity is reflected in
the blackboard as a tree structure. The tree root is one of
the nodes of the previously described relationship graph.
This node has a set of child nodes that defines its properties
and parameters.
A property node constitutes an intrinsic and universally
accepted feature of the entity. Properties have a name and a
value. Thus, two properties that belong to the same entity
must have distinct names. Values are leaf nodes that store
literal values which can be of type string, integer or real.
Besides, the changes on the values of the properties that
represent physical variables are reflected in the real world.
Thus, when an application or an interface needs to get or to
change the physical state of a device, it only has to access
to the right node in the graph and get or change its value.
Parameter nodes represent a set of specific features defined
by an application or a group of applications, and allow to
customize the entity model. Parameters hang of a parameter
set node (aka paramSet node). Each group of applications
can define its own paramSet independently of the rest.
Parameters, like properties, are name-value pairs.
Nevertheless, they can be associated not only to an entity
but also to a property. This mechanism provides fine-grain
parameterisation.

Figure 1. Blackboard: entities and their relationships
So, combining these two layers, the resulting blackboard
structure can be seen like a graph of entities, where each
entity is described as tree of properties and parameters.
Figure 1 depicts a schematic blackboard graph. It contains
five entity nodes, four property nodes and two paramSet
nodes with one parameter each. Entities are within a blank
circle, with their name and type (for instance, Andrew and
person). Double-arrow lines indicate a bidirectional

relationship. Shadowed solid circles represent property
nodes (for instance, e-mail), blank dashed circles represent
paramSets (for instance, Jeoffrey) and shadowed dashed
circles represent parameters (for instance, image). Finally,
rectangles hold the node value (for instance,
dave@uam.es).
This structure allows to organize the environment
information using several abstraction levels. The deepest
nodes represent more concrete properties, while the upper
nodes in the hierarchy reflect structural relationships
among entities.

Name Space
An entity node can be indexed by its name. Besides, a node
can be located, starting from any entity node and following
the relationship path. This is called the node path. It is
composed by a list of tokens separated by the slash
character. Their order is determined as follows: the first
token of the path is the word “name”, the second one must
be the entity name and the next tokens come as the result of
concatenating the names of all the intermediate nodes until
the target node. For instance, in the example showed in the
figure 1, the lamp_1 status path is /name/lamp_1/status.
In addition, wildcards can be used to substitute one or
several tokens. This allows referencing several nodes at the
same time. For example, based on the figure 1,
/name/dave/* references all the properties, paramSets and
related entities of the entity Dave. As a result it gets the
following list: the e-mail and busy property nodes and the
Lab_407 entity node.
Another two naming mechanisms are provided to improve
the use of wildcards:
• Predefined hierarchy. This mechanism restricts the

nodes that compose a path. It specifies how to go through
the graph. To do this, each hierarchy defines a sequence
of types of entities. For example, the first type of entity
must be a room, the second one a device, etc…
Therefore, when a wildcard is used, only the nodes that
match with the expected type will be substituted. These
hierarchies are called predefined because they are hard-
wired. Following with the example of the figure 1, the
path /roomdevice/lab407/*/props/status is interpreted as
follows: the initial token identifies the hierarchy
roomdevice. This hierarchy establishes that the first type
of entity must be a room followed by a device. The other
nodes remain unrestricted. Therefore, this path references
the value of the status of all the devices located in lab407.

• Typed hierarchy. This is a particular case of the
previous mechanism. By default, there will be as many
hierarchies as types of entities. The initial token of these
hierarchies is the type of entity. For example, in the
figure 1 there are three default hierarchies: person, room
and device, so that /person/*/mail retrieves the e-mails
from everybody.

Interaction with the blackboard
Interfaces do not interact directly with the environment
physical entities but they only have access to the
middleware information. So, the implementation details of
an entity are hidden to the applications and these only have
to use the same standard communication rules for any
entity of the environment.
The middleware provides a set of operations that allows to
retrieve the information stored in blackboard, make
changes on the values of the properties and add or remove
an entity or a relationship. To access or change the
blackboard information, applications and interfaces employ
a simple communication mechanism through the HTTP
protocol, by means of XML-compliant messages.
Figure 2 shows an XML representation of a generic entity
obtained from the blackboard.
Thereby, the initial backboard structure can be generated
from a set of XML files that store the environment
configuration.
As we have seen in this section it is simple and standard to
describe the environment, retrieve the state of its entities or

<entity name=“id” type=“type”>
 <property name=“name“>value</property>
 <property name=“name“>value
 <paramSet name=“name“>
 <param name=“name“>value</param>
 <param name=“name“>value</param>

 </paramSet>
 </property>

 <paramSet name=“name“>
 <param name=“name“>value</param>
 <param name=“name“>value</param>

 </paramSet>
 <paramSet name=“name“>
 <param name=“name“>value</param>
 <param name=“name“>value</param>

 </paramSet>

 <entity name=”name”/>
 …..
</entity>

Figure 2. XML template for an entity

change it. The XML-compliant definition language serves
as a standard tool to specify the characteristics of the
environment. Once created, to get or change the physical
state of an entity of the environment or add or remove new
entities is also possible by means of standard instructions.

