
UNIVERSIDAD AUTÓNOMA DE MADRID
ESCUELA POLITÉCNICA SUPERIOR

Evaluación de Algoritmos de Seguimiento

de Objetos

-PROYECTO FIN DE CARRERA-

Mónica Lozano Cruz

Febrero 2012





Evaluación de Algoritmos de Seguimiento

de Objetos

Autor: Mónica Lozano Cruz

Supervisor: Juan Carlos San Miguel Avedillo

Ponente: José María Martínez

email: Monica.Lozano@estudiante.uam.es, Juancarlos.Sanmiguel@uam.es,

Josem.Martinez@uam.es

Video Processing and Understanding Lab

Departamento de Tecnología Electrónica y de las Comunicaciones

Escuela Politécnica Superior

Universidad Autónoma de Madrid

Febrero 2012

Work partially supported by the Spanish Goverment under project TEC2011-25995 (EventVideo).





Abstract

The main objective of this master thesis is the evaluation of video tracking algorithms. A protocol

is designed for such evaluation task including the following aspects: accuracy, robustness to

initialization errors, computational cost and optimum parametrization. In order to support the

evaluation, a dataset is de�ned considering the most common problems in video tracking. Finally,

the proposed protocol is tested on representative approaches of the state-of-the-art.

Resumen

El objetivo principal de este PFC es la evaluación de diferentes algoritmos de seguimiento de

objetos. Para realizar dicha evaluación se ha diseñado un protocolo que evaluará los siguientes

aspectos: precisión, robustez a errores de inicializacion, coste computacional y parametrización

óptima. Por otro lado, se ha diseñado y creado un dataset completo que incluye algunos de

los problemas más comunes en seguimiento de objetos. Finalmente, el protocolo se utiliza para

evaluar un conjunto de algoritmos previamente seleccionados.

Keywords

Video analysis, video object tracking, performance evaluation, evaluation metrics, evaluation

protocol, dataset design.
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Chapter 1

Introduction

This chapter gives an introduction to the work presented in this document. In the next sections,

we describe the motivation behind this work (section 1.1), its main objectives (section 1.2) and

the document structure (section 1.3).

1.1 Motivation

Computer vision is a �eld that pursues the automatic processing of images (for example, taken

by a single camera or a set of them) to understand its content. It tries to mimic the human

vision system where the brain processes images captured by the eyes [1]. The image data can

take many forms, such as video sequences, views from multiple cameras, or multi-dimensional

data from a medical scanner. This acquired information is later used to solve tasks or understand

what happens in the scene represented by the images. This �eld has several applications in the

areas of industrial machine vision (e.g., inspection of mechanical parts), event detection (e.g.,

abandoned luggage detection), forensic and biometrics (e.g., automatic face recognition)

Video tracking is an important step in many applications related with Computer Vision.

It consists on locating an object or objects of interest1 as they move in time throughout a

scene by means of a vision device such as a camera [2]. A wide range of applications comes

from video object tracking such as human-computer interaction, security and surveillance, video

communication and compression, augmented reality, tra�c control, medical imaging and video

editing: some examples are depicted in Figure 1.1. Since a lot of data has to be taken into

account, video tracking is considered a time consuming process, with a complexity that can be

increased by the fact that object recognition techniques may have to be used.

The design of a video tracking algorithm (tracker) is a complex task. It is commonly agreed

that there are three steps for its design [2]:

1In this document, we will use the term target to represent the object of interest to be tracked in the video
sequence.
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(a)

(b)

(c) (d)

Figure 1.1: Examples of video tracking: (a) motion capture analysis [3], (b) sports tracking with
multiple cameras (from PETS2003 dataset), (c) gait analysis (Oxfords Metrics Group) and (d)
position tracking of Escherichia coli bacteria (from [4])

1) Extraction of relevant information: identify and extract the most relevant features of the

target that will later be used for tracking. The better this selection is performed, the more

robust the tracker will be.

2) Representation of the target: de�ne the model for the relevant information extracted by

the tracker. The ideal method of representation allows to undoubtedly identify the object

while being �exible for dealing with changes such as scale, orientation, illumination, etc.

3) Propagation of the target model: use information from previously generated tracking data

to estimate target parameters over time (e.g., location).
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Figure 1.2: Examples of video tracking scenarios with similar objects. Target and similar objects
are represented as, respectively, green and red squares

A wide variety of techniques has been developed following the above-mentioned steps. In this

context, the selection of the most adequate algorithm for each application is an extremely compli-

cated task and it is usually performed by the application designer based on his or her experience.

Moreover, the high variability and complexity of the data to analyze has to be taken into account

in this selection. Several issues a�ect the performance of the tracking algorithm such as noise,

clutter2, occlusions and changes of appearance or illumination. Hence, there is not a unique

algorithm that performs perfectly in all situations. Figure 1.2 shows examples of the similar

objects problem.

To precisely identify which algorithms operate better in certain situations or applications,

performance evaluation has been proposed in the literature as a way to determine their strengths

and weaknesses. It consists on the evaluation through the analysis of the obtained results. For

performing such analysis, two main aspects have to be speci�ed: the dataset (a set of sequences

covering the situations that the tracking algorithm might face being large enough to represent

the real world conditions) and the metrics to measure the precision of tracking algorithms (which

allow to quantify how well the algorithms perform). These two aspects are also known as the

evaluation protocol of video tracking [2]. Traditional approaches use metrics based on ground-

truth information that represents a manual annotation of the ideal tracking result and it is

manually annotated. The generation of the ground truth is usually a time consuming step and,

therefore, limits the amount of data in the dataset. Although there are other approaches not

focused on ground-truth information [5], most of the current literature assumes the availability of

such data. Furthermore, the existence of several metrics increases the complexity of designing an

evaluation protocol. Another point to be taken into account is the increasing quantity of video

2In this document, we use clutter to represent when the extracted features of other objects and of the back-
ground are similar to the ones of the target being tracked (e.g., target appearance).
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data available, which generates a new need to automate the whole tracking evaluation process.

Current comparative studies of tracking algorithms are limited due to the low number of

employed data and the similarity of the analyzed metrics. For example, [6] proposed some metrics

that provide redundant information. Hence, it is not easy to extrapolate the achieved conclusions

to the analysis of new sequences. Another problem is that there are not studies comparing

algorithms of diverse nature with di�erent situations that may a�ect tracking performance. This

fact also limit the conclusions of the performed evaluations.

As explained earlier, the available datasets and benchmarks have proven not be enough to

meet the needs for the current video tracking applications [7]. Currently, there is no standard

evaluation procedure that allows an easy comparison between algorithms, showing both strengths

and weaknesses of each one. Since each proposed evaluation protocol uses di�erent datasets and

metrics, it is not possible to provide general and standard evaluation scores which would allow

to compare di�erent algorithms in each scenario.

1.2 Objectives

The main objective of the work presented in this document is to develop an evaluation protocol

for estimating the performance of video object tracking algorithms. This protocol has to consider

the main issues that a�ect the performance of video tracking algorithms. In this work, we focus

on the evaluation of single-object tracking. In order to do so, the following points are addressed:

• In-depth study of the state of the art. It includes the review of the tracking-related work

considering the required analysis stages, the existing approaches, the main tracking issues,

the evaluation metrics and the available datasets.

• Selection and implementation of the most representative tracking approaches. Among

existing literature, the most popular approaches for deterministic and probabilistic tracking

are selected and implemented for their evaluation.

• Creation of an appropriate dataset for the evaluation of video tracking. It consists on the

design of synthetic and real sequences that represent the most important tracking issues.

Moreover, the use of existing real data has been considered to compose the dataset.

• Evaluation of existing metrics for video object tracking. The objective is to study the

relation between all the existing metrics for tracking evaluation. Thus, it will allow to

determine the best metric to use for the evaluation task.

• Design and implementation of a protocol for evaluating the performance of video tracking.

It proposes an evaluation methodology covering di�erent types of problematic tracking

situations.
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• Application of the proposed evaluation protocol. The performance of the selected tracking

algorithms is tested by using the previously-de�ned protocol.

1.3 Document structure

The structure of the document is as follows:

• Chapter 1. This chapter presents the motivation and the objectives of this work.

• Chapter 2. This chapter discusses the literature related to the presented work.

• Chapter 3. This chapter describes the selected tracking approaches that will be evaluated.

• Chapter 4. This chapter overviews the proposed protocol for evaluating video object track-

ing. It includes the aspects considered and the dataset created.

• Chapter 5. This chapter provides the experimental result by giving an in-depth analysis of

the application of the evaluation protocol to the selected algorithms.

• Chapter 6. This chapter summarizes the main achievements of the work, discusses the

obtained results and gives suggestions for future work.

At the end, several appendices list further details:

• Appendix A. This appendix provides a brief description of performance evaluation ap-

proaches for multiple object tracking.

• Appendix B. This appendix describes the main existing datasets related with video track-

ing.

• Appendix C. This appendix describes in detail the sequences that comprise the created

dataset in order to test the evaluation protocol proposed.

• Appendix E. This appendix expands the study of how di�erent errors in the initialization

a�ect the performance of di�erent algorithms in sequences with selected issues.

• Appendix F. This appendix contains the Introduction chapter in Spanish.

• Appendix G. This appendix contains the Conclusions and Future Work chapter in Spanish.
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Chapter 2

Related Work on Video Tracking

This chapter gives an overview of existing literature in the scope of the work presented in this

document. In the next sections, we describe the main aspects of video tracking (section 2.2), the

metrics for performance evaluation (section 2.3) and the datasets (section 2.4).

2.1 Introduction

Video object tracking studies the problem of estimating the trajectory of an object of interest

(target) in an image sequence. Tracking is a complicated task due to high variability and com-

plexity of the data to analyze. When designing a tracking algorithm, the following steps have

to be taken into account such as feature extraction, target representation (i.e., object modeling)

and propagation of the target model over time. In order to solve the above-mentioned problems,

a large variety of techniques has been developed. In the �rst section, we review these three steps

and categorize the existing approaches.

In this context, selecting the most appropriate technique in each situation is an extremely

complicated task, usually performed by a human operator based on their experience. Several

issues have to be considered: noise in images, complex object movement, similar objects in scene

(clutter), partial or total occlusion, changes in the illumination and computational complexity

(critical for real-time applications). As a solution to this problem, current literature proposes the

evaluation of tracking algorithms using the obtained results. In order to do so, di�erent metrics

have been de�ned, capable of evaluating the accuracy of the algorithm, and simple data sets have

been designed. However, comparative studies are currently not enough due to the low number of

data used as well as the similarity of the analyzed techniques. This limits the conclusions that

can be drawn from the evaluation process. One of the critical challenges is to correctly match

(spatially and temporally) the algorithms output's and ground-truth annotations. Therefore,

several initiatives have been proposed for providing such metrics: VACE Metrics [8], CLEAR

Metrics[9] and PETS Metrics [10, 6] among others. In the second section, we discuss the literature
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related to performance evaluation of video tracking.

As mentioned in [11], ideally, the �eld of visual tracking would contain a dataset of standard

videos that would be universally used by researchers and each dataset would have its particular

quantitative metrics to de�ne the success or failure of an algorithm. Some initiatives have been

proposed in order to develop such dataset which are mentioned in the last section of this chapter

and described in Appendix B.

2.2 Description

Recently, several surveys have been published for video object tracking [12, 11, 2]. In this section,

we synthesize their most relevant information considering the stages involved, the features, the

representation, the prediction of motion and the tracking algorithms.

2.2.1 Stages involved

Tracking-based video analysis systems are typically composed by (at least) three modules as

shown in Figure 2.1. They are:

• Target detection: it recognizes the target to be tracked. Some of the methods used are:

point detectors [13], segmentation [14], foreground detection [15] and supervised learning

[16].

• Tracking: it performs the tracking analysis with the aim of locating the target in each

frame1. The chosen representation and motion model selected for each object completely

determines the movement and deformation it may have.

• Analysis of tracking data: it studies all the tracking data generated to ful�ll the purposes

of the application (e.g., trajectory creation, outlier detection, event recognition).

Figure 2.1: Stages in a typical tracking-based video analysis system.

1In this document, we will use the term frame and image interchangeably
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2.2.2 Features

All tracking systems require to de�ne the features to used for representing the target2. It is

fundamental that the chosen features uniquely identify the target from the background of the

scene or other objects, therefore no feature is said to be better than the others, since it depends

on the situation where the tracking algorithm will be used. As an example, if a soccer player

movement is to be followed, color is not the best feature as other players share this characteristic.

Moreover, the selected feature has to be descriptive as well as �exible for dealing with changes

such as rotations, illumination and scale changes. In most of the existing approaches, the user

manually chooses these features, depending on his/her experience and the �nal application.

These features can be grouped in three areas: low-level, mid-level and high-level [2].

2.2.2.1 Low-level features

Color The color of a region is determined by �nding the mean value for all the pixels in a

certain region [12]. The problem with this representation is that when dealing with multimodal

color distributions the mean value is not enough. For example, when tracking a red suitcase

the mean value would be su�cient. However, if a person with this particular suitcase has to be

tracked, the representation fails. To solve this issue, color histograms (where the number of times

a color appears is counted) were introduced. These histograms are widely extended due to their

simplicity and good performance. One of their advantages is that changes in the image such as

rotation and translation do not a�ect them, and if the target rotates, is occluded or changes its

scale, the histogram does not su�er a signi�cative change. On the other hand, since histograms

collapse all the information it is impossible to know which color comes from which part of the

image, therefore, losing the spatial structure of the object color. Also note that illumination

changes have a great e�ect in color histograms. To mitigate this problem, color spaces such as

HSV (hue, saturation, color) are used, since they are more robust than RGB spaces. However,

since each color space has its advantages and disadvantages, it is not possible to pick one as the

optimum for all scenarios .

Gradient and derivatives Histograms of oriented gradients are an alternative to the color

histograms mentioned above, and they show the orientation distribution of gradient vectors

within the region [2]. They are more robust to illumination changes than color ones as edges

tend to persist with such changes. However, background clutter negatively a�ects the extraction

of the target gradient. In Figure 2.2 an example of gradient edge detection is depicted.

2It is important to note that the object's feature set is not to be confused with its template. For example, a
feature could be the intensity of the pixels while the template (or model) would be the speci�c numerical values
those intensities can take
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Figure 2.2: Gradient edge detection example

2.2.2.2 Mid-level features

Edges and lines Edges and lines have been used widely through the years, and they became

one of the most used methods [17]. An edge is a pixel located in the boundary between two

di�erent regions (each with its constant intensity).

Interest points An interest point is a pixel in which its local image structure (i.e., a particular

neighborhood of this point) contains meaningful information for image or video analysis (e.g.,

the corner of a table, the body's joints). An example of features used in tracking are the Scale

Invariant Feature Transform (SIFT) [18] and the Speeded Up Robust Feature (SURF) [19].

2.2.2.3 High-level features

Instead of grouping mid-level features, other option to de�ne a target is to detect it as a whole

based on its appearance. There are two di�erent approaches in this case, depending on which

part is modeled (background or foreground) [2]. The former determines which part of the image

comprises the �xed model and the rest of objects that can't be explained by means of that model

are labeled as possible targets. Then, these objects are tracking using combinations of low-level

features [20]. In the later, the appearance of a pre-de�ned class of targets is obtained by learning

representative features of the selected class. An example is color-based segmentation, used to

detect faces of people. Then, detected faces are similarly tracked as described above [15].

2.2.3 Representation

For providing an accurate video tracking, the features of the target have to be properly repre-

sented by means of a model. For this representation, there are several approaches: basic (where

the target is represented as a single point), patch or volume approximations (where the features
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are extracted from the selected area as, for example, color histograms and intensity templates),

articulated (where a combination of rigid models approximate the shape of the target), and de-

formable (where �uid models, contours or point distribution models are used). Some examples

of shape representation can be found in Figure 2.3.For example, this target model may contain

information regarding its shape and appearance [2].

Figure 2.3: Representation: a) centroid, b) multiple points, c) rectangular patch, d) elliptical
patch, e) part-based multiple patches, f) object skeleton, g) complete object contour, h) control
points on object contour, i) object silhouette. Extracted from ([12])

2.2.4 Prediction of motion

The prediction of motion of a target (also known as motion estimation) determines the movement

of the target for performing an e�cient video tracking analysis. It can be considered as a way

to reduce the computational burden since guessing where the target is going to be in each frame

helps to speed up the whole tracking process. Motion estimation tries to explain how the target

moves by means of a correspondence vector (describing the displacement of a pixel between two

frames) or by an optical �ow �eld (which contains information regarding the velocity if apparent

motion exists).

For locating the target in a certain region of the image, we distinguish two approaches is an

exhaustive (deterministic) or selective (probabilistic) search is performed on the search area.

2.2.4.1 Deterministic approach (exhaustive search)

This approach could be view as an optimization problem without any knowledge about the

motion model of the target. The goal is to identify and minimize the cost function that de�nes
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(a) (b)

Figure 2.4: Prediction of motion approaches: (a) Exhaustive search, (b) Selective search (where
blue points represent the selection)

the similarity between the target to be tracked and the features observed in the search area

of the current frame. Hence, an exhaustive search is performed for locating the target. The

most elemental way to use this information is to begin the analysis in the same position as the

target occupied in the previous frame. If the frame rate of the sequence is high it is obvious the

advantage of beginning the analysis in the same position previously determined, since it decreases

signi�cantly the search time. As seen in Figure 2.4(a), the blue box represents the search area.

It is located in the position of the target in the previous frame (the target is depicted by means

of the smaller box). If the object does not change its position abruptly, this method provides

good results and optimizes the search time. This example corresponds to the application of the

MeanShift algorithm [21].

2.2.4.2 Probabilistic approach (selective search)

This approach assumes a certain motion model of the target and consists on two stages: prediction

(considering previous data) and update (considering image data). This prediction uses the

motion model and projects forward the current state of target (e.g., target location and size)

from the previous frame to the current one. The update stage checks the similarities among

the predictions and the target model (e.g., color histogram similarity) and does not belong to

prediction of motion.

In current literature, two approaches are widely used: Kalman [22] and Particle [23] �lters.

Kalman �lter is a tool devised to solve estimation problems which are linear and the noise is

Gaussian. Particle �lters allow the system (e.g., the target) to behave non linearly without any

Gaussian assumption. In Figure 2.4 (b) the Particle �lter approach is represented as an example

of the selective search. The particles (blue points) describe each point where a new search is

performed.
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2.2.5 Taxonomy for tracking algorithms

A combination of di�erent taxonomies from [12, 2] is proposed, and is depicted in Figure 2.5

Figure 2.5: Object tracking taxonomy

2.2.5.1 Discrete-based trackers

Discrete features trackers use simple image structures such as points, lines and edges. These

trackers use points to represent detected targets in consecutive frames and the association of

the points is based on the previous target state which can be de�ned as the target location and

motion[12].

Points The information regarding position and motion is included in the previous state. For

target detection it is necessary an external mechanism, and then feature points are extracted to

represent the target. One of the greatest advantages of point trackers its their ability to track

small objects (represented by a single point). For each point, a cost of association between the

point in the previous frame an the point in the current one is calculated. There are several

constraints that a�ect this cost: proximity, velocity, smooth motion and rigidity among others.

Since this method provides support for several di�erent situations it has been widely studied and

there are several works regarding deterministic point tracking [24].

Edges Two di�erent approaches can be taken: a previous model can be used or not. If no model

is used, the tracking is performed by means of one or more Kalman �lters and it is repeated in

each frame. If a 3D model of the object is used it is necessary to develop complex transformations

to align the model with the image content. Because of its complexity, 3D models approach has

experienced a signi�cant decrease of attention since the beginning of the 1990s [25].
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2.2.5.2 Region-based

Region based trackers are known for the wide variety of features they use in order to represent

and track the target. Some of these features are color, texture, intensity and gradient. The

trackers can be divided in three groups: blob, template, and kernel.

Blob Blob trackers use very speci�c information and details regarding the target followed, for

example, the average color or centroid position. These trackers depend on a previous stage that

detects target candidates as blogs (i.g., background substraction). Their main advantage is their

high e�ectiveness when following a target with a stationary camera or widely separated targets

and their low complexity allowing the development of real-time systems [26]. However, some

complications may arise when the targets move close to the camera.

Template Template trackers describe a feature (e.g., the intensity value) of the target. There

are two approaches depending if the template is rigid or deformable. Rigid template tracking

[27] assumes that the target information is not going to change in consecutive frames. Thus,

simple metrics can be used to locate the target (e.g., intensity correlation). For deformable

template tracking [28], a parametric motion model is employed to de�ne the movement of the

target and, therefore, apply transformations to the template of the target. The main problem

of this approach is the requirement of a learning stage that might not be possible due to data

availability.

Kernel Kernel histogram methods basically use a weighting kernel as well as a histogram to

represent the target. These trackers can be viewed as a the midpoint between blob trackers and

template trackers. The available algorithms di�er in several aspects such as the target tracked,

the selected features and the method to model the target motion. MeanShift tracker [21] is one

of the most popular kernel trackers.

2.2.5.3 Contours

A contour is a curve (open or close) that outlines a target. The main di�erence between contour

trackers and edge trackers is that the later focuses on straight lines, while the former can follow

targets with contour deformations. Also note that the approaches for these two categories are

completely di�erent, hence they belong to di�erent categories. Contour trackers can be divided

in three approaches: basic (with rough approximations of area or volume), articulated (with more

complex models of the target including several rigid models) and deformable [2]. It is assumed

that there are only small changes in the shape of the target and position, so the location in

each frame is done by slightly changing the information from the previous frame. There have

been several approaches during the years, including the use of di�erent techniques such as basic
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snakes [29] (using discrete curve parametrization), level sets [30] and trackers that used region

information [31].

2.2.5.4 Hybrid

This category represents a new trend that combines the previously described approaches with the

object of improving the overall tracking process. In [32] a combination of MeanShift and Particle

Filter was proposed, where the tracker �rst produces a smaller number of samples using Particle

Filter and then shifts the samples toward a close local maximum using MeanShift. This improves

the accuracy (with better results than the isolated application of both tracking algorithms) while

using less samples than Particle Filter alone.

2.3 Performance evaluation metrics

In this section, we describe the most representative metrics that have been proposed for perfor-

mance evaluation of single-object video tracking.

2.3.1 Nomenclature

We will �st begin by introducing the required notation for describing complex metrics [6, 33].

• TP: True positive, a target pixel appears both in the ground-truth annotation and the

algorithm result (per frame).

• TN: True negative, a target pixel that appears neither in the ground-truth annotation nor

the algorithm result (per frame). This metric is a little confusing since it is not very clear

what a true negative target is. However, it is used in some works that perform a pixel level

evaluation.

• FP: False positive, a target pixel that appears in the algorithm result, but not in the

ground-truth annotation (per frame).

• FN: False negative, a target pixel that appears in the ground-truth annotation but not in

the algorithm result (per frame).

• GT (t)
i : represents the ith ground-truth annotation for the tth frame. Note that there is no

identi�cator of the target as we focus on single-object tracking (i.e., there is only one)

• D(t)
i : represents the estimated location of the ith target for the tth frame .

• N (t)
GT : represent the number of ground-truth annotations in the tth frame. In our case, this

number is equal to 1.
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• N (t)
D : represent the number of target annotations in the tth frame. In our case, this number

is equal to 1.

2.3.2 Initiatives for performance evaluation

VACE Metrics The Video Analysis and Content Extraction (VACE) initiative was developed

for evaluating object detection and tracking in video sequences. Its main objective is the creation

of algorithms and implementations for automatic video content extraction, multimodal fusion and

event understanding [8]. In both Phases I and II an in-depth study of video content analysis was

made, being object detection and tracking the primary focus on VACE-II. Several breakthroughs

were made regarding automated detection and tracking of scene objects (faces, hand, bodies,

vehicles). VACE Metrics provide a measurement of the whole system performance including

cases with missing objects, false positives, etc.

CLEAR Metrics The Classi�cation of Events, Activities and Relationships (CLEAR) evalu-

ation and workshop was the �rst international e�ort that evaluated di�erent systems designed

to recognize events, activities and their relationships [34]. Its main objective was to get together

di�erent researchers so a common international evaluation could be established, combining two

programs: VACE and CHIL[35]. A need of a standardized and uni�ed set of metrics (valid for

both programs) appeared to get both initiatives together. The results of the workshop gener-

ated great advantages, including more data available for the research community as well as the

evolution of some widely accepted performance metrics [8].

PETS The �rst Performance Evaluation of Tracking and Surveillance (PETS) took place in

2000. It was created due to the growing necessity to develop a systematic performance evaluation

for video tracking techniques. The PETS workshop was created to propose di�erent datasets ad-

dressing common problem of video tracking. It was the beginning of the performance evaluation

activities (which later included ETISEO, for example). Each year since 2000 a PETS workshop

has taken place (in di�erent countries) proposing a di�erent challenge for researchers.

ETISEO ETISEO (Evaluation du Traitement et de l'Interpretation de Séquences Video) is

a Video Understanding Evaluation project which ended successfully in December 2006 [36].

The project took place for two years and was part of the Techno-Vision evaluation network

funded by the French ministry of defense and the French ministry of research. The main goal

of ETISEO was to evaluate vision techniques for video surveillance, focusing on the treatment

and interpretation of videos involving pedestrians and/or vehicles [37]. The four main project

objectives are: acquisition of precise knowledge of vision algorithms, productive discussions

between research labs and companies, creation of two ontologies to facilitate the communication
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between all participants in the domain and development of automatic evaluation tools for vision

algorithms.

2.3.3 Single target evaluation

For evaluating the tracking of single targets, several approaches exist. For example, [10] proposed

a classi�cation of the metrics based on the approach taken: frame-based and object-based metrics.

Frame-based metrics test each frame individually and then the result is averaged over the whole

sequence. Object-based metrics perform the evaluation over the whole trajectory of each object.

Following this categorization, we describe the related approaches.

2.3.3.1 Frame-based metrics

The following measures are the most common used, and they use the previously described nomen-

clature:

• Precision [38]: indicates the rate of false positives at pixel level for each frame.

Prec =
#TP

#TP +#FP
. (2.1)

• Sensitivity [38]: indicates the rate of false negatives at pixel level for each frame . Also

called True Positive Rate (TPR).

Sens =
#TP

#TP +#FN
. (2.2)

• F-Measure [38]: this measure provides a relation between Precision and Sensitivity and

allows to emphasize one or the other (depending on the situation) by means of α.

F −Measure =
1

α · ( 1
Sens) + (1− α) · ( 1

Prec)
=

#TP

#TP + α ·#FN + (1− α) ·#FP
. (2.3)

• F-Score [38]: if both measures (Precision and Sensitivity) are equally important, α = 0.5

and the metric is called F-Score.

F − Score = #TP

#TP + 1
2 · (#FN +#FP )

. (2.4)

Also, based on the same basic notions, more complex formulas are introduced:

• Tracker Detection Rate [10]:

TRDR =
#TP

#GT
. (2.5)
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• False Alarm Rate [10]:

FAR =
#FP

#TP +#FP
. (2.6)

• Detection Rate [10] (equal to sensitivity):

Detection Rate =
#TP

#TP +#FN
. (2.7)

• Speci�city [10]: indicates the rate of false positives in relation to the total number of

negatives. Also called True Negative Rate (TNR). As already mentioned, true negative

only applies to pixels or frames, so this metric should only be used for those elements.

Spec =
#TN

#TN +#FP
. (2.8)

• Accuracy [10]:

Accuracy =
#TP +#TN

#TP +#TN +#FP +#FN
. (2.9)

• Positive Prediction [10] (equal to precision):

Positive Prediction =
#TP

#TP +#FP
. (2.10)

• Negative Prediction [10]:

Negative Prediction =
#TN

#FN +#TN
. (2.11)

• FN Rate [10]: the rate of positives that were previously assigned as negatives.

FNR =
#FN

#FN +#TP
= 1− Sens. (2.12)

• FP Rate [10]: the rate of negatives that were previously assigned as positives (only de�ned

for pixels and frames).

FPR =
#FP

#FP +#TN
= 1− Spec. (2.13)

FDA The Frame Detection Accuracy measure [39] calculates the spatial overlap between the

ground-truth annotation and the estimated target location as a ratio of the spatial intersection

between them and the spatial union of them for a given frame.
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FDA(t) =
OverlapRatio

N
(t)
GT+N

(t)
D

2

, (2.14)

and

OverlapRatio =

N
(t)
mapped∑
i=1

|GT (t)
i ∩D

(t)
i |

|GT (t)
i ∪D

(t)
i |

, (2.15)

where Nmapped is the number of matched pairs of ground-truth annotation and estimated

target location. For single-object tracking Nmapped = 0 if there is no matching (or Nmapped = 1

if there is).

Normalized spatial overlap This measure determines the amount of overlap between the

ground-truth annotations and estimated target locations. It is computed in every frame where

the target exists [7].

O =
|TP |

|TP |+ |FP |+ |FN |
, (2.16)

where k denotes the frame. The higher the overlap, the better the tracking. As it can be

observed, this measure is similar to FDA.

Displacement error rate This measure determines the displacement between centroids for

ground-truth annotation and detection target locations [40].

DER =
displacement error between ground− truth and estimated position

size of the target
(2.17)

This measure presents an issue since the size of the ground-truth annotation is not taken into

account, and therefore does not provide accurate results when it changes.

2.3.3.2 Object-based metrics

SFDA The Sequence Frame Detection Accuracy measure calculates in each frame the spatial

overlap between the estimated target location and the ground-truth annotation. This mapping

is optimized on a frame-by-frame basis. It contains information regarding the number of objects

detected, missed detects, false positives and spatial overlap, providing a ratio of the spatial

intersection and union between two object locations. The total sum of data from the FDA is

then normalized to the number of frames including ground-truth targets. Therefore, SFDA [39]

can be seen as the average of the FDA over all the relevant frames in the sequence. We obtain
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the SFDA formula, which ranges from 0 to 1; the higher the value, the better.

SFDA =

∑t=Nframes
t=1 FDA(t)∑t=Nframes

t=1 ∃(N (t)
GT ORN

(t)
D )

(2.18)

As seen in Figure 2.6, when SFDA = 1 (�rst case), the ground-truth annotation and the

estimated target locations are perfectly aligned. In cases where SFDA 6= 1 (second image) a

di�erence in the aligning is visible.

Figure 2.6: Example for SFDA metric.

ATA (Average Tracking Accuracy) The Average Tracking Accuracy measure contains

information regarding the number of objects detected and tracked, missed objects and false

positives. It is de�ned as the average ratio of the spatial intersection and union of the ground-

truth object and the tracked object over all the frames. The mapping was optimized at a sequence

level and it penalizes fragmentation in both the temporal and spatial dimensions. The Sequence

Track Detection Accuracy was calculated by establishing a one-to-one mapping (computing the

measure of all ground-truth and detected object combinations) and maximizing the score for

the sequence. The main di�erence is that while in tracking the overlap is computed in the

spatio-temporal dimension, in detection only the overlap in the spatial dimension is studied.

The STDA [39] formula also varies from 0 to 1; the higher the value, the better.

STDA =

Nmapped∑
i=1

∑Nframes
t=1

|GT (t)
i ∩D

(t)
i |

|GT (t)
i ∪D

(t)
i |

N(GTi∪Di 6=0)
. (2.19)

Observe that STDA corresponds to the SFDA when there is a matching between ground-truth

annotation and the estimated target location (N(GTi∪Di 6=0)). The average over all the objects in

the sequence can be obtained [39]:
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ATA =
STDA

N
(t)
GT+N

(t)
D

2

. (2.20)

The numerator in the expression rewards true positives and penalizes false alarms. This

computes the percentage of ground-truth that is covered with mapped objects [41].

However, the de�nition of ATA is not unique, and another expression can be found in [42]:

ATA =
1

Nframes

Nframes∑
t=1

∣∣∣GT (t)
i ∩D

(t)
i

∣∣∣∣∣∣GT (t)
i ∪D

(t)
i

∣∣∣ (2.21)

Both SFDA and ATA metrics provide a way to condense the tracking data in a single score,

thus allowing to determine a trend of tracking performance. The main drawback of this metrics

is the inability to provide an identi�cation of failure components [43].

ATE (Average Tracking Error) The Average Tracking Error proposed in [42] can be seen

as a false positive rate (whereas ATA represents the true positive rate). It provides a ROC-like

curve which allows to compare and evaluate the tracker's performance.

ATE =
1

Nframes

Nmapped∑
i=1

∣∣Dt \GT t
∣∣

|Dt|
(2.22)

where
∣∣Dt \GT t

∣∣is the relative complement, that is, the set of elements in B, but not in A.

OTE (Object Tracking Error) The Object Tracking Error proposed in [10] aims to calculate

the average discrepancy between the ground-truth bounding box and the system result centroids.

OTE =
1

Nframes

∑
i∈g(ti)

∧
r(ti)

√
(xgi − xri )

2
+ (ygi − yri )

2
, (2.23)

where xgi and y
g
i are the x-coordinate and y-coordinate of the centroid of the target in ith frame

of ground-truth and xgi and x
g
i are the x-coordinate and y-coordinate of the centroid of the target

in ith frame of the tracking result. This metric does not work properly in some cases due to the

fact that di�erent areas can have the same centroid and therefore provide the same OTE metric

even though the discrepancy is not the same.

Closeness of Track This metric proposed in [6]aims to calculate the average closeness between

a pair of ground-truth and system results tracks.

CT (GTi, Di) =
{
A
(
GT

(1)
i , D(1)

i

)
, ...A

(
GT

(t)
i , D(t)

i

)}
(2.24)
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, where A represents the spatial overlap for ground-truth and system tracks.

The closeness of the whole sequence can be averaged by weighting the CT of all pairs.

CTM =

∑M
t=1CTt∑M

t=1 length (CTt)
(2.25)

, where CTt is the Closeness of Track for the tthpair of ground-truth annotation and estimated

location, and length(CTt) can be viewed as the total number of frames since A will always have

a value (0 if there is no spatial overlap)

The weighted standard deviation of track closeness can be obtained for the whole sequence:

CTD =

∑M
t=1 length (CTt)× std (CTt)∑M

t=1 length (CTt)
(2.26)

Track Completeness This metric proposed in [6] is de�ned as the time span that there is

overlap between the system and ground-truth tracks and divided by the duration of the ground-

truth track.

TC =

∑N
(t)
D

t=1 O
(
GT (t), D(t)

)
N

(t)
GT

, (2.27)

where O
(
GT (t), D(t)

)
is a binary variable with value 1 if a pair is overlapped more than a

threshold value and 0 otherwise.

The average track completeness for the whole sequence can be described as:

TCM =

∑l
i=1max (TCi)

N
(t)
GT

, (2.28)

, where TCi is the Track Completeness in frame i.

Lost Track Ratio In [7] a new metric to calculate the loss of targets is proposed. A target

is said to be lost when the spatial overlap (Equation 2.16) between the ground-truth and the

estimated target is smaller than a threshold. Afterward, the lost-track ratio (l) is calculated

based on the overlap of the sequence:

λ =
Nframes

N(GTi∩Di=0)
. (2.29)

Because the appropriate value of τ is di�erent for di�erent tracking applications, it was

considered in [7] the variation of τ for a full range of values, from τ = 0 to τ = 1 with an

increment of 0:01. We refer to these parametrized values of the lost-track ratio as (λ (τ) ). In

order to standardize this measure so that it can be used independently of the tracking application,
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the Area Under the lost track ratio Curve is computed.

AUCλ =

1∑
τ=0

λ (τ) (2.30)

The lower this value is, the better. Therefore, a tracking algorithm with perfect performance

would provide a AUCλ = 0 , whereas an algorithm that never �nds the target (in all frames of

the sequence) would deliver and AUCλ = 1. An example of two curves depicting two scenarios

is presented in Figure 2.7. Following the analysis, the tracking result of the left, with a AUCλ =

0.516 is better than the one on the right with a AUCλ = 0.847 due to a lower value under the

curve of the lost-track ratio.

In following chapters, AUCinv will be used de�ned as the inverse of the AUCλ:

AUCinvt = 1−AUCt (2.31)

where t is the frame number ranging from 0 (1) to indicate worst (best) performance.

Figure 2.7: Lost Track Ratio examples (from [7])

2.3.4 Summary

Once all metrics were studied, a selection of the most interesting ones was done and can be

found in Table 2.1. These metrics were selected due to simplicity and accuracy, and also as they

seem to provide di�erent information regarding tracking results. Single target metrics depicted

in Table 2.1 will be used in the study of the evaluation protocol.

Target Classi�cation Metrics

Single target
Frame-based SFDA
Object-based ATA, ATE, AUCInv, TC

Table 2.1: Selected metrics for performance evaluation of video object tracking
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2.4 Datasets

Several datasets were analyzed (in order to obtain a wide view of available data) and are detailed

in Appendix B. A summary of the information regarding those datasets is summarized in Table

??, which shows that there is a lack of datasets with enough test sequences (and corresponding

annotations) to analyze some of the most important issues in video tracking. The Table includes

information obtained by a thorough study of each dataset so an understanding of the issues

presented in each sequences was obtained.

Dataset Description # Seq GT AvailableDesc ComplexMov Illumination Occlusion SimilarObjs ScaleCha

SPEVI
Single Single

person/face
detection and

tracking

5 Yes Sequence
√ √ √

Multiple Multiple
person/face
detection and

tracking

3 Yes Sequence
√ √ √

ETISEO Indoor and
outdoor scenes

86 Yes No
√ √ √ √ √

2000 Outdoor people
and vehicle
tracking

1+1 No No
√ √ √

2001 Outdoor people
and vehicle
tracking

5+5 No No
√ √ √

PETS 2006 Person and
baggage detection
in train station

28 No No
√ √ √ √

2007 Loitering,
attended and
unattended
luggage

1+9 No No
√ √ √ √ √

2010 Crowd activities 1+3 No No
√ √ √ √ √

CAVIAR People tracking
in a mall

17 Yes No
√ √ √ √

VISOR Indoor Indoor people
tracking with
occlusions

6 No No
√ √ √ √

i-Lids Abandoned
luggage, parked

vehicle

7 No No
√ √ √ √ √

Clemson Head tracking 16 Yes Sequence
√ √ √ √ √

MIT Tra�c Dataset Vehicle tracking 20 No No
√ √ √ √ √

Table 2.2: Study of the characteristics of detailed datasets.
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Chapter 3

Selected Tracking Algorithms

This chapter presents the selected algorithms to be evaluated in this project. First, a brief intro-

duction including an overview of the algorithms is presented (section 3.1). In the next sections,

an in-depth description of the following deterministic tracking algorithms is explained: Tem-

plate Matching (section 3.2.1), MeanShift (section 3.2.2), Adaptive MeanShift (section 3.2.2.5),

Corrected Background Weighted Histogram (section 3.2.3) and Scale and Orientation Adaptive

MeanShift Tracking (section 3.2.4). The the probabilistic Particle Filter framework is detailed

(section 3.3.1), followed by a presentation of the algorithm for color-based particle �lters (section

3.3.2).

3.1 Introduction

As mentioned in Section 2.2.5, kernel-based video tracking is one of the main categories in

which region trackers are grouped. Kernel histogram methods basically use a weighting kernel

as well as a histogram to represent the target. These tracking algorithms can be viewed as the

midpoint between blob and pixel oriented algorithms. Hence, we have selected the most relevant

deterministic and probabilistic kernel-based algorithms.

The most basic tracking algorithm is Template Matching (TM), in which a model of the

target is created in the �rst frame considering the spatial localization of the intensity values and

then, it is searched for in the following frames [27].

MeanShift tracker (MS) is the most popular kernel tracking algorithm due to its simplicity

and e�ciency. The standard version is implemented by representing the regions with color

histograms. Then, the histograms are associated and �nally the best candidate is located in

each frame. The use of color histograms is motivated by its robustness to scaling, rotation and

partial occlusion [44]. Nevertheless, MeanShift is not a perfect algorithm and its performance

decreases when some of the target features appear also in the background (clutter or similar

objects scenarios).
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For avoiding the above-mentioned limitation, several extensions have been proposed. The

Corrected Background Weighted Histogram (CBWH) presented in [45] allows to deal with clutter

in the background. Not only that, but it also provides great tracking results even if the target

is not properly initialized. Moreover� the Scale and Orientation Adaptive MeanShift Tracking

algorithm (SOAMST) added the ability to track objects that change its scale and orientation

(for example, a vehicle moving further away from the camera and therefore, changing its size).

It tries to emulate the ability Particle Filter algorithm to deal with target changes (e.g, scale,

appearance) while using a deterministic approach.

Currently, the Particle Filter has been proposed for performing probabilistic video tracking

where the video tracking estimation is non-linear and non-Gaussian. Opposed to use of a �xed

search area for locating the target in the deterministic approaches, it proposes to sample the

search space (e.g., target location) trying to guess the movement and size of the target. Among

existing approaches, Color-based Particle Filter (CPF) is widely used due its easy implementation

and understanding.