XML INTERFACE DEFINITION
Besides the definition of the entity properties, employed to
build the middleware layer, the entities have associated
other XML information employed to automatically build
diverse user interfaces.
Currently, our XML-compliant environment definition
language supports the automatic construction of two
different user interfaces: a spoken dialogue interface and a
web-based interface.

Spoken dialogue interface
Spoken interaction becomes necessary for an intuitive
communication between users and intelligent environments
[3]. Considering this, we have added new XML dialogue
tags to the environment description, in order to support the
automatic creation of a Spanish dialogue interface.
Dialogues are associated to each entity, so that when a new
entity appears in the environment a new dialogue allows
the users to interact with that entity. If the entity is not part
of the environment, the dialogue will not be available.
Each dialogue entity depends on the type of entity, so the

entities of the same type will inherit the same kind of
possible interactions. Entity dialogues can be customized
for each entity, in order to distinguish between them. A
supervisor is in charge of managing the dialogue
interactions, resolving conflicts, for instance, when there
are several entities of the same type, among many others.
Each entity must have associated all the possible ways a
user can interact with it. For this we have defined an initial
set of linguistic parts, which tries to cover the possible
interactions between the user and the entity. This set is
formed by:
• A verb part, which corresponds with the action that the

user wants to perform with the entity.
• An object part, related with the name that the user

gives to the entity.
• An indirect object part, the person who receives the

action.
• A modifier part, the kind of object part entity.
• A location part, which informs of the location of the

entity in the environment.
The last two parts permit to distinguish between several
entities of the same type. These linguistics parts allow the
use of synonyms and there can be as many sets of parts as
necessary for each entity. The figure 3 shows the definition
of two different sets of linguistic parts for one entity of
type fluorescent. Translating the case from Spanish, it is
considered that a user could utter sentences of the type:
“please, could you switch on the ceiling light” but not of
the type “please, could you switch on the fluorescent” (for
fluorescents, users only employ the verb turn on). Besides,
some parts contain synonyms (turn on and switch on, or
ceiling and above).

To create an entity based on a defined type it is only
necessary to declare an instance of the entity type. This
entity instance inherits all the entity type definition
properties, including the linguistic information. In many
cases, it will not be necessary to customize this linguistic
information, and to declare the entity will be enough to
automatically add its dialogue interactions to the interface.

<class name="fluorescent">
<property name=”Status”>
<paramSet name=”dialogue”>
 <paramSet name=“sentence“>
 <param name=“verbPart”>turn_on switch_on</param>
 <param name=“objectPart”>light</param>
 <param name=“modifierPart”> </param>
 <param name=“locationPart”>ceiling above</param>
 <param name=“indirectObjectPart”></param>
 </paramSet>
 <paramSet name=“sentence” >
 <param name=“verbPart”>turn_on </param>
 <param name=“objectPart”>fluorescent</param>
 <param name=“modifierPart”> </param>
 <param name=“locationPart”> </param>
 <param name=“indirectObjectPart”></param>
 </paramSet>
</paramSet>
</property>
</class>

Figure 3. Linguistic information for an entity definition

<entity name=”Lamp_1” type="fluorescent">
 <property name=”status”>
 <paramSet name=”dialogue”>
 <paramSet name=“sentence” >
 <param name=“modifierPart”>main</param>
 </paramSet>
 </paramSet>
 <property>
</entity>

Figure 4. Customized entity instance

In other cases, the entity instance can be customized to
adapt to the environment specific characteristics or
distinguish itself from other entities of the same type.
Figure 4 shows an entity instance customized for a specific
environment.
Additionally, the entity type definition also has to declare:
• A grammar template, which serves as the skeleton to

define the recognition grammar.
A grammar template has a set of common rules and empty
linguistic parts (marked as nil). The nil marks can be filled
in with the linguistic parts provided by the entity definition.
Figure 5 shows a simplified section of an action grammar
template for an imperative sentence. Besides these
imperative sentences, it also supports noun sentences,