3.2 Deterministic video tracking

3.2.1 Template Matching

Template matching is one of the simplest techniques used in digital image processing. Its ap-

plications are numerous, including (but not limited to) edge detection, face recognition systems,

medical image processing... as well as tracking [27]. The main idea of this tracking algorithm

is to de�ne the image that will be consider as a template. Then, this image is located in each

frame by comparing pixel intensities. The algorithm can be described by the following steps:

1) Localization and selection of the target. A template is created with the information from

the �rst frame. This can be done using speci�c object detector or manually provided (e.g,

using ground-truth information)

2) Then, within a loop that covers each frame, the algorithm calculates the SSD (sum of

squared di�erences of the image). The SSD sign is reversed and normalized to range [0,1]

and can be viewed as a squared Euclidean distance. The SSD in the position (i, j) is:

d(i, j) =

i+Tx∑
x=i

j+Ty∑
y=j

(I1(x, y)− I2(x− i, y − j))2 (3.1)

where I1 is the image for searching the template (e.g., the whole frame), I2 is the template,

Tx and Ty are the width and height of the template image, and i and j range from 0 to

the width and height of the image respectively.

26



3) Afterward, the point (i, j) with maximum SSD is found, with will be considered the center

of the target.

4) After the box around this point (i, j) is created using the same size of the template, the

algorithm starts the loop again in order to locate the target in the next frame.

Figure 3.1: Example of TM algorithm

Brief analysis Even though this algorithm is fast and simple, there are several limitations

that have to be taken into account when using it for tracking. Since the algorithm searches for an

area equal to the template created by means of the color of each pixel, it does not consider changes

in illumination or size, occlusion or rotation of the target. Moreover, the search is restricted to

locating the maximum SSD value and, therefore, there is no possibility of estimating the size of

the target.

3.2.2 MeanShift

MeanShift was originally proposed by Fukunaga and Hostetler in 1975 [46] as a generic clustering

algorithm. For its use in tracking, the main idea is to construct histograms of both the target

and the candidate regions including information of a certain feature (e.g, color). Later on, both

histograms are compared and their similarity is measured (using, for example, the Bhattacharyya

coe�cient). Here, we brie�y review the algorithm presented in [44].

3.2.2.1 Target representation

In the next formulas, q̂ is the normalized histogram of the target model, and p̂ (y)is the target

candidate:

q̂ = {q̂u} u=1...m (3.2)
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p̂ (y) = {p̂u (y)}u=1...m (3.3)

Target model and target candidate q̂u is the probability of the uth element in the target

model (normalized histogram). When x∗i represents the normalized pixel locations in the region

de�ned as the target model and k (x) is a Epanechnikov kernel as depicted in Figure 3.2 that

assigns smaller weights to pixels farther away from the center of the target, the probability of

the feature u = 1...m in the target model is computed as:

q̂u = C

n∑
i=1

k
(
‖x∗i ‖

2
)
δ [b (x∗i )− u] (3.4)

where δ is the Kronecker delta function, b is a function that associates the pixel at location

x∗i to the index b (x
∗
i ) of its bin in the quantized feature space and C is a constant de�ned by:

C =
1∑n

i=1 k
(
‖x?i ‖

2
) (3.5)

Figure 3.2: Epanechnikov Kernel: k(x)

The target candidate p̂ (y) is obtained similarly to the target model.

3.2.2.2 Bhattacharyya coe�cient

As a measure of similarity between the model and the candidate, the distance or coe�cient of

Bhattacharyya is calculated:
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d(y) =
√
1− ρ [p̂(y), q̂] (3.6)

where the sample estimate of the Bhattacharyya coe�cient between p and q is:

ρ̂(y) ≡ ρ̂ [p̂(y), q̂] =
m∑
u=1

√
p̂u(y)q̂u (3.7)

3.2.2.3 Target localization

Distance minimization The goal is to minimize the distance in Equation 3.6 is equivalent

to maximize the coe�cient of Equation 3.7, which, if the target candidate does not changes

drastically from the initial (a condition easily met in consecutive frames), can be approximated

linearly and reorganiced as proposed in [44]:

ρ [p̂(y), q̂] ≈
1

2

m∑
u=1

√
p̂u(ŷ0), q̂u +

Ch
2

nh∑
i=1

wik

(∥∥∥∥y − xih

∥∥∥∥2
)

(3.8)

where

wi =
m∑
u=1

√
q̂u

p̂u (y)
δ [b (xi)− u] (3.9)

and

Ch =
1∑nh

i=1 k
(∥∥y−xi

h

∥∥2) (3.10)

wherei represents the number of frame and h represents the bandwidth, (i.e., the number of

pixels considered in the localization process).

In order to minimize the distance, and since the �rst term of Equation 3.8 is not dependent

of y, the second term has to be maximized. The kernel is recursively moved from the current

location ŷ0 to the new location ŷ1 according to the relation

ŷ1 =

∑nh
i=1 xiwig

(∥∥y0−xi
h

∥∥2)∑nh
i=1wig

(∥∥y0−xi
h

∥∥2) (3.11)

where g(x) = −k′(x), being k′(x) the derivative of the Epanechnikov kernel and assuming it

exists for all x ∈ [0,∞) except for a �nite set of points.

3.2.2.4 Algorithm

The tracking algorithm proposed in [44] can be summarized in the following steps:

1) The tracking algorithm is initialized, meaning that a model is created based on the �rst
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frame. That includes de�ning the target location (with the information contained in the

ground-truth data) as well as creating the target model by calculating the normalized

histogram.

2) Then, the algorithm enters in a loop to process each frame. Given the target model q̂u and

the position in the previous frame ŷ0. For each iteration, the candidate model is obtained

(by creating a weighted histogram of the candidate region), and the weights are calculated

as shown in Equation 3.9.

3) These weights are backprojected to each of the pixels in the candidate window. The result

image is known as backprojection image and contains the information that determines the

probability that each pixel has of belonging to the target as seen in Figure 3.3.

4) The new centroid is calculated and the new location is found according to Equation 3.11.

5) The convergence of the algorithm is studied: while the Bhattacharyya coe�cient between

the histogram of the new location and the one of the model is smaller than the one between

the older location and the model, the new location is re-calculated by using the semi sum

of the new location (ŷ1) and the previous location (ŷ0):

While ρ [p̂(ŷ1), q̂] < ρ [p̂(ŷ0), q̂]

Do ŷ1 =
1
2(ŷo + ŷ1)

Evaluate ρ [p̂(ŷ1), q̂]

6) If after these operations MeanShift is converging (‖ŷ1 − ŷ0‖ < ε, being ε a set threshold),

the algorithm returns to step 2 and continues with the next frame. Otherwise, the candidate

model is reinitialized (ŷ0 = ŷ1) and the algorithm returns to step 3 until the new center is

found.

Brief analysis MeanShift is one of the fastest tracking algorithms. It is robust when dealing

with small occlusions, camera movement or blurring. On the other hand, it is not capable

of dealing well with scale changes or signi�cant changes in the object's features (such as big

illumination changes or occlusions). Since it uses histograms, it does not contain information

regarding spatial structure. Moreover, the use of color information is limited in presence of

clutter (e.g., another object with similar colors appears next to the target the algorithm might

mix them up).

3.2.2.5 Adaptive MeanShift

The adaptive MeanShift algorithm is a natural extension from the previous algorithm. In order

to achieve a robust tracker for gradual changes (such as illumination changes), the target model
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Figure 3.3: Steps of MS algorithm

q̂ is computed for each k frame:

q̂k =

q̂u0 MeanShift

q̂uk Adaptative MeanShift
(3.12)

The rest of the algorithm is identical to MeanShift.

3.2.3 Corrected Background Weighted Histogram

One of the disadvantages of the MeanShift algorithm is the fact that when the background

contains features similar to those in the target, the tracking algorithm may lose the desired

object (target). Comaniciu et al [44] proposed a new weight assignment method so that this

problem could be solved by an elimination of the background information in the initialization of

the target.

Unfortunately, as studied in [45], this calculations yielded a BWH (Background Weighted

Histogram) proportional to the one without the new additions, and since MeanShift is invariant

to a scale transformation of the weights, this method was proven to not work. The tracking

result with the new weight was exactly the same as it was before the modi�cation including the

background weighted histogram.
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3.2.3.1 Target model

A Corrected Background Weighted Histogram was proposed in the same article [45], allowing

to correctly assign di�erent, non-proportional weights to the pixels belonging to the background

with the target model and therefore, providing a good target representation in situations with

high cluster in the scene.

In this case, the modi�ed template model was created according to Equation 3.13:

q̂′u =
q̂u × v̂u
Cn

(3.13)

where q̂u × v̂u is the multiplication of the bins of the target model histogramq̂u and v̂u is

de�ned in [44] as: {
vu = min

(
ô?

ôu
, 1

)}
u=1...m

(3.14)

and Cn is a normalization constant Cn = q̂u · (v̂u)T , obtained as the product of a row vector and

column vector.

In Equation 3.14, {ôu}u=1...m is the discrete representation (histogram) of the background in

the feature space and ô? is the smallest nonzero entry. The background is obtained by expanding

the area of the template and considering a box twice the size of the original target model. The

objective is to determine which binds of the target model histogram are similar to those of the

background.

In Figure 3.4a diagram of the histograms q̂u, ôuand v̂u is depicted:

Figure 3.4: Diagram of ôuand v̂u

The transformation in 3.13 diminishes the importance of those features which have low v̂u ,

i.e., are prominent in the background. The weights in this algorithm can therefore be written as:

w
′′
i =

√
q̂
′
u′

p̂u′(y)
(3.15)

In Figure 3.5 and Figure 3.6 a representation of how the histograms for a synthetic sequence

and a simple sequence look like. In the �rst line there is the representation for the correct
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annotation (no extra background): in (a) we �nd the target model, in (b) we �nd the target

model histogram with MS, and in (c), the corrected target model histogram with CBWH.

In the second line we �nd depicted the scenario where the annotation was incorrect and

included 50% of background. Again, (d) shows the target model, in (e) we �nd the target model

histogram with MS and �nally, (f) depicts the target model histogram with CBWH.

In 3.5 there is a clear di�erence between MS and CBWH when the object is not properly

initialized, as can be seen by the comparison of images (e) and (f). Whereas the MS target model

histogram (e) shows high values around bin 0 (black color), the CBWH target model histogram

has discarded those values as part of the background and does not take those bins into account,

providing a histogram very similar to the one where the initialization was properly done (c).
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Figure 3.5: Histogram comparison with di�erent initializations for a synthetic sequence. Data
represented corresponds to (a) (d) appearance of the target, (b) (e) its histogram with MS and
(c) (f) its histogram with CBWH

In Figure 3.6 the target model histogram with CBWH when the initialization is properly

done (c) shows better (i.e., higher) results for the bins. However, when the initialization is not

correct, the results are the same with both MS and CBWH (e) and (f), meaning that in this

case, CBWH does not behave better. A reason for the decrease in this performance might be

the fact that the target has di�erent colors and is not completely uniform, therefore making it

more di�cult to separate background colors from target colors.
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Figure 3.6: Histogram comparison with di�erent initializations for a simple sequence. Data
represented corresponds to (a) (d) appearance of the target, (b) (e) its histogram with MS and
(c) (f) its histogram with CBWH

3.2.3.2 Algorithm

The algorithm described in [45] contains the following steps:

1) The �rst step is to create the target model according to Equation 3.4, the background-

weighted histogram ({ôu}u=1...m) and {vu}u=1...m according to Equation 3.14 and then

obtain the transformed target model q̂u as shown in Equation3.13. The position yo of the

target region is initialized from the previous frame.

2) Set k = 0.

3) Calculate the target candidate model p̂ (yo) in the current frame.

4) Calculate the CBWH weights according to Equation 3.15.

5) Calculate the new position of the candidate region using Equation3.11.

6) Update values of d = ‖y1 − y0‖, yo = y1 and k = k + 1. Being ξ1 the error threshold, ξ2

the background model update threshold and N the maximum number of iterations, enter

a loop.
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(a) If d < ξ1 or k > N

Calculate {ô′u}u=1...m and {v′u}u=1...m based on the tracking result from the current

frame.

If ρbetween ôu and ô
′
u is smaller than ξ2 , then {ôu}u=1...m = {ô′u}u=1...m and {vu}u=1...m =

{v′u}u=1...m and q̂′u is updated by Equation 3.13.

Stop iteration, go to step 2.

(b) Otherwise: go to step 3.

Brief analysis As previously mentioned, this algorithm was created for dealing with the

situation of similar objects to the target in the background, therefore, the main advantage is

that it is more robust to clutter than MS. Also, it provides good results even if the target is not

properly initialized in the �rst frame and thanks to the faster convergence, the tracking algorithm

is faster than MS. The rest of the limitations of MS also apply to this algorithm.

Figure 3.7: Example of MS (top row) and CBWH (bottom row). Frames shown correspond to
the table tennis sequence of MPEG7 content set[45] .

3.2.4 SOAMST

The Scale and Orientation Adaptive MeanShift Tracking algorithm proposed in [47] is intended to

address the problem of scale and orientation changes. As previously stated, MeanShift tracking

estimates the position of the target but not its scale nor orientation. The di�erence between

CAMSHIFT [48] and SOAMST is that while the former uses the weight image determined by

the target model, the later employs the weight image derived from the target model and the

target candidate model in the target candidate region in order to estimate the target scale and

orientation.
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3.2.4.1 Estimating the target area

The weighted area of the target in the candidate region can be viewed as the the zeroth order

moment.

Moo =
n∑
i=1

w(xi) (3.16)

where xi are the pixels in the target candidate region centered at y , and w(xi) are the weights

assigned to those pixels.

Using Equation 3.16 and since the Bhattacharyya coe�cient is an indicator of similarities

(the lower the coe�cient, less features from the target are in the candidate region), the estimated

accuracy of takingMoo as the target area is directly proportional to the Bhattacharyya coe�cient.

Hence, the target is estimated as follows:

A = c(ρ)Moo (3.17)

where c(ρ) is a monotonically increasing function (obtained empirically in [47]) with regards

to the Bhattacharyya coe�cient ρ(0 ≤ ρ ≤ 1). The proposed expression of c(ρ) in [47] is:

c(ρ) = exp(
ρ− 1

σ
). (3.18)

When ρ decreases (meaning that the candidate model is not identical to the template), Moo

will be much bigger than the target area since c(ρ) is smaller than 1, A will not be biased by

containing too much information from the background. When the target gets lost (ρ tends to

0), c(ρ) will be very small, and therefore A is close to 0.

In Table 3.1 the tracking results regarding three di�erent scenarios is presented: in the �rst

case, the estimated region contains more information from the background area than the target,

creating a bigger estimation error that decreases in comparison withMoo. In the second case, the

information from the target area is bigger than the information from background, and therefore

a smaller error is introduced (which also decreases and becomes smaller than the one withMoo ).

Lastly, the third case is a scenario where there is no background area information (meaning that

the target is perfectly initialized and the Bhattacharyya coe�cient is therefore 1), and therefore

no error is introduced and the video tracking is correctly performed.
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Real Target area 100 150 240

Background area 140 90 0

Bhattacharyya coe�cient 0.6454 0.7906 1

Estimated area A under Moo 150 +50% 195 +30% 240 0%
di�erent σ and the σ = 1.5 118.42 +18.42% 169.59 +13.06% 240 0%
relative estimation σ = 1 105.22 +5.22% 158.16 +5.44% 240 0%

error (%) in σ = 0.8 96.29 -3.71% 150.09 +0.06% 240 0%
comparison with Moo σ = 0.5 73.81 -26.19% 128.28 -14.48% 240 0%

Table 3.1: Area estimation of the target with CBWH (extracted from [47])

3.2.4.2 Moment features in MeanShift tracking

The moments of the weight image can be calculated as:

Mpq =

nh∑
i

wix
pyq (3.19)

where pair (x, y) is the coordinate of pixel i in the candidate region.

And now, the second order center moment can be described as:

µ20 =M20/M00 − x2 (3.20)

µ11 =M11/M00 − xy (3.21)

µ02 =M02/M00 − y2 (3.22)

where (x, y) represents the centroid of the target candidate region, and this expressions can

be rewritten as a covariance matrix used to estimate the width, height and orientation of the

target:

Cov =

[
µ20 µ11

µ11 µ02

]
(3.23)

3.2.4.3 Estimating the width, height and orientation of the candidate

The Equation 3.23 can be decomposed as:

Cov = U × S × UT =

[
u11 u12

u21 u22

]
×

[
λ21 0

0 λ22

]
×

[
u11 u12

u21 u22

]T
(3.24)
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where λ21 and λ22 are the eigenvalues of Cov. The orientation of the two main axes of the real

target in the target candidate region can be expressed as (u11, u21)
T and (u12, u22)

T . This is done

by �nding the angle (θ) between the axes.

If the axis of the ellipse used to represent the target are a and b (semi-major and semi-minor

axis respectively), a = kλ1 and b = kλ2 , where

k =

√
A

πλ1λ2
(3.25)

and therefore:

a =

√
λ1A

πλ2
(3.26)

b =

√
λ2A

πλ1
(3.27)

Finally, the covariance matrix becomes:

Cov =

[
u11 u12

u21 u22

]
×

[
a2 0

0 b2

]
×

[
u11 u12

u21 u22

]T
(3.28)

3.2.4.4 Determining the search window in next frame

Now that the location, scale and orientation of the target are estimated, we need to determine

the location of the target in the next frame. In order to do so, the covariance matrix is modi�ed

so that a increase of 4d pixels of the target region is made. This increase means that the next

search region will be bigger and therefore will have a higher probability of including the target.

Figure 3.8: Tracking with SOAMST algorithm of a synthetic video sequence. Blue ellipses
represent estimated target region, red ellipses represent target candidate region. Frames 1, 20,
30, 40, 50, 60, 70.[47]
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Figure 3.9: Tracking with SOAMST algorithm of a synthetic video sequence with scale changes.
Green ellipses represent estimated target region, red boxes represent target candidate region.
Frames 1, 20, 40 and 60.

3.2.4.5 Algorithm

The �rst 4 steps from the MS algorithm are performed also in the SOAMST algorithm. After

that, the calculations to estimate the width, height and orientation of the target candidate model

are performed using Equation 3.28. Therefore, the algorithm can be detailed as:

1) The �rst step is to initialize the algorithm by calculating the target model q̂ and initializa-

tion of the position of the target yo.

2) Set the number of iterations k = 0.

3) Calculate the candidate model in the current frame p̂(y0).

4) Calculate and assign the weights {wi}i=1...n with Equation 3.9.

5) Calculate the new position of the target y1 with Equation 3.11.

6) Update values of d = ‖y1 − y0‖ and yo = y1 . Being ξ the error threshold and N the

maximum number of iterations, enter a loop.

(a) If d < ξ1 or k ≥ N
Stop and go to step 7.
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(b) Otherwise

k = k + 1

Go to step 3.

7) Estimate width, height and orientation from the candidate model using Equation3.28.

8) Estimate the initial candidate model for next frame adding 4d pixels to the candidate

window.

Brief analysis As previously mentioned, this algorithm was created in order to deal with the

problem that arises when MeanShift is trying to follow an object which changes its scale or

rotation. The main disadvantage (other than the ones that are implied from MeanShift) is the

fact that it is slower than the previous algorithms.

Figure 3.10: Comparison of MeanShift (upper row), Camshift (medium row) and SOAMST
(lower row)[47]

3.3 Probabilistic video tracking

3.3.1 Particle Filter framework

The Particle Filter [23] is employed in order to estimate the state of a system that changes with

time. This algorithm, also known as SIS (Sequential Importance Sampling) or Condensation

Algorithm comprises a set of particles (samples) representing the possible states in the space

and a set of weights associated with each particle, representing a posteriori values of the f.d.p.
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The fundamental idea in this algorithm is to represent the posterior density by a set of random

particles with associated weights and then compute estimates based on this data.

The goal of the particle �lter is to estimate the state xk given observations yk [49], and the

optimal estimate is given by:

x̂k = E
[
xk|Y k

o

]
(3.29)

where Y k
o is the sequence of observations up to frame k.

For video tracking, the steps for the Particle Filter are:

1) Model: a model is created using a color histogram (as in the MS algorithm)

2) Initialization of the samples1: to start the target tracking, the Particle Filter creates a set

of random points over the image. At this point, the particles can be created randomly or

employing some a priori information (target's size, approximate position, etc)

3) Prediction: once the samples of the previous frame are created, a small modi�cation in the

state is computed, for example, adding noise that will contribute to the variability of the

system. This will help to estimate the state of the target in the current frame.

4) Update: each sample gets an assigned weight depending on the similarity with the target

model. The data of the current frame is used to compute this similarity.

5) Sampling: this steps allows to get rid of particles with low weights, speeding up the process

and discarding non-useful data. The set of samples is designed for the analysis of the next

frame.

Once the sampling stage is �nished, this process is repeated from 3 to 5 until the end of the

sequence is reached.

3.3.2 Color-based PF algorithm

The Particle Filter tracking algorithm is implemented based on the description of [50]. For each

time step, the output of the �lter is the particle (or sample) set Xt =
{
(x

(n)
t , π

(n)
t )
}
n=1,...,N

of

N weighted particles, where each particle x
(n)
t represents one hypothetical state of the target

weighted by π
(n)
t . Each particle x

(n)
t at time t is de�ned by the following parameters:

x
(n)
t = (x, y,Hx, Hy, θ) (3.30)

where x and y represent the position of the target ellipse, Hx and Hy are the semi axes of

the elliptic region and θ is the angle of the target ellipse (we have omitted the t sub indexes of

these parameters for clari�cation purposes).

1Samples and particles are synonyms in this explanation
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Figure 3.11: The particle �lter from [49]

Given the particle set Xt−1 and the target model q:

xt = Axt−1 + zt−1 (3.31)

where xt is a particle (sample) of the distribution representing an ellipse, A de�nes the deter-

ministic component of the �rst order model to describe the movement at a constant velocity of

a region and zt−1 is a multivariate Gaussian random variable (probabilistic component).

An iteration for the color-based Particle Filter is detailed below:

1) Propagate each particle from the new set by a linear stochastic di�erential equation:

s
′(n)
t = As

′(n)
t−1 + z

(n)
t−1 (3.32)
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2) Calculate color distribution with:

p
(u)

x
(n)
t

= f
I∑
i=1

k


∥∥∥x(n)t − xi

∥∥∥
a

 δ [h(xi)− u] (3.33)

for each particle of the set Xt, then calculate Bhattacharyya coe�cient (again, for each

particle of the set Xt) and weight each particle of the set Xt with:

π
(n)
t =

1√
2πσ

e−

1−ρ

p
x
(n)
t

,q


2σ2 (3.34)

where σ is the variance of the Gaussian. In this case, the kernel is:

k =

1− r2 : r < 1

0 : otherwise
(3.35)

although an Epanechnikov Kernel could also be used.

3) Estimate the mean state of the set Xt:

E [Xt] =

N∑
n=1

π
(n)
t x

(n)
t (3.36)

4) Resampling: select N particles from the particle set Xt−1 . This selection is done based

on the weight of each particles, according to a function that eliminates samples with lower

weight such as:

x
′(n)
t−1 = f(x

(j)
t−1, π

(n)
t ) (3.37)

Lastly, and update of the set is done by �nding the smallest probabilities within a threshold.

Brief analysis Since this implementation employs multiple state hypotheses and a model of

the system dynamics, it provides a robust framework to model uncertainty. And since less likely

objects are eventually removed from the tracking process, particle �lters can deal with short

occlusions. Some of its disadvantages are the high computational complexity (as the number of

particles increases) as well as the di�culty of optimally estimating the number of particles.
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Figure 3.12: Example of the color-based particle �lter algorithm for a sequence with occlusions
(frame 19) and scale changes (frames 31 and 81) [50]
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Chapter 4

Proposed Evaluation Protocol

This chapter presents the proposed protocol for evaluating video tracking algorithms. First,

the motivation for designing an evaluation protocol for tracking is given in section 4.1. Later,

an overview of the protocol and the covered issues are described in section 4.2, followed by a

de�nition of some of the most common issues in video tracking in section 4.3. The complete

dataset including those issues (with di�erent levels of complexity) is detailed in section 4.4.

Finally, the aspects analyzed in the protocol are presented in section 4.5.

4.1 Introduction

As studied in section 2.4, one of the issues that appear when dealing with the creation of a

tracking algorithm is the lack of appropriate datasets with both sequences and annotations for

its evaluation. Moreover, several metrics exists being not clear which one should be used to

evaluate tracking.

In this context, we propose an extensible methodology to evaluate video tracking algorithms.

It provides a complete evaluation framework including the test video sequences (dataset), the

set of evaluation metrics and the aspects to understand the advantages and drawbacks of the

tracking algorithm under evaluation.

4.2 Evaluation framework

The proposed framework for evaluating video trackers is depicted in Figure 4.1. As it can be

observed, it is composed of two stages: tracking analysis and performance evaluation.

4.2.1 Tracking Analysis

Represents the tracking algorithm that we want to evaluate.
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Figure 4.1: Proposed evaluation framework for video object tracking.

• Input Data: video data to be analyzed. In order to evaluate the accuracy of the algorithm,

appropriate data have to be used considering the tracking task (e.g., video sequences with

noise, clutter, illumination changes, complex movement, etc).

• Con�guration: includes all the parameters of the tracking algorithm that the user can

manually set (e.g., window search).

• Results: a �le is generated with the tracking data containing information of the position

and size of the target. It has a speci�c format (the same as the ground-truth �le) in order

to apply the protocol, and is one of the two input �les of the Performance Evaluation stage.

4.2.2 Performance Evaluation

Describes the evaluation of the generated tracking data.

• Tracking results: the results �le as described above.

• Ground-Truth: this �le contains the annotations regarding the true location of the target

throughout the whole sequence. There is one row for each frame of the video, and eight

columns corresponding to the frame number, the target id, the target label, the position

(x and y) of the target center, the half-axis (Hx and Hy) of the ellipse that �ts the area of

the target and the angle of this ellipse.

• Performance Results: these results are obtained by comparing the ground-truth and the

results �les and are later stored in a plain text �le and a csv �le.

4.3 Modeled problems

For designing a dataset to evaluate video tracking, several issues have to be taken into account

corresponding to a number of problems that can arise in real-world conditions. Although some
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(a)

(b)

(c)

Figure 4.2: Example of tracking issues: (a) Appearance change, (b) Scale changes and (c) Similar
objects in background. Target annotations are represented by means of a green ellipse and similar
objects are indicated with a red box.

issues may not be easily noticeable for the human eye (such as slight changes in the intensity

of the pixels), cameras are able to capture them. Hence, they have to be considered when the

tracker is evaluated. The following issues have been modeled in the dataset: complex movement,

gradual and abrupt illumination changes, noise, occlusion, scale changes, and similar objects.

An example of some of the mentioned issues is depicted in Figure 4.2. .

4.3.1 Complex or fast movement

When the target changes its trajectory unexpectedly or increases its speed abruptly, the tracker

might lose it for a few frames (and sometimes even more). In most of existing trackers, this issue

is overcame by increasing the search area (or the prediction strategy); the bigger it is, the less
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this issue will a�ect the tracker performance. However, execution time is also increased. The

factor to measure these sequences is the speed increase of the target.

4.3.2 Gradual illumination changes

If a sequence is long enough the illumination might change due to weather conditions, time

passing, etc. In this case, the whole illumination of the scene changes gradually and globally

(i.e., a�ecting the whole image). The factor to measure gradual illumination changes is the pixel

intensity di�erence between low and high illumination conditions for each sequence.

4.3.3 Abrupt illumination changes

When the target changes its position and enters in a di�erently illuminated area the tracker

might be confused and lose the target. This issue is very common in real sequences (i.e., when a

target enters in a shadowed area that presents di�erent illumination or, when tracking indoors,

lights go on/o� suddenly). The factor to measure abrupt illumination changes is the di�erence

between the average illumination of the two areas that present di�erent illumination.

4.3.4 Noise

Noise appears as random variations over the values of the pixels of the image and can signi�cantly

degrade the quality of the extracted features. Hence, tracking performance might be a�ected.

In this case, we model di�erent noise level by adding white Gaussian noise to the image with

di�erent mean values.

4.3.5 Occlusion

An occlusion is de�ned when an object gets between the camera and the target. It can be partial

(only part of the target is occluded) or total (where the whole target is occluded for at least

1 frame). The factor to measure occlusions is the percentage of the target occluded by other

objects.

4.3.6 Scale changes

As targets can move at variable distances to the camera, scale changes have to be considered

(specially for tracking in videos that correspond to large areas). A scale change happens when a

target moves across a scene and increases or decreases its size due to changes in its distance from

the camera. The factor to measure scale changes is the percentage of size change experienced by

the target in the last frame with regards to its size in the initialization frame.
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4.3.7 Similar objects (clutter)

If there are objects similar in the feature spaces considered in the target model (e.g., color,

texture, edges), the tracker might be confused by these objects and start following a wrong

target that has similar characteristics to those of the target. The factor to measure scenes with

similar objects in the background was the degree of complexity in each sequence, which was

obtained subjectively1.

4.3.8 Con�guration issues

Another set of issues is the one that concerns the con�guration of the tracker. Not only the

sequences are the source of tracking errors: if the system is not properly designed and parameters

are not properly selected, the tracker's performance will decrease. Some of this issues are, for

example, the selection of the optimum algorithm's parameters (such as search window size,

number of particles, etc) or the correct initialization of the target.

4.4 Dataset

The selection of the test scenarios is one of the most important steps when developing an evalua-

tion protocol. Each previously mentioned issue has to be represented in the dataset for achieving

a correct understanding of the capabilities of the tracking algorithm. Moreover, di�erent levels

of complexity have to be covered in the test data. Hence, this dataset is designed with four

complexity levels including both real and synthetic sequences. They are described as follows.

4.4.1 Level 1: Synthetic Sequences

For the �rst level, we use synthetic sequences that have been arti�cially generated to address

a particular tracking problem. These sequences are interesting because they provide testing

conditions in a controlled environment allowing to isolate the issues. However, algorithms are

not expected to perform in a similar way for real-world sequences.

In order to do so, simple scripts have been composed using MATLAB2 to generate such

sequences. These scripts allow to de�ne parameters in each sequence such as speed of target, size

of occlusive objects, illumination change speed (gradual vs. abrupt), noise level, etc. A summary

of the generated sequences is listed in Table 4.1. Sample frames are shown in Figure 4.3.

1The degree of complexity was obtained by analyzing the sequences and taking into account several factors
such as the number of similar objects in the scene, the closeness to the target and the amount of frames where
similar objects appeared.

2These scripts are based on MATLAB code provided by the VPULab.
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Problem Sequence Criteria Factor Frames

S1 10% 100
Complex S2 The position of the object changes 20% 100
Movement S3 randomly with a speed factor (changing 30% 100

S4 in each sequence) 40% 100
S5 50% 100

S1 0% 100
Gradual S2 The illumination of each sequence changes 25% 100

Illumination S3 gradually until a maximum intensity 50% 100
S4 di�erence is reached in each sequence 75% 100
S5 100% 100

S1 Half of the image in each sequence has a 10% 100
Abrupt S2 di�erent pixel intensity (added to the 20% 100

Illumination S3 original image) until a maximum intensity 30% 100
S4 di�erence is reached in each sequence 40% 100
S5 50% 100

S1 0.01 100
S2 A white Gaussian noise with 0.02 100

Noise S3 di�erent mean in each sequence is 0.03 100
S4 added to the original sequence 0.04 100
S5 0.05 100

S1 15% 100
S2 A second object exists in the scene 50% 100

Occlusion S3 occluding a percentage of the target 85% 100
S4 100% 100
S5 100% 100

S1 150% 100
Scale S2 The target increases its size throughout 225% 100

Changes S3 each sequence until a maximum size 350% 100
S4 (depending on the original size) is reached 650% 100
S5 1100% 100

S1 10% 100
Similar S2 An object similar to the target 30% 100
Objects S3 with a di�erent size in each sequence 60% 100

S4 increases the degree of complexity 80% 100
S5 90% 100

Table 4.1: Description of Level 1 sequences
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(a) (b)

(c) (d)

Figure 4.3: Synthetic sequences of Level 1 with the following issues: (a) Gradual Illumination
Change (GradualIllumination_S5), (b) Abrupt Illumination Change (AbruptIllumination_S5),
(c) Occlusion (Occlusion_S5), (d) Similar Objects in Background (SimilarObjects_S3).

4.4.2 Level 2: Simple Real Sequences

These sequences provide the second level of the evaluation protocol being the natural extension of

the synthetic ones detailed in previous sub-section. These sequences, recorded with a Panasonic

HDC-HS9 High De�nition camera, represent real testing conditions in a laboratory environment

de�ning controlled situations. The issues are as isolated as possible. Afterward, the annotation

for each sequence was created. A summary of these sequences can be found in Table 4.2.

4.4.2.1 Basic Sequence

Sequence with no issues: the movement is simple, there is no relevant amount of noise nor

illumination changes, no similar objects in background and no occlusion or scale changes. This

sequence will not be used as is in the tracking evaluation, but it serves to include di�erent noise

and illumination changes to generate the test data for those issues. An example of this sequence

can be seen in Figure 4.4.
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Problem Sequence Criteria Factor Frames

Complex S1 The target changes its speed and 50% 0% 216
Movement S2 position abruptly throughout the scene 75% 50% 205

S3 100% 100% 196

Gradual S1 The illumination of each sequence changes 25% 270
Illumination S2 gradually until a maximum amount 50% 270

S3 is reached. 75% 270

Abrupt S1 Half of the image in each sequence has a 20% 270
Illumination S2 di�erent pixel intensity until a 30% 270

S3 maximum amount is reached 40% 270

S1 A white Gaussian noise with 0.01 270
Noise S2 di�erent mean in each sequence is 0.02 270

S3 added to the original sequence 0.03 270

Occlusion S1 A second object exists in the scene <50% 321
S2 occluding a percentage of the target >80% 350
S3 100% 375

Scale S1 The target increases its size throughout 240% 454
Changes S2 each sequence until a maximum size 330% 430

S3 is reached 600% 500

Similar S1 The target moves in front of a similar 30% 150
Objects S2 object for di�erent lengths of time, 60% 280

S3 with di�erent degrees of complexity 90% 315

Table 4.2: Description of Level 2 sequences

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Example of Level 2, basic sequence, frames 0, 50, 100, 150, 200 and 250 from the
basic sequence
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Figure 4.5: Examples of Level 2 sequences including (from top row to bottom row): complex
movement, gradual illumination changes, abrupt illumination changes, noise, occlusion, scale
changes and similar objects.
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Figure 4.6: Example of a Level 3, Cars sequence, where the target is the black car in the front
at the left of the image that encounters similar objects as it moves to the left side of the image.

4.4.3 Level 3: Complex Real Sequences

The third level of the evaluation dataset includes sequences from previously existing datasets.

Most of them have been captured in non-controlled scenarios without containing any external

modi�cation (e.g., arti�cial noise), containing issues as isolated as possible. Since most of the

videos are too complex and include several issues in the same scene, sequences were cut in clips

to avoid the e�ect of various issues in the same sequence. As no information was provided for the

issues appearing in each sequence, this step requires a carefully study of the existing datasets.

Afterward, the ground-truth �le for each �nal clip was annotated.

These sequences are grouped in three categories according to the type of target as seen

in Table 4.3: cars (obtained from MIT Tra�c dataset [51] and Karlsruhe Cars dataset [52]),

faces (obtained from TRECVID 2009 [53], CLEMSON dataset [54] and VISOR [55]) and people

(obtained from PETS 2009 [56], TRECVID 2009 [53], i-Lids [57], CAVIAR [58] and PETS 2000

[59]). As each target presents di�erent characteristics, the tracking algorithm should be studied

depending on the type of the target. In the �rst set of videos the target is a car that is not easy to

annotate (i.e., the target model contains a high amount of background data) and it is composed

by few di�erent color regions as seen in some examples in Figure 4.6. In the second set, the target

is the face (or head) of a person, where the target is easy to annotate (i.e., the target model

contains a low amount of background data) and only a few di�erent color regions represent the

target as seen in Figure 4.7. Finally, the third set includes sequences where the target is a whole

person that is di�cult to annotate (i.e., the target model contains a high amount of background

data) and it is composed by several color regions as seen in 4.8.

A detailed description of the selected test sequences is available at Appendix C.

4.4.4 Level 4: Multiple Issues Sequences

This level contains the most complicated sequences, which are clips from other datasets that

include several issues. The subdivisions are the same as the ones detailed for Level 3 sequences.

Once the algorithms are tested for each issue individually, it is a good idea to check the per-
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Problem Sublevel Sequence Criteria Factor Frames

Faces S1 90% 83
Complex S2 The target changes its speed 30% 77
Movement People S3 abruptly throughout the scene 60% 69

S4 90% 58

S1 30% 100
Faces S2 The illumination of each sequence changes 60% 100

Gradual S3 gradually until a maximum intensity 90% 100
Illumination S4 di�erence is reached in each sequence 30% 60

People S5 60% 60
S6 90% 60

S1 30% 200
Cars S2 60% 300

S3 Part of the image in each sequence 90% 350
Abrupt S4 has a di�erent pixel intensity 30% 100

Illumination Faces S5 until a maximum intensity 60% 100
S6 di�erence is reached in each sequence 90% 100
S7 30% 60

People S8 60% 60
S9 90% 60

S1 30% 200
Cars S2 0.01 75

S3 0.02 75
S4 0.03 75

Noise S5 Sequences include natural noise (snow) or 0.01 100
Faces S6 a white Gaussian noise manually 0.02 100

S7 added to the original sequence 0.03 100
S8 with di�erent means 0.01 60

People S9 0.02 60
S10 0.03 60

S1 30% 132
Cars S2 60% 77

S3 90% 116
S4 Objects in the scene occlude a 30% 170

Occlusion Faces S5 percentage of the target 60% 99
S6 90% 304
S7 30% 54

People S8 60% 158
S9 100% 156

S1 60% 165
Cars S2 60% 281

Scale S3 The target increases or decreases its size 30% 282
Changes S4 throughout each sequence until a maximum size 90% 130

People S5 regarding the original size is reached. 90% 98
S6 60% 435
S7 90% 134

S1 30% 313
Cars S2 An object similar to the target 90% 65

Similar S3 appears on the scene near the target 60% 195
Objects S4 (degree of complexity) 90% 240

People S5 60% 154
S6 30% 54

Table 4.3: Description of Level 3 sequences
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(a) (b)

Figure 4.7: Example of Level 3, Faces sequences: (a) depicts a scenario including complex
movement and (b) shows a noise sequence.

(a) (b)

(c)

(d)

Figure 4.8: Example of Level 3, People sequences: (a) and (b) depict the gradual and abrupt
illumination changes scenarios (respectively), (c) shows an example of a man occluded by a
column and (d) shows an example of a scale change (where the target is the man in red with a
backpack).
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(a)

(b)

(c)

Figure 4.9: Example of Level 4, (a) Cars sequence, (b) Faces sequence, (c) People sequence.

formance in more realistic (and complex) scenarios, such as the ones below where several issues

appear in each video (as can be seen in Table 4.4). All these sequences were downloaded from the

MIT Tra�c dataset (cars) [51], CLEMSON dataset (faces) [54] and PETS 2009 dataset (people)

[56].

In Figure 4.9 (a), the target is the red car found in the middle of the intersection in the �rst

image. As it moves throughout the scene, there is a scale change (when it moves further away

from the camera) as well as an illumination change (when in enters the shadowed area). In (b),

the target is the face from the �rst image. In this sequence, the issues are similar objects in

the background (second image, where another person is behind the target) as well as di�erent

appearance changes (�rst, when the target is facing opposite the camera, and then when the

target looks sideways). In (c) (from the group of People in Level 4), the target is the man in

black in the right side of the image. As it moves, it becomes occluded (second image), changes

its size (third image) and encounters objects with similar color (similar objects in background,

last image).

57



Sequence Appearance Complex Illumination Occlusion Scale Similar

Changes Movement Changes Changes Objects

020_red ??? ??

Cars 020_silver ?? ??

020_whitevan ?? ?? ??? ???

seq_bb ?? ??

seq_jd ?? ???

seq_mb ??? ?? ??

Faces seq_ms ?? ???

seq_sb ??? ??? ??? ??? ??

seq_villains2 ? ?? ???

S2_L1_view001_1 ?? ??? ??

S2_L1_view001_2 ??? ?? ???

People S2_L2_view001_1 ? ?? ??

S2_L2_view001_2 ? ??

S2_L3_view001_1 ?? ?? ??

S2_L3_view001_2 ?? ???

Table 4.4: Level 4 Sequences and Issues

4.5 Performance criteria

In this protocol we consider the following performance criteria (i.e., aspects are to be evaluated):

accuracy (which measures how successful the algorithm is and therefore, a certain metric capable

of representing the success has to be selected from available ones as described in sub-section 5.1),

stability (which measures the performance change in di�erent runs), e�ciency (which measures

the execution time of the tracking algorithm) and parameters (which measures the variation of

the algorithm results when the parameters are modi�ed).

4.5.1 Accuracy Evaluation

In order to evaluate the selected algorithms, one metric was chosen: SFDA, which was detailed

in depth in 2.3, but as a reminder, SFDA (Sequence Frame Detection Accuracy) calculates

in each frame the spatial overlap between the estimated target location and the ground-truth

annotation..

SFDA =

∑t=Nframes
t=1 FDA(t)∑t=Nframes

t=1 ∃(N (t)
GT ORN

(t)
D )

(4.1)

where

FDA(t) =
OverlapRatio

N
(t)
GT+N

(t)
D

2

, (4.2)
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and N
(t)
GT and N

(t)
D represent the number of ground-truth and target annotations respectively in

the tth frame.