subjunctive sentences (in present, past, singular and plural)
and interrogative sentences.
Every word in the set of linguistic parts is sent to a
morphological analyzer. This gets its part of speech
information and, based on it, retrieves its different forms.
Then it adds each word form to the right grammar rule. For
instance, based on the exampled showed in the figure 3, the
morphological analyzer gets that turn on is verb, so that it
gets all the possible declinations for that verb (in Spanish,
verb declinations change for each mode, tense, number and
person). Then, it adds the right forms to the rules
<imperative informal verb> and <imperative formal
verb>, among others.
This process is repeated with each linguistic part of an
entity type, taking into consideration if the word is a noun,
a verb, an adjective, etc.
Grammar templates employ fixed rules that not only
combine the added words in a proper way but also allow to
employ more general and natural utterances, avoiding to
use commands. These sentences try to cover the whole
corpus of possibilities that a person employs to address to
the entity.
The entity designer can use any of the available grammar
templates. A designer can employ the preexisting grammar
templates or declare new ones. In this case, s/he only needs
to keep the name of the rules that will be filled in with the
entity linguistic parts, this is, rules of the kind
<infinitive verb>, <singular male noun>, etc. S/he only has

to declare the rules that correspond with linguistic parts
that are necessary for the interaction, avoiding to declare
those not needed.
And finally, it is necessary that the entity definition
declares a pointer to two different methods:
• An action method, which receives the action requested

by the user (the verb part) and performs that action with
the entity. To do this task it serves of the middleware
layer.

• A state method, which also receives the verb part and
returns if the current state of the entity is the same or
different to the user requested state. Again, it also serves
of the middleware layer.

The action method is employed to execute the environment
physical action requested by the user. It only has to be
implemented once by the designer of entity type so the
entity instances will automatically inherit this method.
The state method is utilized in the interaction process to
determinate if the entity instance has to be processed. In the
case that the entity has the same state as the requested by
the user the dialogue interaction does not need to consider
that entity and can continue processing other entities with a
different state. Again, this method only has to be defined
once by the designer of the entity type. The interface
definition process will automatically inherit this method for
every entity of the same type.
Both methods employ the middleware layer to
communicate with the physical environment. To do this,
they only have to specify the entity property that they want
to interact with, if they want to get or set a value for this
property and, in the last case, the value that they want to
set. As it was explained above, this communication follows
a standard process through the HTTP protocol.

Web-based interface
We have also developed a web based interface to control
environment’s devices and appliances. This interface is
called Jeoffrey. It is a custom and partial view of the
environment information stored in the blackboard.
The blackboard contains generic information regarding the
number of rooms and the entities that it hosts. Each entity
is represented in the blackboard. Its representation includes
the properties required to interact with it. Additionally, new
specific information has been added in order to create the
Jeoffrey interface. It is composed by three parts
hierarchically structured:
• The top level is a stand-alone list box containing the

rooms of the environment. When the user selects a room,
a new window will pop up.

• This new window shows a map of the room, which
includes the location of the furniture and entities. The
map layout is composed overlapping a fixed background
image with the device representation images. Every time

<imperative sentence> = <imperative verb> [<noun>];
<imperative verb> = <imperative informal verb>
 | <imperative formal verb>

 | <infinitive verb>;
<imperative informal verb> = nil;
<imperative formal verb> = nil;
<infinitive verb> = nil;

Figure 5. Section of a grammar template

the interface is loaded, the map is dynamically generated
using the blackboard information.

• Finally, a custom control panel is showed when a user
clicks on an entity, allowing to interact with it.

Figure 6. Jeoffrey’s user interface.

Figure 6 shows a Jeoffrey user interface screenshot. The
most left window is the root list box. The background
window corresponds to the map that appears when a room
is selected. Finally, the other three windows correspond to
invoked entity control panels.
Jeoffrey gathers the information stored in the blackboard to
dynamically render the user interface. The blackboard
graph includes an entity node for each room and for each
entity. A relationship between a room and an entity reflects
that the entity is located in that room. This way, Jeoffrey
can easily ask for all the rooms and, for each of them,
which entities are inside.
Each entity includes several Jeoffrey’s parameters that help
to render its graphical interface. Figure 7 illustrates the
Jeoffrey interface information of a fluorescent XML
instance. Bold font is used to highlight the Jeoffrey’s
parameters. There are two paramSets. The first one is
associated to the entity and contains three parameters. The
image parameter defines its corresponding image file. The
x and y parameters are the coordinates where this image
will be drawn. The second paramSet is associated to the
status property and defines its related widget.
As we have mentioned above, the interaction with the
entities is managed by a custom control panel composed of
widgets. This panel is customized depending on the entity
properties. Each property is rendered into a widget that
allows interacting with the entity property. There are five
different generic widgets: text areas, switches, sliders, list
boxes and alarms. Text areas permit to change the value of
a string. Switches act as a toggle button associated to on-
off properties. Sliders correspond to properties that take a
value from an interval. List boxes define a list of possible
values where the user can choose one. And finally, alarms
are colored labels that change their color depending on the
value of the property.