4.5.2 Stability Evaluation

The same algorithm is run several times and the variance of the results obtained is calculated.

In order to do so, the user manually determines the number of runs and then the whole tracking

analysis is repeated. In deterministic trackers, all results should be the same when applied to

the same sequence, no matter how many repetitions are done. On the other hand, when using

probabilistic trackers, is expected that results vary for each execution.

4.5.3 E�ciency Evaluation

The computational cost for each sequence and tracker is obtained. Afterward, a script calculates

the execution time per pixel (by dividing the total time by the number of pixels of the target)

for each algorithm, providing a way of comparing which algorithm was faster when taking into

account the sequences from the complete dataset.

4.5.4 Parameters Evaluation

The goal of this evaluation is to study the performance of the algorithm when selecting di�erent

values of its parameters. There are two di�erent cases analyzed in this section: the optimum

parameters and the initialization of the algorithm.

4.5.4.1 Optimum Parameters Evaluation

In the �rst case, several parameters (di�erent for the deterministic and probabilistic algorithms)

were chosen, as well as the test range for the values of each parameter. After running the system

for each value, the accuracy results (using the SFDA measure) are calculated for every scenario.

Then, the value with the best performance is selected as the optimum for the parameter.

4.5.5 Initialization Evaluation

We consider two tests for the initialization evaluation. First, an evaluation of how the initial-

ization a�ects each algorithm and issue was performed. Later, an evaluation of how di�erent

initializations a�ect di�erent targets was performed.

In order to do so, a MATLAB script was used to modify the ground-truth information to

compose three sets of �les for each sequence. The �les were identical to the original ground-truth

except for the initialization in the �rst frame. The �rst set of �les modi�es the size of the target,

with the only condition that the overlap between the new target box and the original one was at
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(a) (b) (c) (d)

Figure 4.10: Initialization issues where (a) represents the correct initialization, (b) presents
changes in size, (c) presents change in position and (d) presents changes in size and position.

least 80%, 50% and 30% respectively. The second set of �les modi�es the position (that is, the

location of the center of the target) from the original one, again with the same overlap conditions

as the �rst case. The third set of �les included a modi�cation in both size and location of the

center of the target's box. The same overlap condition was met in this case as well3. Afterward,

the algorithms were run and a measure of the accuracy (using SFDA measure) was performed.

In Figure 4.10, di�erent initialization cases are depicted: (a) shows the correct initialization

of the target, (b) shows the initialization when the size of the target is incorrect (but the location

of the center of the target is correct), (c) is the case when the position is not properly set (and

the size does not change with regards to the original), and (d) depicts the scenario when both

size and position are inaccurate.

4.5.5.1 Initialization errors vs. Issues

In the �rst case, the idea is to measure the performance of the algorithms when the initialization

is not perfectly accurate, and how a modi�cation in this initialization a�ects each issue. The total

number of sequences selected for this test was 31 (approximately, 4-5 sequences per issue), all

with a medium degree of complexity. Three di�erent tests were performed for each initialization

error (size, location, and a combination of both), adding up to a total of 9 di�erent �les for each

sequence.

4.5.5.2 Initialization errors vs. Targets

In this case, the idea is to measure extensively how di�erent errors in the initialization a�ect the

targets in general. In order to do so, 6 sequences (2 from cars, 2 from people and 2 from faces)

were selected from the Level 3 dataset, all with a medium degree of complexity. Afterward,

60 di�erent �les were created for each type of initialization error, adding up to a total of 180

di�erent �les for each sequence.

3The creation of the modi�ed ground-truth �les for a selection of sequences from the dataset was done using
the code from [2]
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Chapter 5

Experimental Work

This chapter presents the experiments performed to test the evaluation protocol proposed in

chapter 4. First, a study of selected metrics for performance evaluation of tracking is described

in section 5.1, providing conclusions to analyze and understand later results presented in this

chapter. Then, section 5.2 details the application of the evaluation protocol to the selected track-

ing algorithms in chapter 3, including its evaluation aspects (Stability, section 5.2.1, Accuracy,

section 5.2.2, Repeatability, section 5.2.3, E�ciency, section 5.2.4).

5.1 Comparison of performance evaluation metrics of tracking

5.1.1 Global analysis

A comparison of the most representative metrics is performed as a previous step for the develop-

ment of the proposed protocol. To obtain the data for evaluation, the entire dataset was analyzed

with the selected algorithms: Template Matching (TM) [27], Corrected Background Weighted

Histogram (CBWH) [45], MeanShift (MS) [44], MeanShift Adaptive (MSA) (modi�ed version of

[44]) and Scale and Orientation Adaptive MeanShift Tracker (SOAMST) [47]. They have been

implemented in Matlab by adapting the code provided by their respective authors. Then, the

mean value of the selected metrics was obtained for each algorithm result with the sequences.

The selected metrics to be compared are (as explained in section 2.3): Sequence Frame

Detection Accuracy (SFDA, [39]), Average Tracking Accuracy (ATA [42]), Average Tracking

Error (ATE [42]), Area Under the loss-track ratio Curve (AUCinv [7]) and Track Completeness

(TC [6]). All measures range from 0 to 1, being 0 the lowest tracking performance and 1 the

highest tracking performance, with the exception of ATE that presents the opposite behavior.

In Figure 5.1 represent the histograms of the results of the selected metrics. SFDA presented

three distinctive peaks that correspond to low, medium and high complexity sequences, while

ATE values can be also grouped into three groups less separated. Neither ATA nor AUCinv
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Figure 5.1: Histograms for SFDA, ATA, ATE, AUC and TC for all sequences of the dataset

provided a clear view of the behavior of the sequences nor does TC, which gave high values to

most of the sequences, thus not providing an insight of the performance of the algorithms.

As seen in section 2.3.3.2, SFDA is the overlap ratio divided by the number of frames where

either a tracked object or a ground-truth object is present. On the other hand, ATA is the

overlap ratio divided by the number of frames where there is a mapping between the estimated

target location and ground-truth annotation (overlap is higher than 0). Since it is possible that
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Test Sequence SFDA ATA ATE AUCinv PixelOv TC
HEADTRACK_seq_bb .318 .498 .562 .282 .271 .580

HEADTRACK_seq_jd .264 .480 .633 .263 .258 .490

HEADTRACK_seq_mb .480 .519 .474 .474 .477 .916

HEADTRACK_seq_ms .383 .517 .508 .390 .380 .700

HEADTRACK_seq_sb .310 .491 .659 .307 .309 .624

HEADTRACK_seq_villains2 .391 .403 .488 .355 .356 .845

Table 5.1: Performance evaluation of MS for test sequences with medium error.

the algorithm loses the target (and therefore, the overlap is 0), ATA (as well as ATE) proves to

be an incomplete metric, while SFDA provides more information regarding the tracking results.

In the following subsections, we present a detailed analysis of the selected metrics by consid-

ering tracking results with low, medium and high accuracy (visually inspected). Speci�cally, we

focus on their real range of values and how well they represent the tracking accuracy.

5.1.2 Detailed analysis

In this case, a selection of sequences and algorithms from the previous section was performed. We

distinguish three scenarios: low, medium and high complexity. Each scenario contains a selection

of sequences which were run with the following algorithms: MS (for the medium complexity

scenario), CBWH (for the low complexity scenario) and SOAMST (for the high complexity

scenario). The selection of algorithms was performed based on the behavior of each one.

Table 5.1 shows the results corresponding to medium tracking error. The obtained values

of SFDA and ATA demonstrate the conclusions achieved for the global analysis. The relation

between SFDA and ATE is obvious: the higher the success (SFDA), the lower the error (ATE).

Also, the sum of both metrics combined is always lower than 1. Since SFDA can be viewed as a

true positive rate and ATE as a false positive rate both combined (added) provide the complete

Positive Rate which range is [0,1]. A closer look at the values of AUCInv (the inverse of the

area under the curve) and PixelOv (the spatial overlap between estimated and ground-truth

target) reveals that not only are both metrics very close to each other but also to the SFDA

values previously studied. Therefore, these metrics (SFDA, AUCInv and PixelOv) contain the

same information. In the sequence �HEADTRACK_seq_ms� results are much better than in

the other sequences due to the fact that the complexity of that sequence is much lower.

For the low error scenario the algorithm was run with low complexity sequences as seen in

Table 5.2. The TC allows to understand the obtained values. While an algorithm with an SFDA

of 0.465 doesn't seem like a good tracker (as seen in sequence �dtneu_schnee_redcar�), the TC

reveals that actually 70% of the tracking was correct. Therefore, the perfect tracking (100% of

track completeness) is achieved with an SFDA slightly smaller than 0.65.
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Test Sequence SFDA ATA ATE AUCinv PixelOv TC
dtneu_schnee_redcar .465 .512 .380 .493 .495 0.71066

l3_cars_noise_3 .735 .735 .163 .766 .767 1

l3_cars_noise_2 .741 .741 .160 .758 .759 1

l3_cars_noise_1 .753 .753 .151 .779 .781 1

l3_faces_noise_high .645 .645 .231 .487 .486 1

l3_faces_noise_medium .672 .672 .211 .521 .521 1

l3_faces_noise_low .662 .662 .218 .513 .512 1

l3_people_noise_high .716 .716 .188 .665 .663 1

l3_people_noise_medium .712 .712 .190 .654 .652 1

l3_people_noise_low .703 .703 .196 .648 .647 1

Table 5.2: CBWH Metrics for the noise sequences (low error)

The high complexity set of sequences with the poor performance algorithm deliver the expected

results as can be seen in Table 5.3. The relationships between metrics do not change, and

the only interesting thing to notice are the TC values. While very low SFDA's would demand

low TC's as well, some cases do not behave as expected. This is due to the fact that most

TC values are very high (as seen in Figure 5.1). Therefore, TC can not be considered an

appropriate metric. For example, as seen in Table5.2, both sequences �l3_faces_noise_medium�

(SFDA=.647) and � l3_people_noise_medium� (SFDA=.744) have the same TC. This means

that the Track Completeness provides high results when the object is found, but does not provide

information regarding how accurately the object is found.

An example of how di�erent SFDA values provide good performance can be found in Figure 5.2.

In this �gure two sequences with di�erent SFDA's and the same TC (1) are compared. The �rst

sequence (�HEADTRACK_seq_mb�) had an SFDA of 0.480 since the tracking is good but the

accuracy of the target box is not perfect, while the second sequence (�l3_people_noise_high�)

had a value of 0.716 (with a much better location accuracy), and both present good performance.

As a result from this analysis, the conclusion is that the SFDA metric allows a good

understanding of the performance of an algorithm and therefore will be used in following sections.

Test Sequence SFDA ATA ATE AUCinv PixelOv TC
AB_Easy_man .168 .260 .520 .213 .201 .509

mv2_002_redcar .256 .359 .389 .267 .265 .612

mv2_003_blackcar .292 .408 .432 .310 .305 .675

mv2_005_silvercar .301 .401 .412 .308 .306 .699

visor2_man_head .078 .524 .899 .087 .082 .125

visor5_man_head .023 .448 .969 .037 .027 .041

visor6_man_head .050 .259 .853 .051 .049 .106

Table 5.3: SOAMST Metrics for the occlusion sequences (high error)
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Figure 5.2: Comparison of two sequences with the same TC and di�erent SFDA

Furthermore, although the value range for SFDA is [0,1], according to these experiments, the

real range of values can be established as [0,0.65] approximately.

5.2 Application of the proposed protocol

In this section we describe the application of the protocol proposed in chapter 4 to the selected

algorithms of chapter 3: CBWH, MS, MSA, SOAMST, TM and PF. First the algorithms are used

to track the targets annotated in the test sequences. Then, we apply the proposed evaluation

protocol and to analyze their results as follows.

5.2.1 Parameters

5.2.1.1 Optimum parameter determination

First, we have determined the optimum value of the parameters of the selected tracking algo-

rithms. Then, the optimal values are used for applying the evaluation protocol. The whole

dataset was employed for this parameter optimization stage.

For deterministic tracking (CBWH, MS, MSA and SOAMST), the parameter chosen to be

tuned was the increase of the search window size (with regards to the target size). Thus, several

runs were made for the selected algorithms. TM uses the whole image as search area, and a

reduction of its size did not provide any satisfactory e�ect on its accuracy. First, for CBWH,

MS and MSA, the window size was increased by a percentage of 5%, 10% or 25% with regards to

the original target window size. Second, for SOAMST, the search size window was incremented

by 5, 10 and 15 pixels as recommended by the authors. The obtained results are listed in Table

5.4. Best results are achieved for an increase of 10% for MS and 25% for CBWH and MSA. For
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SFDA

Increase CBWH MS MSA

5% 0.51 .45 .20

10% .53 .51 .24

25% .57 .46 .27

SFDA

Increase SOAMST

5 .35
10 .33

15 .31

SFDA

Size TM

25% .33

50% .39

100% .43
(a) (b)

Table 5.4: SFDA values for varying size of search area for the deterministic algorithms. Results
are shown in (a) for an increase and (b) for a decrease in the search area.

svxy 300 400 500 600

svHx, svHy 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

200 .309 .291 .285 .288 .320 .298 .294 .294 .330 .299 .296 .296 .323 .308 .301 .303
N 400 .321 .294 .283 .291 .325 .296 .289 .293 .321 .302 .295 .295 .332 .298 .296 .301

600 .316 .287 .287 .285 .318 .291 .289 .287 .314 .302 .293 .298 .331 .305 .295 .298
800 .319 .292 .286 .278 .320 .291 .291 .289 .327 .301 .287 .294 .320 .295 .294 .298

Table 5.5: SFDA values for varying size of search area for the probabilistic algorithm

SOAMST, best results are obtained for smaller increase (5 pixels).

For the Particle Filter algorithm, four parameters were considered for tracker stability: N

(number of particles with the values 200, 400, 600 and 800), svxy (variance of the x,y position

with the values 300, 400, 500 and 600) and svHx, svHy (variance of the major and minor axes

of the ellipse with the values 0.5, 1, 1.5 and 2). Obtained results are reported in Table5.5, where

best results for each row are bolded, showing that the best con�guration is with higher svxy (i.e.,

a higher variance in target position), with a small svHx, svHy (i.e., tolerating small changes in

target size) and with a medium N For the rest of the experiments, the values used will be:

N = 400, svxy = 600 and svHx = svHy = 0.5.

5.2.1.2 Initialization errors vs. Issues

This experiment allows to understand the e�ect of inaccurate initialization on the algorithm

performance for the analysis of sequences including the issues previously described. This initial-

ization is commonly described as a bounding box de�ned by its center and dimensions (width and

height). Sequences were selected in order to include the widest spectrum possible for each issue,

therefore including sequences for every level. The results obtained are detailed in Appendix E,

and a summary of these experiments is presented below.

Conclusions As depicted in Figure 5.3, algorithms are more vulnerable to changes in the size

of the initialization, whereas changes in the position are easily solvable. Overall, algorithms

behave well with errors in the initialization, being SOAMST the best one in this case: thanks

to the dynamic approach to �nding the target box, errors in the initialization do not a�ect

the algorithm's performance and the algorithm appeared extremely robust for all errors in the
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Figure 5.3: Comparison of di�erent initialization errors for each algorithm.

initialization. More details are available in Appendix E.

5.2.1.3 Initialization errors vs. Type of targets

This test allows to understand the e�ect of inaccurate initialization depending on the three

types of targets speci�ed in this datasets: cars, faces and people. A selection of sequences from

the dataset with medium complexity was used. The car sequences are �mv2_006_redtruck�,

�mv2_020_silver�, the faces sequences are �HEADTRACK_seq_jd�, �HEADTRACK_seq_sb�

and the people sequences are �l3_people_illuminationlocal_medium�, �PETS2009_S2_L2_view001_1�.

We perform this test similarly to the previous section. The results are detailed below, and the

�gures depict tracking performance with (a) no initialization errors, (b) changes in size, (c)

changes in position and (d) changes in size and position of the target. The overlap indicated in

each �gure represents that at least 30% (Low), 50% (Medium) or 80% (High) of the modi�ed

bounding box overlaps with the ground-truth annotation.

Cars The obtained results are depicted in Figure 5.4. There is a progression that shows that

the higher the overlap, the better results (as expected). In general, worst results are obtained

for changes in the size of the target as expected, whereas changes in the position proved to be

more easily solved. CBWH provided great behavior when changes in the position occurred as

the algorithm is capable of dealing with background information better than MS or the others.
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Figure 5.4: Initialization errors comparison for Cars sequences.

Faces Results are depicted in Figure 5.5. Faces sequences had a lower general complexity

which is shown in these results. In general, this sequences had a better behavior with errors in

the initialization, either in size, position or a combination of both. In fact, for some algorithms

(e.g., MS) better results were obtained when dealing with slight errors in size. This may be due

to the fact that the original ground-truth annotation was not completely accurate, and therefore

was more room for improvement.

People Results depicted in Figure 5.6 show that these sequences are the most invariant to

errors in the initialization, especially in the size case. SOAMST is capable of providing very

good results since it can adapt to the size and position of the target, and therefore, small errors

can actually improve �nal results. The rest of the algorithms lower their performance as the

overlap decreases, as expected.

5.2.2 Accuracy

This section provides an in-depth study of the performance of each algorithm. Results are

presented in terms of SFDA and are classi�ed considering the four levels of the proposed dataset

and the complexity of the test sequences for each level. Note that, as explained in section 5.1, a

SFDA value of 0.65 or higher means an almost perfect tracking.
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Figure 5.5: Initialization errors comparison for Faces sequences

Low Medium High
0

0.2

0.4

0.6

0.8

1
people-wh

Overlap

(a) (b)

Low Medium High
0

0.2

0.4

0.6

0.8

1
people-xy

Overlap
Low Medium High

0

0.2

0.4

0.6

0.8

1
people-xywh

Overlap

(c) (d)

Figure 5.6: Initialization errors comparison for People sequences
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Figure 5.7: SFDA values of selected tracking algorithms for Complex Movement sequences

Complex movement Results for targets with complex movement can be seen in Figure 5.7.

Globally, it can be observed that there is no relation between the di�erent levels of the dataset.

In Level 1 (synthetic sequences) the best performance is that of CBWH. MS and MSA

obtained good results as well as PF, which provided approximately the same ATA in all three

degrees of complexity. SOAMST and TM had problems as the complexity level increases, with

poor results for high complexity sequences.

In Level 2 (lab sequences), TM presented the best results followed by CBWH, whereas PF

and MS and MSA decreased their success rates drastically. SOAMST got good results when the

complexity is low, although the performance decreased as the complexity increased: this is due

to the fact that the algorithm loses the target in complex videos. The overall decrease of SFDA

in this level can be explained with the high complexity of the sequences.

Finally, most Level 3 (lab sequences) results do not show a clear pattern demonstrating the

di�culty of estimating the complexity of the movement in real sequences. The algorithms behave

erratically: while CBWH has a medium performance with a maximum for high complexity, MS

had best results for low complexity sequences, and MSA had its maximum performance medium

complexity sequences. Finally, SOAMST obtained good results except for medium complexity

sequences (due to the fact that when the speed of the target is high, the tracking algorithm is

not able to follow the target, decreasing the size of the target window and therefore a�ecting

the SFDA values), as well as PF. An example of the execution of the algorithms for the Level 3

sequence �visor1_man_head� can be found in Figure 5.8, where all algorithms except for MSA

and TM provide good results. The problem with MSA is that it changes its model in each frame,

and when if the algorithms loses the target it will immediately update the model with incorrect

information from the background, therefore making it very di�cult to recover from errors, and

due to changes in the orientation of the target, TM has problems with the template, therefore

losing the target.
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Figure 5.8: Example of complex movement with a Level 3 sequence. Frames: 1, 20, 40, 60.
Algorithms (from top to bottom rows): CBWH, MS, MSA, SOAMST, TM, PF.
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Figure 5.9: SFDA values of selected tracking algorithms for Illumination Gradual sequences

5.2.2.1 Illumination gradual

Comparing the plots in Figure 5.9 the most characteristic information is the extreme decrease of

success in Level 2 sequences for certain algorithms, where results were far worse than expected.

In Level 1 (synthetic sequences) the best overall results are provided by TM. This is explained

due to the background of the test sequences (uniform black color). Hence, illumination changes

reduce the values resulting from the matching procedure but the target position still got the

highest value due to the high di�erence between the target and background colors. CBWH

and SOAMST also had good values for the low complexity level but decrease at a much higher

rate. MSA provided good and constant results demonstrating that in controlled conditions and

assuming that there are not abrupt changes in illumination, the algorithm does not lose the

target and therefore delivers good results. Lastly, MS decreased fast, with low results for high

complexity sequences, and PF does not perform correctly for medium complexity sequences.

In Level 2 (lab sequences) the most noticeable change is the extreme decrease in performance

for MSA and SOAMST. CBWH, MS and TM had the best results, while PF delivered a medium

performance. The low results for MSA and SOAMST can be explained due to the increase of the

global illumination made that both algorithms lost the target in the beginning of the sequence

without �nding it again, therefore delivering poor results. Lastly, CBWH got the most stable

results when changing the complexity of the sequences.

Level 3 (real sequences) seems to group algorithms clearly in three groups: CBWH, and MS

provided high performance, MSA, SOAMST and PF obtained medium performance and �nally

TM provides extremely poor results, due to the fact that real complex sequences provide targets

with higher noise and lower resolution, therefore making it di�cult to create an accurate tem-

plate to be followed. An example of the execution of the algorithms for the Level 3 sequence

�l3_faces_illuminationglobal_medium� can be found in Figure 5.10. The only algorithm with

problems following the target in this sequence was TM, as expected in algorithms with illumi-

nation changes: since the template created in the �rst frame is static, once the target starts

changing its color (and therefore, the histogram), TM loses the target and can not �nd it again.
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Figure 5.10: Example of gradual illumination changes with a Level 3 sequence. Frames: 1, 20,
40, 60. Algorithms (from top to bottom rows): CBWH, MS, MSA, SOAMST, TM, PF.
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Figure 5.11: SFDA values of selected tracking algorithms for Illumination Abrupt sequences

5.2.2.2 Illumination Abrupt

The results for abrupt illumination changes can be seen in Figure 5.11. A noticeable trend is

observed for most algorithms that seem to have problems with synthetic sequences (Level 1) but

not real simple sequences (Level 2).

Results from Level 1 (synthetic sequences) showed that TM followed by CBWH provided

the better performance. However, a decrease was observed for complex sequences. MS, MSA,

SOAMST and PF reduced their performance as compared to TM and CBWH. However, they

maintained similar accuracy for the di�erent complexity levels.

Level 2 (lab sequences) results were the most peculiar, since a very high success rate was

achieved not only with TM (which has the best performance in the previous level) but also

CBWH, MS and SOAMST. PF presented the low performance, and �nally MSA provided the

worst results, demonstrating the non-adequacy of blind update scheme. Overall, the results for

this level are very constant no matter the complexity degree.

In Level 3 (real sequences) best and most consistent results are obtained for CBWH and MS.

As a general trend, there is a performance decrease as the complexity increases. The performance

of the other algorithms was medium for MSA and PF and low for SOAMST and TM. An example

of the execution of the algorithms for the Level 3 sequence �dtneu_nebel_taxi� can be found

in Figure 5.12. In this example, both MSA and TM have problems following the target due to

the actualization of the template, whereas the rest of the algorithms follow the target with no

problems.
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Figure 5.12: Example of abrupt illumination changes with Level 3 sequence. Frames: 1, 50, 100,
150. Algorithms (from top to bottom rows): CBWH, MS, MSA, SOAMST, TM, PF.
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Figure 5.13: SFDA values of selected tracking algorithms for Noise sequences

5.2.2.3 Noise

Noise results shown in Figure 5.13 reveal that this is one of the issues where the algorithms

provided good results in all levels, that is, being robust to sequences with noise.

In Level 1, CBWH had high performance, as well as MS, SOAMST, TM and PF (with

slightly less good results). MSA presented very poor results. All algorithms delivered a constant

performance without much changes regarding the complexity of the sequences.

In Level 2 all algorithms obtained the same accuracy independently of the degree of di�culty.

CBWH, MS, SOAMST and TM all provided approximately the same results (very high SFDA

values), with PF delivering medium results and lastly MSA providing poor results (although

slightly better than the ones obtained for Level 1).

In Level 3 CBWH and MS again provided very good performance, with PF providing close

result to them. Surprisingly, MSA delivered medium values (much better than in previous levels),

similar to the ones obtained with SOAMST, which indicates that these algorithms tolerate better

the existence of real noise (such as snow falling, or image noise) than the one added arti�cially

with software. TM in this level got a lower performance compared to previous levels. An example

of the execution of the algorithms for the Level 3 sequence �dtneu_schnee_redcar� can be found

in Figure 5.14. Once again, MSA shows that it is not capable of dealing with many of the issues

analyzed, whereas the rest of the algorithms can cope with slight changes due to noise in the

sequence.
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Figure 5.14: Example of noise with a Level 3 sequence. Frames: 1, 50, 100, 150. Algorithms
(from top to bottom rows): CBWH, MS, MSA, SOAMST, TM, PF.
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Figure 5.15: SFDA values of selected tracking algorithms for Occlusion sequences

5.2.2.4 Occlusion

The occlusion results presented in Figure 5.15 show interesting information for the �rst two

levels. As seen in the sub �gures, the increasing complexity level means a decrease in the success

rate (SFDA) as expected. The most noticeable aspect is the general decrease of success for the

third level.

In Level 1 (synthetic sequences) it is noted that CBWH, MS, MSA and SOAMST algorithms

provided good results for the �rst two complexity levels and then experienced a big accuracy

decrease for high complexity sequences. SOAMST, on the other hand, had approximately the

same good results independently of the complexity and the same happened with PF, which had

medium accuracy. This is due to the fact that even though the algorithm �nds the object once it

is visible again, the area is signi�cantly smaller, and therefore, the accuracy decreases. In theory,

if the sequences were longer after the object appears in the scene again, the size would increase

and so would the accuracy.

In Level 2 (lab sequences) the same pattern is observed, with good results for the �rst two

sub levels and a noticeable decrease for the last one in all algorithms. In this case, MS and

SOAMST are the best options, followed by CBWH.

Level 3 (real sequences) showed a general decrease of performance for all algorithms. In this

scenario all algorithms performed approximately the same with exception of MSA and PF with

worse results. This noticeable decrease may be due to the higher complexity of the sequences in

this level, therefore reducing the success rate for all algorithms. The obtained results demonstrate

that partial (low complexity) and total (high complexity) occlusions are still an open issue as

all the algorithms obtained low performance. An example of the execution of the algorithms for

the Level 3 sequence �visor5_man_head� can be found in Figure 5.16. In this complex sequence

with a total occlusion, all algorithms lose the target (frames 35 and 160) with the exception of

PF that does not mistake the target with the occluding object (as seen in frame 35 for the other

algorithms).
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Figure 5.16: Example of occlusion with a Level 3 sequence. Frames: 15, 20, 35, 140. Algorithms
(from top to bottom rows): CBWH, MS, MSA, SOAMST, TM, PF.
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Figure 5.17: SFDA values of selected tracking algorithms for Scale Changes sequences

5.2.2.5 Scale changes

Figure 5.17 depicts the results for sequences where the target changes its size during the sequence.

The overall performance for this issue had lower success rates than the other ones. Also, no clear

pattern is observed.

In Level 1 (synthetic sequences) results were specially low no matter the degree of di�culty.

The best algorithm was PF, with very high accuracy values, and with a big di�erence over the

second best, CBWH, with SFDA results lower than 0.4. CBWH, MS, SOAMST and TM all

obtained similar results and �nally MSA delivered extremely low success rates.

In Level 2 (lab sequences) the overall SFDA was raised especially in the �rst complexity level,

where results were medium (at best). The rest of the complexity levels presented decreasing

values as the complexity increased obtaining low performance.

Finally, in Level 3 (real sequences), PF had a good performance as well as MS, SOAMST and

CBWH. The fact that algorithms that are not prepared to deal with scale changes (such as MS

and CBWH) obtained good results is due to the fact that most of the scale changes sequences

show a decrease in the size (i.e., the target moves further away from the camera). Since MS and

CBWH have a bigger search area than the real target, it is easy to �nd the target, although the

accuracy lowers since the search area is obviously too big as the frames pass. Neither MSA nor

TM performed well. An example of the execution of the algorithms for the Level 3 sequence

�PETS2009_S2_L1_girl� can be found in Figure 5.18. In this example we can see once again

that MSA loses the target once more information from the background starts appearing in the

template created in each frame. TM also loses momentarily the target (frame 20), although it is

�nd once again (frame 35)
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Figure 5.18: Example of scale changes with a Level 3 sequence. Frames: 1, 10, 20, 35. Algorithms
(from top to bottom rows): CBWH, MS, MSA, SOAMST, TM, PF.
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Figure 5.19: SFDA values of selected tracking algorithms for Similar Objects sequences

5.2.2.6 Similar objects

The results for the sequences with similar objects are shown in Figure 5.19. Again in this case

there are no clear patterns for the three levels.

Level 1 (synthetic sequences) presented high performance for CBWH, MS, SOAMST and PF.

TM and MSA both had medium-good results. The general increase in the accuracy for this issue

may be due to the fact that sequences were less complex in general.

In Level 2 (lab sequences), TM showed high performance, especially as the sequences get

more complex. Since TM uses the target to create a template, as far as that template is properly

created, the algorithm will be robust against similar objects. With the exception of the peak

in the low complexity level for MS and SOAMST, the other algorithms behaved as expected,

decreasing the accuracy as the complexity increases.

In Level 3 (real sequences), CBWH and MS showed the best and most consistent results,

while SOAMST, TM, PF and MSA obtained medium to good results, which decreased as the

complexity increases. An example of the execution of the algorithms for the Level 3 sequence

�PETS2009_S2_L2_jeans� can be found in Figure 5.20. In this example MSA shows the same

behavior once again. TM does lose the target in frame 35.

5.2.2.7 Real Sequences Comparison

In this section we group the results of the real sequences by type of target (cars, faces and people)

instead of their complexity degree.

Figure 5.21 shows results for Level 3 sequences, grouped by type of target. Best results are

obtained for Faces, followed closely by Cars, and coming in third position, People, although

results are more or less constant, without big changes in each algorithm. The exception is

MSA, which performs much better for Cars than for other types of target. TM, on the other

hand, follows better People sequences. In general, even though some algorithms behave better

depending on the target, the best options overall are CBWH and MS.
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Figure 5.20: Example of similar objects with Level 3 sequences. Frames 1, 10, 20, 35. Algorithms
(from top to bottom rows): CBWH, MS, MSA, SOAMST, TM, PF.

Figure 5.22 shows results for Level 4 sequences. In general, CBWH seems to have the best

results, and there is a clear increase in the success rate for Faces sequences, where the target is

easy to annotate (i.e., the target model contains a low amount of background data) and only a

few di�erent color regions are used to represent the target. Other than that there is not a clear

pattern that allows to point the exact level of accuracy for each algorithm. It is very di�cult to
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Figure 5.21: SFDA values for Real Simple sequences

accurately determine the complexity of each sequence, and therefore there is a possibility that

Cars sequences have a higher degree of complexity than Faces or even People sequences.

General performance for sequences with several issues decreases in comparison with sequences

with one isolated issue, as expected. The Faces sequences had better performance, which may

be due to the lower complexity of the sequences or even the fact that those sequences are more

easily annotated.

5.2.2.8 Conclusions

Once the results from all algorithms have been analyzed, the overall idea is that CBWH and MS

are the most consistent algorithms. When dealing with real life scenarios, and according to the

results from this dataset, those are the best options when presented with an unknown issue or

even a combination of issues. Mean results for the selected algorithms and issues can be seen in

Figure 5.23. At the right of the �gure, the mean results for each algorithm are depicted: this

allows to see at a �rst glance which algorithms perform better for the whole dataset. Results

for PF show that the algorithm delivered the worst results, and after a careful study, this may

be due to the fact that it is very di�cult to accurately set the correct values for the parameters

when the dataset includes very di�erent targets. Another option is the fact that maybe the

selected metrics are not appropriate for this kind of tracking. As mentioned in section 5.1, an

SFDA of 0.6 means that the tracker works almost perfectly, while for success rates of around
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Figure 5.22: SFDA values for Real Complex sequences

50% the SFDA goes down to 0.2-0.3. This means that results in Figure 5.6 show success rates

of more than 50% of track completeness in most cases.

One conclusion obtained was the fact that it is not a simple task to classify the real sequences

by their complexity. Some sequences which appeared to be easy delivered in fact poorer results

than others in appearance more complex.

Moreover, some examples are provided in Figure 5.24 for the algorithms executed on a se-

quence that contains a mixture of the following issues: similar objects in scene, occlusions and

scale changes. Frame 235 shows the issue Similar Objects when a folder the same color as the

target appears on the scene and moves close to it. In this case, only PF and TM are capable

of correctly identifying the target: the deterministic algorithms (color-based) are not able to

follow the target. Frame 420 show an Occlusion when the target changes its position and a slight

Similar Object in the background. In this case, TM mistakes that similar object for the target

(it is the closest to the template in the image). SOAMST has completely lost the target and

stops tracking. Frame 500 (the last one) shows that all algorithms except SOAMST are capable

of recovering after losing the target. This accounts for the low success rate of this algorithm.

Overall, the only algorithm that does not lose the target is PF, but the target area is much

bigger than the real target. Therefore, since the result is not accurate, the SFDA metric will be

lower and therefore provide poorer results. As a conclusion, PF is capable of tracking the object,

but not correctly pointing the area it occupies.
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Figure 5.23: SFDA values overview for all sequences grouped by issue, including a mean value
for all sequences together.

Issue SFDA

Complex Movement 0.4685

Illumination Gradual 0.4229

Illumination Abrupt 0.3912

Noise 0.5263

Occlusion 0.3914

Scale Changes 0.2878

Similar Objects 0.4961

Mix 0.2957

Table 5.6: SFDA values for all sequences grouped by issue, including a mean value for all
sequences together
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Figure 5.24: Example for Real Complex Sequence: �HEADTRACK_seq_sb�. Frames: 1, 235,
420, 500 for each algorithm (from top to bottom rows): CBWH, MS, MSA, PF, SOAMST, TM.
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Algorithm Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Variance
CBWH .539 .539 .539 .539 .539 .539 .539 .539 .539 .539 0

MS .478 .478 .478 .478 .478 .478 .478 .478 .478 .478 0

MSA .267 .267 .267 .267 .267 .267 .267 .267 .267 .267 0

SOAMST .356 .356 .356 .356 .356 .356 .356 .356 .356 .356 0

TM .386 .386 .386 .386 .386 .386 .386 .386 .386 .386 0

PF .408 .410 .415 .411 .410 .415 .412 .411 .414 .411 5.417× 10−6

Table 5.7: Stability results for 10 runs for each algorithm

CBWH MS MSA PF SOAMST TM

Max 1.338 0.523 1.453 0.170 2.451 1.128

Min 0.045 0.030 0.045 0.003 0.313 0.023

Mean 0.333 0.139 0.340 0.050 0.589 0.124

Table 5.8: Comparative execution time per pixel (ms/pixel)

5.2.3 Stability

This experiment evaluates the variation of the generated tracking data when the is algorithm is

run several times on the same sequence. In this case, the dataset was analyzed �ve times with

each tracking algorithm and the mean value of SFDA was stored.

The obtained results are summarized in Table 5.7. As it can be observed, there are no

di�erences between the runs for CBWH, MS, MSA, SOAMST and TM. This agrees with the

de�nition of deterministic trackers, where results are non dependent of the runs without involving

any kind of probabilistic (or random) processes. On the other hand, the PF did have di�erent

results with di�erent runs. This is due to the fact that the algorithm is based on a probabilistic

process where results always vary slightly. As seen in the results, this variation is minor and

the range of values is compact, therefore, based on the SFDA metric there is no possibility of

mistaking this algorithm's results with any other.

5.2.4 E�ciency

This experiment provides an insight on how time-consuming algorithms are. Hence, we measure

the processing time for the application of the tracking algorithm to each sequence of the dataset.

Then, we average this processing time by considering the size of the target (in pixels) and the

number of frames of the sequences.For this task, all algorithm implementations were done in

Matlab.

Results are summarized in Table 5.8 as the maximum, minimum and mean values per pixel

are presented. The slower algorithm is clearly SOAMST, followed by MSA, whereas PF proved

to be the fastest one. The di�erence between CBWH and MSA versus MS is due to the fact

that the window size of the �rst two algorithms is much bigger than the one for MS, therefore

increasing the processing time of the algorithm.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this document we have presented a new evaluation protocol for video object tracking allowing

the evaluation of di�erent scenarios and providing a framework to compare the performance of

the tracking algorithms.

First of all, an extensive research regarding the related work was done. It was required to

understand the video tracking process, as well as to study existing metrics used and datasets for

video tracking evaluation. This in-depth study was performed in chapter 2.

Afterward, a complete research of several algorithms was done. Once a clear understanding

of (color-based) algorithms was obtained, a selection of the most relevant ones was performed.

The main idea was to employ algorithms covering several approaches: including background

information, scale and orientation changes, and deterministic and probabilistic approaches. All of

them have in common the used feature: color. The information regarding the selected algorithms

can be found in chapter 3.

After algorithm selection and implementation, it was necessary to develop a protocol for

their evaluation. Di�erent aspects were de�ned to study their optimum parameters, robustness

to initialization error, accuracy, stability and e�ciency. For the accuracy evaluation, the existing

amount of metrics is overwhelming, although after a careful study, it became obvious that most

of the metrics provided redundant information, or did not perform as well as expected due to

details that were omitted when de�ning such metrics. Therefore, and analysis of some of the

most relevant metrics was performed, and once it was clear which metrics provided good results,

a selection of those metrics was included in the evaluation protocol in order to evaluate the

sequences. Once the algorithms and metrics were ready, the necessity to create a complete

dataset arose. When designing this dataset, the main goal was to cover as many scenarios, issues

and situations as possible, and after an extensive study of existing datasets, we selected, created

and annotated a total of 122 sequences. All this work is detailed in chapter 4.
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Finally, the protocol was tested for evaluating the selected algorithms. The �rst goal was

to test how the algorithms operate when certain issues appeared in the scenes as well as when

other problems (such as bad initialization) happened. This step allowed to determine which

algorithm performed better and provided the best results not only in each separate scenario but

as a whole also. The second goal was to determine other details regarding how time-consuming

each algorithm was, how di�erent parameters a�ected the behavior of the algorithms or how dif-

ferent approaches (probabilistic vs. deterministic) a�ected the performance. All the information

regarding the experimental results obtained when the proposed protocol was intensively tested

can be found in chapter 5.

6.2 Final conclusions

After discussing the results of the selected algorithms in the previous sections, the best algorithm

is CBWH as it had the highest mean success rate for the whole dataset. Moreover, it also runs

faster than most of the compared algorithms, which is crucial when dealing with longer sequences.

MS also obtained similar performance to that of CBWH which required a slightly additional

computational time. SOAMST is de�nitely the worst algorithm, with low performance, erratic

behavior and high processing time. However, this algorithm was the one with best behavior

in sequences where the annotation included some sort of error (either in position, size, or a

combination of both), due to the non-static search area which allows the algorithm to adjust

the search area in order to accurately �nd the target. MSA, the adaptive version of MS, does

not deliver good results since the update of the model makes it harder for the algorithm to �nd

the target due to the inclusion of undesirable traces. Lastly, PF performed worse than expected

which, as previously stated, may be due to the inappropriate metrics employed or the fact that

it was not possible to accurately con�gure all parameters for such a disparate dataset. Note that

all conclusions, results and comparisons are valid for this speci�c dataset.

In the next sections, we discuss the obtained results with respect to di�erent characteristics

of the selected algorithms.

6.2.1 Fixed template

In this case we have two algorithms: MS and TM. Both are simple methods, but whereas TM

searchs for a certain �xed image by comparing pixels, MS uses histograms (color histograms in

this implementation) in order to �nd the better match. This improvement is clearly shown in

the results: MS has a better behavior overall. The disadvantage is that MS is twice as time

consuming as TM is. In some cases such as complex movement, abrupt illumination changes and

similar objects scenarios both algorithms show a similar behavior. For occlusion scenarios TM

is a better option due to the fact that the search box is the whole image, and therefore, once the
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target becomes visible again (the occlusion ends) TM �nds it again faster than other algorithms

(such as MS), but MS performs better in gradual illumination changes, noise, scale changes and

most importantly, complex sequences with a number of issues due to the obvious limitations of

using a �xed template (TM) instead of a color histogram (MS).

6.2.2 Adaptative template

In this case, a modi�cation of the MS was implemented so that the algorithm took into account

information from the last frame: in this case, instead of creating a template from the �rst frame

of the target, the model was updated in each frame. Even though this might seem an advantage,

in reality the algorithm performed much poorly since errors accumulated throughout the tracking

process (drift). Therefore, a blind adaptative scheme model is not recommended.

6.2.3 Background information

Background information is used in CBWH algorithm (which is an update of the MS algorithm),

delivering the best results overall for the dataset. The only disadvantage is the fact that since

more steps are performed for each frame, the algorithm is slower. This may be solved by de-

creasing the target window size (although a slight decrease in the SFDA would be expected).