 As figure 7 shows, the fluorescent called Lamp_1 has only
a status property. This property is associated with a switch
widget. Besides, several switch parameters defining
presentation features are established. These features are:
• The button text: this text changes depending on the

state of the property. The “text_off” parameter is
displayed when the light is off whereas the “text_on”
parameter is showed when the light is on.

• The button color: by default the color is gray when the
light is off. When the light is on, the color is defined by
the “color_on” parameter.

Figure 8 illustrates the rendered control panel for a
florescent and the image painted on the map.
Finally, the “cmd_off” and “cmd_on” parameters define the
value of the status property that will be set when the button
is pressed.

Figure 8. User interface for a fluorescent
When a user clicks on the picture of an entity, Jeoffrey
reads the descriptions of its properties from the blackboard,
translates the properties to widgets and generates a custom
control panel. If the entity has more than one property, the

<entity name="Lamp_1" type="fluorescent">
 <property name="Status“>

 <paramSet name="jeoffrey”>
 <param name="type">switch</param>
 <param name="text_off">Turn on</param>
 <param name="text_on">Turn off</param>
 <param name="cmd_on">0</param>
 <param name=”cmd_off”>1</param>
 <param name="color_on">0x00FF00</param>
 </paramSet>
 </property>

 <paramSet name="jeoffrey">
 <param name="image">reflectante.gif</param>
 <param name="x">460</param>
 <param name="y">247</param>
 </paramSet>
 </entity>

Figure 7. XML entity representation

Figure 9. Overview of the system

control panel will be composed by the aggregation of the
widgets corresponding to each property.
Jeoffrey employs the blackboard as a proxy to interact with
the physical entities, for instance, to change the speaker
volume, switch on the lights, etc., and to receive the
changes occurred in the environment. Jeoffrey is
subscribed to every event. All the changes in the state of an
entity are reflected in the user interface. For instance, if a
property has associated a widget alarm, when its value
changes, the blackboard will notify this to Jeoffrey and it
will modify the color of the alarm widget.

IMPLEMENTED ENVIRONMENT
Currently we have implemented a real intelligent
environment that allows to control and interact with a
fluorescent light, two reading lights, two dimmable lights,
the main gate lock mechanism and an FM tuner with
thirteen different radio stations, among other functionalities
(such as sending messages, showing personalized
paintings, etc.). All these devices are part of the laboratory
number 407, so they hang from the path /lab407/device/
These devices already come with their common XML
entity definition, their action and state method and their
associated grammar template. The device manufacturer is
in charge of providing this information, so an environment
designer only has to declare the instances of the elements
and their distribution in the environment.
The environment designer declares the entities according to
the template showed in the figure 2. If it is not necessary to
customize the linguistic or web-based information for the
current environment s/he will not have to declare any
specific information related to the interfaces. Then the
system adds the interface class information to the entity
declaration. All this information is compiled to create the
system representation file. With this file the system builds
the blackboard, containing information about the
environment and the interfaces (see an overview of the
system in the figure 9).
For instance, in our developed environment the
environment designer only has to declare the seven device
members of the laboratory 407. Given that there are some
devices of the same type, s/he will have to customize some

interface information. In this case s/he employs new
linguistic information to distinguish between the two
dimmable lights, adding to the location part the words left
and right respectively (see another example in figure 4). A
similar case occurs with the two reading lights. Finally, the
entity declaration is customized by specifying the
coordinates x and y for the Jeoffrey’s web-based interface.
With this, the system automatically creates the blackboard.
Whenever the web-based interface is executed it consults
the blackboard to create the interface showed in the figure
6. The information for all the devices of the laboratory 407
is retrieved employing the following path
/roomdevice/lab407/*/*/jeoffrey/*. The dialogue
information is retrieved in a similar way and it forms a
linguistic tree as the core of the spoken interface.
Once the interfaces are created users can interact with the
environment. The spoken dialogue interface allows natural
interaction with the elements of the environment. Users can
refer in different ways to the actions that can be taken with
the devices and the system responds either uttering answers
or executing actions. The interface supports interpretation
of user sentences, based on the current physical context
stored on the blackboard. A clarification request is
produced when it does not have enough information to
carry on an action. Besides, it supports anaphora resolution.
The dialogue interaction adapts to the elements of the
environment and their state. Answers and system actions
vary depending on the elements declared for each
environment. This is done by means of the linguistic tree
obtained from the blackboard at startup. This tree contains
all the possible interactions with the environment and the
entities that support them. Again, this is an automatic
process and the environment designer only needs to declare
the entities that form the environment.
A real example of an interaction produced in this
environment is showed in the figure 10. It demonstrates
how the system changes the interpretation of the same
sentence for different states of the environment, interprets
incomplete sentences or reacts when there are several
entities of the same type.