Overall, the inclusion of background information proved to be a great addition to the basic MS

algorithm.

6.2.4 Scale information

For this case we have two algorithms: SOAMST and PF. Both deal with the scale changes

problem, one from the deterministic point of view (SOAMST) while the other uses a probabilistic

approach (PF). In this case, both algorithms are more or less tied up with regards to their success

rate: in some cases SOAMST presents a better behavior while in other issues it is PF the one

that delivers better results. In sequences with a combination of di�erent issues PF is clearly the

best one. Since this algorithms are supposed to deal with scale changes, it is important to note

that the behavior in that issue is not good: not only it is worse that other algorithms such as

CBWH, but also it is worse than in other issues, for example similar objects. As a �nal note, PF

is the fastest algorithm whereas SOAMST proves to be a extremely slow one: it takes more than

10 times longer than PF. Algorithms that do not include scale changes adaptation perform well

with this dataset. A possible reason is the fact that if the scale change consists on the object

moving further away (i.e. reducing its size) the algorithm has more possibilities of �nding the

target, therefore improving the overall accuracy (although the area is bigger than needed).
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6.2.5 Deterministic vs. probabilistic approach

As seen in the experiments of chapter 5, there is a noticeable di�erence between the best algo-

rithms (CBWH in most scenarios) and PF. Therefore, with this dataset and the implementations

used for each algorithm, as well as using the metrics previously described, the deterministic ap-

proach provides much better results than the probabilistic one. The main advantage of PF is

the slower execution time, while CBWH's best characteristic is the high SFDA values obtained.

6.3 Future Work

Results obtained in the previous section prove that some algorithms operate much better than

others and are, therefore, a better option when designing a video tracking system. However, it

is important to notice that those results can not be taken as a general rule, since there are some

limitations of the protocol.

This document proposes the outline and implementation of an evaluation protocol, although

several changes could be introduced in order to provide more extensive results.

• First of all, the feature used for all algorithms for modeling the target was color. This

implementation has many advantages, but obviously, a more complex model could be used

in order to study how that modi�cation a�ects the behavior of the algorithms.

• Second, although the dataset was created as extensive as possible, it is important to note

that only several issues were taken into account. Other sequences with strong appearance

changes, or other interesting tracking problems could be created and included.

• Even though the whole system was done as automated as possible, it may be interesting to

optimize the way the system works, especially if the dataset grows. This includes, but it is

not limited to, the testing of all videos with each algorithm, the creation and evaluation of

the annotation �les for each test and the analysis of those �les in order to determine the

accuracy of each case.

• It would be interesting as well to check the time consuming more exhaustively, testing how

di�erent parameters values of the algorithms a�ect the e�ciency.

• Moreover, it was observed that the de�nition of good tracking performance is still un-

clear as a spatial overlap of 50% (between target estimation and gound-truth annotation)

might be valid for some applications (whereas not for others). Hence, new metrics without

dependency on the application should be investigated (such as detailed in [7])
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Appendix A

Metrics for Multiple Object Tracking

Evaluation

A.1 Multiple target evaluation

Although several approaches have been proposed for single object tracking evaluation, the multi-

ple object tracking �eld still lacks a general agreement. The objective of multiple object tracking

is to assign a unique ID to each object which stays constant throughout the sequence [9].

Therefore, with this objective in mind, a performance metric should be able to determine if

the tracking algorithm is precise when determining the target's location and if the algorithm is

able to follow the target as it moves through the scene even if it is temporally occluded (partially

or completely).

In [43] a set of four metrics was developed, two for detection and two for tracking. These

measures split the accuracy and the precision aspects of the system in two separate scores, and

were the primary measures used to score algorithm performance in the CLEAR 2006 evaluation

tasks.

A.1.1 Detection

A.1.1.1 Split Fraction

This frame-based metric provides information of whether the tracked targets are completely

detected or if they are fragmented by the algorithm [60]. The ideal value is 1: a higher number

means that single targets are being detected as multiple fragments.

Split Fraction =
#TP +#split

Total #GT locations
(A.1)
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Merge Fraction This frame-based metric provides information of whether multiple tracked

targets are completely detected or if they are merged together by the algorithm [60]. The ideal

value is 1: a higher number means that multiple targets are being clustered together.

Merge Fraction =
#TP +#merge

Total #GT locations
(A.2)

Multiple Object Detection Accuracy It measures the missed detection and false positive

counts. If mt is the number of missed detections and fpt is the number of false positives (in a

frame t), the Multiple Object Detection Accuracy (MODA) [43] can be computed as:

MODA(t) = 1−
cm(mt) + cf (fpt)

N
(t)
G

(A.3)

where cm and cf are the cost functions of the missed detects and false positive penalties. The

values for these weights can be changed based on the application.

Multiple Object Detection Precision It uses the spatial overlap info between ground-truth

and system output as in section ??.

OverlapRatio =

N
(t)
mapped∑
i=1

|G(t)
i ∩D

(t)
i |

|G(t)
i ∪D

(t)
i |

(A.4)

Therefore, for each frame (t), the Multiple Object Detection Precision[43] can be computed

as:

MODP (t) =
OverlapRatio

N
(t)
mapped

(A.5)

Multiple Object Count It measures the count accuracy over the whole sequence [43].

MOC = 1− m+ fp
NG

(A.6)

If the system is ideal, MOC = 1, meaning that there are no misses or false positives.

A.1.2 Tracking

A.1.2.1 Track Completeness Factor

This track-based metric provides measures how well a given object is detected after the associa-

tion [60].

TCF =

∑
i

∑
Tj∈A(Gi) |O (Tj , Gi) |∑

i |Gi|
(A.7)
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A.1.2.2 Track Fragmentation [60]

TF =

∑
i |A (Gi) |

| {Gi|A (Gi) 6= 0|} |
(A.8)

A.1.2.3 Normalized Track Fragmentation [60]

The normalization increases the weight for longer tracks, to account for the fact that it is more

di�cult and important to maintain the identity of long tracks than short ones. A fragmentation

score of n means that we have identi�ed the target with n labels (tracks). A fragmentation of 1

is the ideal.

NTF =

∑
i |Gi| · |A (Gi) |∑
i|A(Gi)6=0| |Gi|

(A.9)

A.1.2.4 Multiple Object Tracking Accuracy

The aim is to extract the accuracy of the system output track by computing the number of

missed detects and false positives as well as the switches in the system output track for a given

ground-truth annotation [43].

MOTA = 1−
∑Nframes

i=1 (cm(mi) + cf (fpi) + loge(idswitches)∑Nframes
i=1 N i

G

(A.10)

A.1.2.5 Multiple Object Tracking Precision

Calculates the spatiotemporal overlap between ground-truth annotations and system output [43].

MOTP =

∑Nmapped
i=1 OverlapRatio∑Nframes

j=1 N j
mapped

(A.11)

where

OverlapRatio =

Nframes∑
t=1

|G(t)
i ∩D

(t)
i |

|G(t)
i ∪D

(t)
i |

(A.12)

A.2 Event-driven metrics

When a person views a scene, the way he conceptualizes the world is by means of events and

objects, so a motivation to evaluate tracking performance on a higher level was originated. In

[61], a new metric was proposed, capable of extracting di�erent types of higher level events such

as entering the scene, occlusion or picking-up a bag from the available data. This metric then

focuses on the completeness of such event detection to do the evaluation of tracking data.
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An event is the basic building block and it is de�ned as a limited action at a particular point

in time. Some examples of events are entering/leaving a scene or a speci�c area (such a shop),

starting/ending occlusion, starting/ending walking or running..

Advantages of using a event-based evaluation are (as established in [62]):

• The lengths of trajectories do not in�uence the metric making it independent of the frame

rate and density of the ground-truth annotation.

• It enables the fast generation of ground-truth data as not every frame needs to be annotated

in full detail, as long as the events can be reliably extracted from sparse annotation.

• Reuse of already available ground-truth data by automatic conversion into our novel event-

based representation.

• Minimizing the human factor within the ground-truth data and its in�uence onto the metric

by means of event-based evaluation on a higher level.

• Establishing a least common denominator to represent tracking data which is versatile to

handle many di�erent output formats.

• The metric directly helps to improve tracking algorithms by identifying: di�cult trajecto-

ries, di�cult scene locations, di�cult situations and di�cult event types.

• Easy integration into higher level event and object detection frameworks
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Appendix B

Datasets for video object tracking

Nowadays there are several datasets available for video object tracking. Some are very complete

whereas others are speci�c for a particular issue. In this section, we present the most interesting

tracking related datasets for faces, people and cars.

B.1 CANTATA

The Content Aware Networked systems Towards Advanced and Tailored Assistance (CANTATA)

project was developed during a 3 year period with the main goal of expanding the actual content-

aware systems in the following aspects [63]: multimodal information fusion, scalable systems,

applications �exible in multiple dimensions, guarantee of proper performance levels under all

circumstances.

In the context of the European CANTATA project, partners involved in multi content analysis

validation methods combined their e�orts to create a webpage to share knowledge about datasets

(sets, metadata, ground-truth, metrics...) for three di�erent domains: surveillance, consumer

applications and medical. Therefore, CANTATA contains a selection of the available datasets

for video tracking up to 2008.

B.2 SPEVI

The Surveillance Performance EValuation Initiative (SPEVI) [64] is a set of links of publicly

available datasets for researches. The videos can be used for testing and evaluating video tracking

algorithms for surveillance-related applications. Two datasets are especially interesting regarding

the tracking evaluation and they are described as follows.
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Figure B.1: Frames 0, 100, 200 and 300 of the �motinas_emilio_webcam.avi� video of single
faces dataset (SPEVI)

B.2.1 Single Face Dataset

• Description: this is a dataset for single person/face visual detection and tracking. The

sequences include di�erent illumination conditions and resolutions.

• Number of sequences: 5 sequences, 3018 frames.

• Format: individual JPEG images.

• Tracking ground-truth available: yes.

B.2.2 Multiple Faces Dataset

• Description: this is a dataset for multiple people/faces visual detection and tracking. The

sequences (same scenario) contain 4 targets which repeatedly occlude each other while

appearing and disappearing from the �eld of view of the camera.

• Number of sequences: 3 sequences, 2769 frames.

• Format: individual JPEG images.

• Tracking ground-truth available: yes.
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Figure B.2: Frames from �motinas_multi_face_turning� and �motinas_multi_face_fast� of
multiple faces dataset (SPEVI)

Figure B.3: Example of ETISEO images

B.3 ETISEO

As already introduced in 2.3.2, ETISEO [36] is a video understanding evaluation project that

contains the following dataset.

• Description: these sequences contain indoor and outdoor scenes, corridors, streets, building

entries, subway station... They also mix di�erent types of sensors and complexity levels.

• Number of sequences: 86 sequences.

• Tracking ground-truth available: yes.

B.4 PETS

PETS [59, 65, 66, 67, 56] is the most extended database nowadays. As explained in 2.3.2, a new

database is released each year since 2000, along with a di�erent challenge proposed. With the

107



algorithms provided researchers can test or develop new algorithms. The best ones are presented

in the conference held each year.

Since the amount of data is extensive and cover real situations, these databases are by far

the most used and are almost considered a de facto standard. Despite this, it is important to

say that the PETS databases are not ideal. One of its disadvantages is the fact that since PETS

became a surveillance project, the challenges proposed are focused on high level applications

of that �eld, leaving aside the tracking approach. Therefore, some important issues (such as

illumination or target scale changes) are not considered.

B.4.1 PETS 2000

• Description: Outdoor people and vehicle tracking (single camera).

• Number of sequences: 1 set of training and test sequence.

� Training sequence: 3672 frames.

� Test sequence: 1452 frames.

• Formats: MJPEG movies and JPEG frames.

• Tracking ground-truth available: no.

B.4.2 PETS 2001

• Description: Outdoor people and vehicle tracking (two synchronized views; includes om-

nidirectional and moving camera). Challenging in terms of signi�cant lighting variation,

occlusion, scene activity and use of multi-view data.

• Number of sequences: 5 sets of training and test sequences

� Training sequences: 1st) 3064 frames. 2nd) 2989 frames. 3rd) 5563 frames. 4th) 6789

frames. 5th) 2866 frames.

� Test sequences: 1st) 2688 frames. 2nd) 2823 frames . 3rd) 5336 frames. 4th) 5010

frames. 5th) 2867 frames.

• Formats (for each set): MJPEG movies and JPEG frames.

• Tracking ground-truth available: no.
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Figure B.4: Sample Frames of PETS 2006

B.4.3 PETS 2006

• Description: Multicamera person and baggage detection in a train station. Scenarios of

increasing complexity, captured using multiple sensors.

• Number of sequences: 7 sets with 4 cameras each.

• Formats (for each set): MJPEG movies and JPEG frames.

• Tracking ground-truth available: no.

B.4.4 PETS 2007

• Description: multicamera setup containing the following scenarios: loitering; attended

luggage removal (theft) and unattended luggage with increasing scene complexity.

• Number of sequences: 1 training set + 9 testing sets.

• Formats (for each set): JPEG frames.

• Tracking ground-truth available: no.

B.4.5 PETS 2010

• Description: multicamera setup containing di�erent crowd activities (these datasets are

the same as used for PETS2009).

• Number of sequences: 1 training set + 3 testing sets.
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Figure B.5: Sample Frames of PETS 2007

Figure B.6: Sample Frames of PETS 2010

• Formats (for each set): JPEG frames.

• Tracking ground-truth available: no.

B.5 CAVIAR

The main objective of CAVIAR [68] is to address the scienti�c question: Can rich local image

descriptions from foveal and other image sensors, selected by a hierarchical visual attention

process and guided and processed using task, scene, function and object contextual knowledge

improve image-based recognition processes [58]. Several methods were researched in order to

address this question, including di�erent areas, and the results were integrated in a closed-loop

object and situation recognition system.
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Figure B.7: Sample Frames of CAVIAR

• Description: this dataset includes sequences of people walking alone, meeting with others,

window shopping, entering and exiting shops, �ghting and passing out and leaving a pack-

age in a public place. All video clips were �lmed with a wide angle camera lens, and some

scenarios were recorded with two di�erent points of view (synchronized frame by frame).

• Number of sequences: INRIA (1st set): 6 sequences, Shopping Center in Portugal (2nd

set): 11 sequences, 6 di�erent scenarios.

• Formats (for both sets): MJPEG movies, JPEG frames, XML ground-truth.

• Tracking ground-truth available: yes.

B.6 VISOR

The VIdeo Surveillance Online Repository is an extensive database containing a large set of

multimedia data and the corresponding annotations. The repository has been conceived as a

support tool for di�erent research projects [55].

Some videos are available publicly, however, most of them are restricted and can only be

viewed after a registration. The videos in the database cover a wide range of scenarios and

situations, including (but not limited to) videos for human action recognition, outdoor videos for
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Figure B.8: Sample Frames of Visor

face detection, indoor videos for people tracking with occlusions, videos for human recognition,

videos for vehicles detection and tra�c surveillance...

B.6.1 Video for indoor people tracking with occlusions

• Description: this dataset includes several videos with a wide range of occlusions caused by

objects or people in the scene. All of them include base annotations and some also include

automatic annotations.

• Number of sequences: 6 sequences.

• Format: MJPEG movies.

• Tracking ground-truth available: no.

B.7 iLids

The Imagery Library for Intelligent Detection Systems (i-Lids) bag and vehicle detection chal-

lenge was included in the 2007 AVSS Conference [69].

• Description: this dataset includes several sequences for two separate tasks: �rst, an aban-

doned baggage scenario and second, a parked vehicle scenario.

• Number of sequences: 7 sequences (3 for Task 1, 4 for Task 2)..

• Format: JPEG images, 8-bit color MOV, XML for ground-truth.

• Tracking ground-truth available: no.
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Figure B.9: Sample Frames of i-Lids

B.8 Clemson dataset

Included in an elliptical head tracking project by Stan Birch�eld there is a series of videos

very interesting for head tracking. The sequences include issues such as occlusion, rotation,

translation, clutter in the scene, change in the target's size, etc. The tracker as well as the

sequences can be found at the web [70].

• Description: this dataset includes several sequences for head tracking with di�erent targets.

The videos include some of the most important issues for tracking algorithms.

• Number of sequences: 16 short sequences (1350 frames in total).

• Format: BMP images.

• ground-truth available: yes.

B.9 MIT Tra�c Dataset

MIT tra�c dataset [51] is for research on activity analysis and crowded scenes. It includes a

tra�c video sequence of 90 minutes long recorded by a stationary camera. The size of the scene

is 720 by 480. More information regarding this work can be found in [71].

• Description: this dataset includes several clips regarding tra�c. It contains a representation

of most of the issues previously described, making this a very interesting dataset.

• Number of sequences: 1 sequence, 165880 frames divided in 20 clips.
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Figure B.10: Sample Frames of Clemson

Figure B.11: Sample Frames of MIT Tra�c Dataset

• Format: AVI clips.

• Tracking ground-truth available: yes, only for pedestrians.

114



Appendix C

Dataset Sequences Description

This appendix provides a detailed description of the sequences selected for composing the levels

3 and 4 of the proposed dataset.

C.1 Level 3

C.1.1 Cars

All sequences from this sublevel were obtained from MIT Tra�c dataset [51] and Karlsruhe Cars

dataset [52].

C.1.1.1 Basic

1) l3_cars_basic: a basic sequence from the MIT Tra�c dataset where a red car moves from

left to right without any issues.

C.1.1.2 Illumination Abrupt

1) dtneue_nebel_taxi (S1): a clip from the sequence dtneue_nebel from the Cars Karlsruhe

dataset where a taxi moves throughout the scene from normal to under illuminated areas.

The complexity of this sequence is low.

2) mv2_001_darkcar (S2): a clip from the sequence mv2_001 from the MIT Tra�c dataset

where a dark car moves throughout the scene, experiencing changes in the illumination as

it goes through less illuminates areas. The complexity of this sequence is medium.

3) mv2_003_whitetruck (S3): a clip from the sequence mv2_003 from the MIT Tra�c dataset

where a dark car moves throughout the scene, experiencing changes in the illumination as

it goes through less illuminates areas.The complexity of this sequence is high.
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C.1.1.3 Noise

1) dtneu_schnee_redcar (S1): a clip from the sequence dtneue_schnee from the Cars Karl-

sruhe dataset where a red car moves through the scene while heavy snow falls.

2) Series of 3 sequences where the basic sequence has been altered to include a Gaussian noise

(mean 0 and changing variance) and constant throught all the sequence (S2, S3, S4).

C.1.1.4 Occlusion

1) mv2_002_redcar (S1): a clip from the sequence mv2_002 from the MIT Tra�c dataset

where a red car moves throughout the scene, experiencing slight occlusions due to the

presence of trees. The complexity of this sequence is low.

2) mv2_005_silvercar (S2): a clip from the sequence mv2_005 from the MIT Tra�c dataset

where a silver car moves throughout the scene, experiencing slight occlusions due to the

presence or trees in the sight line. Since the car color is closer to the one of the road, this

scenario has a medium complexity.

3) mv2_003_blackcar (S3): a clip from the sequence mv2_003 from the MIT Tra�c dataset

where a black car moves throughout the scene at a higher speed, experiencing slight oc-

clusions due to the presence of. Since the car's speed is high, this scenario has a high

complexity.

C.1.1.5 Scale Changes

1) mv2_001_whitecar (S1): a clip from the sequence mv2_001 from the MIT Tra�c dataset

where a small white car moves further away from the camera. The complexity of this

sequence is medium.

2) mv2_003_redcar (S2): a clip from the sequence mv2_003 from the MIT Tra�c dataset

where a big red truck moves further away from the camera. The complexity of this sequence

is medium.

3) mv2_003_whitevan (S3): a clip from the sequence mv2_003 from the MIT Tra�c dataset

where a big white truck moves further away from the camera. The complexity of this

sequence is low.

C.1.1.6 Similar Objects

1) mv2_002_darkcar (S1): a clip from the sequence mv2_002 from the MIT Tra�c dataset

where a black car similar to the target moves near it for a few frames.
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2) mv2_004_darkcar (S2): a clip from the sequence mv2_004 from the MIT Tra�c dataset

where a black car moves close to two other similar cars.

3) mv2_006_redtruck (S3): a clip from the sequence mv2_006 from the MIT Tra�c dataset

where a red truck moves close to a red car for a few frames.

C.1.2 Faces

All sequences from this sublevel were obtained from TRECVID 2009 [53], CLEMSON dataset

[54] and VISOR [55]. An example of the faces sequences can be found in Figure 4.7.

C.1.2.1 Basic Sequence

As explained in the previous level, the basic sequence is not used in the evaluation, but some

alterations are added in order to create noise and illumination changes sequences. This basic

sequence is a clip of MCTTR0205a.mov.deint (TRECVID2009) where an old man walks slowly

from one side of the scene to the other.