CONCLUSIONS
We have presented a graph model that allows to represent
the entities of an intelligent environment and their
relationships. This model is created using an XML-
compliant language, and it is stored in a global data
structure, called blackboard. A blackboard middleware
provides a set of operations to interact with the graph
model. An application can add or remove entities, retrieve
or modify their state, and subscribe to the changes done by
other applications.
Two user interfaces have been developed to interact with
the environment. These interfaces are created by means of
an extension of the environment XML model. The first
extended language automatically creates a customized
spoken dialogue interface. This language adds linguistic
information to the XML model. The second one
dynamically builds a web based interface. Again, new
XML tags allow to specify GUI information.
The middleware and the interfaces have been developed in
a real environment. It is composed of several devices,
including different types of lights, sensors, a door opening
mechanism, an FM tuner, etc. Both interfaces provide real
interaction with these devices.

ACKNOWLEDGMENTS
This work has been sponsored by the Spanish Ministry of
Science and Technology, project number TIC2000-0464.
REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.L.,

Williams, S., and Shuster, J.E. UIML: An Appliance-
Independent XML User Interface Language. In
Proceedings of the Eighth International WWW
Conference, Toronto, Canada, 1999.

2. Ali, M.A., Pérez-Quiñones, M.A., Abrams, M., and
Shell, E. Building Multi-Platform User Interfaces with
UIML. In Proceedings of CADUI, 2002.

3. Brumitt, B., and Cadiz, JJ. “Let there be light!”
Comparing interfaces for homes of the future. In
Proceedings of INTERACT '01, 375–382, 2001.

4. Coen, M.H. Design Principles for Intelligent
Environments. In Proceedings of the AAAI Spring
Symposium on Intelligent Environments, Palo Alto,
California, 1998.

5. Engelmore, R., and Morgan, T. Blackboard Systems.
Addison-Wesley, 1988

6. McFarlane, N. Rapid Application Development with
Mozilla. Bruce Perens' Open Source Series. Prentice
Hall, 2003

7. Paternò, F., and Santoro, C. One Model, Many
Interfaces. In Proceedings of CADUI, 2002.

8. Petzold, C. Create Real Apps Using New Code and
Markup Model. MSDN Magazine, January 2004.

9. Puerta, A. and Eisenstein, J. XIML: A Universal
Language for User Interfaces. White paper. Available at
http://www.ximl.org/Docs.asp. 2001.

10. Rayner, M., Lewin, I., Gorrell, G., and Boye, J. Plug
and Play Speech Understanding. 2nd SIGdial Workshop
on Discourse and Dialogue, September 2001.

11. Shafer, S., Brumitt, B., and Cadiz, JJ. Interaction Issues
in Context-Aware Intelligent Environments. Human-
Computer Interaction, 16, 363-378, 2001.

12. Trewin, S., Zimmermann, G., and Vanderheiden, G.
Abstract user interface representations: How well do
they support universal access?. In Proceedings of the
2nd ACM International Conference on Universal
Usability, Vancouver, Canada, 2003.

13. Weiser, M. The computer of the 21st century. Scientific
American, 265, 3, 66-75, 1991.

14. Weiser, M. The world is not a desktop. ACM
Interactions, 1, 1, 7-8, 1994.

15. Zimmermann, G., Vanderheiden, G., and Gilman, A.
Universal Remote Console Prototyping of an Emerging
XML Based Alternate User Interface Access Standard.
In Proceedings of the Eleventh International WWW
Conference, Hawaii, 2002.

User: Please, could you turn on the light?
System: What light would you like to turn on?
U: The reading light, please.
S: The one on the left or on the right.
U: The left light.

(The system turns on the left reading light)
U: Turn on the radio.
S: What station do you prefer?
U: I would like M80.

(The system turns on the radio with M80)
U: Please, turn it up.

(The system turns up the radio volume)
U: More.

(The system turns it up again)
U: I would like you to switch off…
S: Do you prefer to switch off the left reading light or
the radio.
U: The radio, please

(The system turns off the radio)
U: I would like you to switch off…

(The system directly turns off the left reading light)

Figure 10. Spoken interaction with the environment