C.1.2.2 Complex Movement

1) visor1_man_head (S1): a clip from visor_1206627910990_video_1 of VISOR dataset

where the target changes its position abruptly.

C.1.2.3 Illumination Gradual

1) Series of 3 sequences where the basic sequence has been altered to include an increase in

the pixel intensity, that is, to brighten its illumination (S1, S2, S3).

C.1.2.4 Illumination Abrupt

1) Series of 3 sequences where the basic sequence has been altered to include an abrupt change

in the pixel intensity covering half of the image (S4, S5, S6).

C.1.2.5 Noise

1) Series of 3 sequences where the basic sequence has been altered to include a Gaussian noise

(mean 0 and changing variance) and constant throught all the sequence (S2, S3, S4).

C.1.2.6 Occlusion

1) visor2_man_head (S4): a clip from visor_1206627914419_video_2 from VISOR dataset

where the target is occluded totally by another person walking in front of him.
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2) visor5_man_head (S5): a clip from visor_1206627921666_video_5 from VISOR dataset

where the target is occluded totally by a blue board with di�erent entry and exit points.

3) visor6_man_head (S6): a clip from visor_1206627923895_video_6 from VISOR dataset

where the target is occluded totally and several times by a blue board with di�erent entry

and exit points.

C.1.3 People

All sequences from this sublevel were obtained from the following datasets: PETS 2009 [56],

TRECVID 2009 [53], i-Lids [57], CAVIAR [58] and PETS 2000 [59].

C.1.3.1 Basic Sequence

As explained in the previous level, the basic sequence is not used in the evaluation, but some

alterations are added in order to create noise and illumination changes sequences. This basic

sequence is a clip of a video from the 2009 PETS dataset (PETS2009_S2_L1_view001).

C.1.3.2 Complex Movement

1) MCTTR0205a_blueman (S2): a clip fromMCTTR0205a.mov.deint (TRECVID2009) where

a man in a blue jumper walks fast from one side to the other of the image.

2) MCTTR0205a_darkman (S3): a clip fromMCTTR0205a.mov.deint (TRECVID2009) where

a man in a dark suit walks fast from one side of the image to the other. There is a slight

change of scale but it was not taken into account.

3) MCTTR0205a_suitcaseman (S4): a clip from MCTTR0205a.mov.deint (TRECVID2009)

where a man with a suitcase walks fast from one side of the image to the other. There is

also a slight change of scale but it was not taken into account either.

C.1.3.3 Illumination Gradual

1) Series of 3 sequences where the basic sequence has been altered to include an increase in

the pixel intensity, that is, to brighten its illumination (S1, S2, S3).

C.1.3.4 Illumination Abrupt

1) Series of 3 sequences where the basic sequence has been altered to include an abrupt change

in the pixel intensity covering half of the image (S7, S8, S9).
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C.1.3.5 Noise

1) Series of 3 sequences where the basic sequence has been altered to include a Gaussian noise

(mean 0 and changing variance) and constant throught all the sequence (S5, S6, S7).

C.1.3.6 Occlusion

1) AB_Easy_man (S7): a clip from AB_Easy (iLids) where a man walking through the scene

is occluded by a column.

C.1.3.7 Scale Changes

1) AB_Easy_manbag (S4): a clip from AB_Easy (iLids) where a man with a backpack walks

further from the camera, decreasing his size.

2) AB_Hard_whiteman (S5): a clip from AB_Hard (iLids) where a man dressed in a white

jumper moves further away from the camera.

3) CAVIAR_trespasillo_redman (S6): a clip from CAVIAR_ThreePastShop2cor where a

man in a red coat walks in a long corridor, decreasing his size.

4) PETS2009_S2_L1_girl (S7): a clip from PETS2000_S2_L1 where a girl walks around

the scene and moves further away from the camera.

C.1.3.8 Similar Objects

1) AB_Hard_girl (S4): a clip from AB_Hard (iLids) where a girl in a black coat walks

around the scene while other people dressed with the same colors move near her.

2) CAVIAR_trespasillo_man (S5): a clip from CAVIAR_ThreePastShop2cor where a man

in a black coat moves close to the target, also wearing a black coat.

3) PETS2009_S2_L2_jeans (S6): a clip from PETS2009_S2_L2 where a man in jeans and

a black sweater walks around the scene with other people dressed in similar colors.

C.2 Level 4

C.2.1 Cars

• mv2_020_red (S1): includes scale changes (the car moves further away) as well as illumi-

nation changes.

• mv2_020_silver (S2): includes scale changes (the car moves further away) and several

illumination changes.
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• mv2_020_whitevan (S3): includes similar objects, appearance changes, scale changes and

illumination changes.

C.2.2 Faces

• HEADTRACK_seq_bb (S1): includes rotation (which can be viewed as an occlusion) and

distraction (similar objects in background)

• HEADTRACK_seq_jd (S2): includes a severe occlusion by a similar object.

• HEADTRACK_seq_mb (S3): includes overlapping of two faces as well as similar objects

in the background (�esh-colored board and boxes)

• HEADTRACK_seq_ms (S4): includes a hand movement intended to distract the tracker.

• HEADTRACK_seq_sb (S5): includes target rotation and tilting, occlusion and similar

objects.

• HEADTRACK_seq_villains2 (S6): includes three similar objects intended to distract the

tracker from the real target.

C.2.3 People

• PETS2009_S2_L1_view001_1 (S1): includes similar objects, partial and total occlusions

and slight scale changes.

• PETS2009_S2_L1_view001_2 (S2): includes similar objects, occlusions and scale changes.

• PETS2009_S2_L2_view001_1 (S3): includes illumination changes, occlusions and scale

changes.

• PETS2009_S2_L2_view001_2 (S4): includes illumination changes and scale changes.

• PETS2009_S2_L3_view001_1 (S5): includes illumination changes, occlusions and scale

changes

• PETS2009_S2_L3_view001_2 (S6): includes illumination changes and scale changes.
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Appendix D

Web Page

The proposed dataset is available on Internet at the following website http://www-vpu.ii.uam.

es/SOVTds/index.html. In this section, we include some snapshot of the website:
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Appendix E

Initialization Errors vs. Issues

This appendix described the e�ect of incorrect initialization in the sequences that compose the

proposed dataset which describes the common issues in video tracking. The following data

depicts the tracking results regarding the analyzed sequences with (a) correct initialization (indi-

cated by ground-truth data), (b) modi�cations of the initialization dimensions, (c) modi�cations

of initialization center (i.e., traslation), and (d) modi�cations of the center and dimensions of

the initialization. The complexity indicated in each �gure represents that at least 80% (Low),

50% (Medium) or 30% (High) of the modi�ed bounding box overlaps with the ground-truth

annotation.

E.1 Complex movement

The obtained results are depicted in Figure E.1. As it can be observed in Figure E.1 (b), the

most a�ected algorithms are MSA and TM, the later being more dependent of the complexity.

For the other algorithms,slight size changes do not seem to highly a�ect the performance. Figure

E.1 (c) shows that very good results are obtained for the �rst two complexity groups (80% and

50% Overlap) , although a slight decrease in the accuracy is observed for the high complexity

scenario (30% Overlap). Figure E.1 (d) shows that, for high complexity, all algorithms experience

a signi�cant decrease in their accuracy. Globally, all algorithms presented a performance decrease

against initialization modi�cations in presence of complex target motion. Also note that some

algorithms (such as CBWH) performed better with a slight increase of the size of the target

demonstrating the existence of errors in the ground-truth annotations.

E.2 Illumination gradual

Results for sequences with gradual illumination changes are shown in Figure E.2. The results for

the three complexity levels are very similar results for the three cases (b), (c) and (d), and all of
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(a) (b)

(c) (d)

Figure E.1: Complex Movement Initialization Comparison

them are very similar to the accuracy values obtained when the box experiences no modi�cation

(a) for this issue. In all cases, a slight accuracy decrease is experienced by all algorithms as

the complexity increases respect to the correct initialization case (Figure E.2(a)). Moreover,

SOAMST exhibited high robustness to changes in the target initialization whilst the rest of the

algorithms decreased their performance as the complexity increases.

E.3 Illumination abrupt

The results for sequences with abrupt illumination changes are depicted in Figure E.3. Figure

E.3(b) shows very similar values for all algorithms except MSA, which experiences an abrupt

decrease as the complexity increases, which also occurs in previous cases. Figure E.3(c) demon-

strated that all algorithms have similar performance to the correct initialization case (Figure

E.3(a)). Figure E.3(d) shows a gradual accuracy decreases the complexity increases, being the

MSA the most noticeable algorithm, with the exception of SOAMST that remained invariant to

the initialization modi�cations.
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(a) (b)

(c) (d)

Figure E.2: Illumination Gradual Initialization Comparison

(a) (b)

(c) (d)

Figure E.3: Illumination Abrupt Initialization Comparison
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(a) (b)

(c) (d)

Figure E.4: Noise Initialization Comparison

E.4 Noise

Results for sequences with di�erent noise levels are depicted in Figure E.4 where most algorithms

achieve very high accuracy. In Figure E.4 (b), a slight and gradual decrease of accuracy (especially

CBWH and MS) is observed. MSA decreased very abruptly, with extremely poor results as

the complexity increases. On the other hand, SOAMST and PF remained invariant to this

modi�cation. In Figure E.4 (c), a slight decrease for all algorithms is observed except for CBWH

and SOAMST. Finally, Figure E.4 (d) shows that the same decrease pattern is observed, with

all algorithms except SOAMST providing lower accuracy values as the complexity increases.

E.5 Occlusion

Results for sequences including some sort of target occlusion are depicted in Figure E.5. The

similarity between all cases (b), (c) and (d) is obvious, and the most noticeable di�erence is the

decrease in the performance of MSA both when the size of the box changes and when the size

and position change. In this case, it is possible to say that all algorithms (with the exception of

MSA) are robust to initialization errors when the sequences have occluded targets.
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(a) (b)

(c) (d)

Figure E.5: Occlusion Initialization Comparison

E.6 Scale changes

The results for sequences where the target experiences scale changes are shown in Figure E.6.

In Figure E.6 (b), algorithms had a performance decrease as the initialization size increase

in complexity with the exception of SOAMST and PF, which remained constant in all three

complexity levels. In Figure E.6 (c), both CBWH and SOAMST were independently to the

initialization errors, whereas the rest of the algorithms presented a gradual and slight decrease.

In Figure E.6 (d), all algorithms (with the exception of SOAMST) experienced worst results as

the complexity of the initialization is increased.

E.7 Similar objects

In Figure E.7, results for sequences where similar objects to the target appeared in the sequence

are depicted. In the three cases, all algorithms experienced a gradual and slight decrease as the

initialization error increased, with the exception of SOAMST, which provided constant results

for all complexity levels.
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(a) (b)

(c) (d)

Figure E.6: Scale Changes Initialization Comparison

(a) (b)

(c) (d)

Figure E.7: Similar Objects Initialization Comparison
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Appendix F

Introducción

Este capítulo introduce el trabajo presentado en este documento. En las próximas secciones,

se describe la motivación del trabajo (sección F.1), los objetivos principales (sección F.2) y la

estructura del documento (sección F.3).

F.1 Motivación

La visión arti�cial es un campo cuyo objetivo es el de automatizar el procesamiento de imágenes

(tomadas, por ejemplo, con una cámara o un conjunto de cámaras) para entender su contenido.

La visión arti�cial trata de imitar el sistema de visión humano en el que el cerebro procesa

imágenes capturadas por los ojos [1]. Los datos pueden tener diversos formatos, como por

ejemplo, secuencias de video, diferentes vistas de múltiples cámaras o datos multidimensionales

proporcionados por escáneres medicos. Esta información es usada a continuación para resolver

tareas o entender que sucede en la escena representada. Este campo tiene diversas aplicaciones

en las areas de visión industrial (por ejemplo, inspección de partes mecánicas), detección de

eventos (por ejemplo, detección de equipajes abandonados) y aplicaciones forenses y biométricas

(por ejemplo, reconocimiento facial automático).

El seguimiento de objetos en video1 es un paso importante en muchas de las aplicaciones

relacionadas con la visión arti�cial. Consiste en la localización del objeto (u objetos) de interés2

según se mueve en el tiempo a través de una escena por medio de un dispositivo de visión como

puede ser una cámara [2]. Encontrar el objeto de interés en frames consecutivos puede ser difícil

si se mueve rápido con respecto al frame rate de la secuencia de video. Una solución típica para

este problema es el uso de un modelo de movimiento para describir la dinámica del objeto. Un

1En este documento se utiliza el término tracking o video tracking para referirse al seguimiento de objetos en
una secuencia de video.

2En este documento se utiliza el término target para representar los objetos de interés que serán seguidos en
una secuencia de video.
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(a)

(b)

(c) (d)

Figure F.1: Examples of video tracking: (a) motion capture analysis [3], (b) sports tracking with
multiple cameras (from PETS2003 dataset), (c) gait analysis (Oxfords Metrics Group) and (d)
position tracking of Escherichia coli bacteria (from [4])

amplio rango de aplicación surgen del seguimiento de objetos en videos, por ejemplo, interacción

humano-máquina, seguridad y vigilancia, comunicación por video, realidad aumentada, control de

trá�co, radiodiagnostico y editado de videos: algunos ejemplos estan representados en la Figura

F.1. Dado que la cantidad de datos a tratar es muy grande, el seguimiento de objetos es una

tarea de gran complejidad y con una gran consumo de tiempo. Esta complejidad puede además

verse aumentada debido al hecho de que suele ser necesario emplear técnicas de reconocimiento

de objetos.

El diseo de un algoritmo de seguimiento de objetos es una tarea complicada. Se ha llegado

al acuerdo de que los tres pasos para el diseño de un algoritmo son [2]:
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1) Extracción de información relevante: identi�cación y extracción de las características mas

importantes del target que serán usadas en el tracking. Cuanto mejor sea esta selección,

más robusto sera el algoritmo.

2) Representación del target : este paso de�ne el modelo con la información importante ex-

traída por el algoritmo de seguimiento. El método ideal de representación permite identi-

�car el objeto sin duda siendo lo su�cientemente �exible como para soportar cambios de

escala, orientación, iluminación...

3) Propagación del modelo del target en el tiempo, utilizando recursivamente información de

pasos previos.

Una gran variedad de técnicas han sido desarrolladas siguiendo los pasos mencionados arriba.

En este contexto, la selección del algoritmo mas adecuado para cada aplicación es una tarea de

gran complicación y que normalmente lleva a cabo el diseñador de la aplicación basado en su

experiencia. Por otra parte, la alta variabilidad y complejidad de los datos a analizar tiene que

tenerse en cuenta en esta selección. Hay varios problemas que afectan al rendimiento del algo-

ritmo, como por ejemplo ruido, objetos similares en el fondo, oclusiones, cambios de apariencia o

iluminación... Por lo tanto, no hay un único algoritmo que se comporte perfectamente en todas

y cada una de las situaciones.

Para identi�car claramente qué algoritmos se comportan mejor en determinadas situaciones

o aplicación, se ha propuesto en la literatura una evaluación del rendimiento como un metodo

de determinar tanto los puntos fuertes como los débiles de cada uno de los algoritmos. Dicha

evaluación consiste en el análisis de los resultados obtenidos. Para llevar a cabo dicho analisis,

hay que especi�car dos aspectos fundamentales: el dataset (una serie de secuencias que cubren

las situaciones y problemas a los que el algoritmo se va a enfrentar, y que es lo su�cientemente

extensiva para ser representativa del mundo real) y las métricas que se usarán para representar

la precisión de los algoritmos de tracking (que permiten cuanti�car cómo de bien se comportan

los algoritmos). Estos dos aspectos tambien son conocidos como el protocolo de evaluación de

seguimiento de objetos [2]. Además, los protocoles de evaluación mas comunes utilizan métricas

basadas en información de ground-truth, que representa el resultado de tracking ideal y cuya

anotación se hace manualmente. La generación del ground-truth es un paso muy lento y por lo

tanto, suele limitar la cantidad de secuencias y su extensión en los datasets. Es mas, la existencia

de diversas métricas incrementa la di�cultad al diseñar un protocolo de evaluación exacto. Otro

punto a tener en cuenta es la cantidad cada vez mayor de información disponible, lo que genera

una nueva necesidad de automatizar todo el proceso de evaluacion de tracking.

El número de estudios comparativos llevados a cabo con diferentes algoritmos es muy limita-

dos dado el bajo número de información empleada así como la similitud de las métricas analizadas.

Por ejemplo, en [6] se proponían diversas metricas que generaban información redundante. Por
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lo tanto, no es fácil extrapolar las conclusiones extraídas del análisis a nuevas secuencias. sonIt

represents the ideal tracking result and it is manually annotated. The generation of the ground

truth is usually a time consuming step and, therefore, limits the amount of data in the dataset.

Furthermore, the existence of several metrics increases the complexity of designing an accurate

evaluation protocol. Another point to be taken into account is the increasing quantity of video

data available, which generates a new need to automate the whole tracking evaluation process.

Otro problema a tener en cuenta es el hecho de que no hay estudios comparativos de algorit-

mos de diversa naturaleza cuando los problemas estan presentes en las secuencias. Este hecho

también limita las conclusiones extraídas de las evaluaciones de rendimiento.

Como se ha explicado anteriormente, los datasets disponibles actualmente no son su�cientes

para cubrir las necesidades actuales de los aplicaciones de seguimiento de objetos [?]. Actual-

mente, no existe un protocolo de evaluación estándar que permita una comparación rápida e

intuitiva de algoritmos, mostrando tanto las ventajas como las desventajas de cada uno de ellos

al enfrentarse a diversas situaciones. Dado que cada protocolo de evaluación propone diferentes

datasets y metricas, no es posible tener una visión general de los resultados que permita la

comparación de diferentes algoritmos en diversos escenarios.

F.2 Objetivos

El objetivo principal del trabajo presentado en este documento es el desarrollo de un protocolo de

evaluación para estimar el rendimiento de algoritmos de seguimiento de objetos. Este protocolo

debe tener en cuenta las complicaciones o problemas más destacas a las que se ven enfrentadas

los algoritmos. Para ellos, los siguientes puntos han sido realizados:

• Estudio en profundidad del estado del arte. Incluye un análisis del trabajo relacionado con

seguimiento de objetos teniendo en cuenta los diferentes estados del análisis, los métodos

actuales y los problemas más comunes, asi como las métricas de evaluación y los datasets

disponibles.

• Selección e implementación de las técnicas de tracking más representativas. Se seleccionan

las técnicas más representativas de algoritmos deterministas y probabilísticos propuestas

en la literatura.

• Creación de un dataset apropiado para la evaluación del tracking. Este paso consiste en

el diseño de secuencias tanto sintéticas como reales que representen los problemas más

importantes. También se usarán secuencias reales disponibles en otros datasets.

• Diseño e implementación de un protocolo de evaluación del rendimiento del tracking. El

objetivo es proponer una metodología para evaluar algoritmos que cubra los diferentes tipos

de secuencias así como los problemas más habituales.
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(a)

(b)

Figure F.2: (a) Video tracking examples and (b) issues in tracking.

• Aplicación del protocolo de evaluación propuesto. El rendimiento de los algoritmos selec-

cionados es puesto a prueba usando el protocolo previamente de�nido e implementado.

F.3 Estructura del Documento

El documento está estructurado de la siguiente manera: The structure of the document is as

follows:

• Capítulo 1. Este capítulo presenta la motivación y los objetivos del trabajo de este docu-

mento.

• Capítulo2. Este capítulo analiza la literatura relacionada con el trabajo expuesto en este

documento.

• Capítulo3. Este capítulo describe los diferentes enfoques (algoritmos) que serán evaluados

para seguir un objeto.
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• Capítulo4. Este capítulo describe el protocolo de evaluación presentados. Incluye tanto los

aspectos que serán considerados como el dataset empleado.

• Capítulo5. Este capítulo presenta un análisis en profundidad de la aplicación del protocolo

de evaluación en los algoritmos previamente seleccionados.

• Capítulo6. Este capítulo resume los resultados obtenidos en este trabajo y presenta algunas

sugerencias de trabajo futuro.
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Appendix G

Conclusiones y Trabajo Futuro

G.1 Resumen

En este documento se ha presentado un nuevo protocolo de evaluación para el seguimiento de

objetos en video, permitiendo la evaluación de diferentes casos y proporcionando un marco con

el que comparar el rendimiento de los algoritmos de seguimiento.

El primer paso fue realizar un extensivo estudio acerca del estado del arte, necesario para

entender todo el proceso de video tracking1. También se realizó un estudio de las métricas exis-

tentes y los datasets disponibles para la evaluación de video tracking. Este estudio se encuentra

disponible en el capítulo 2.

A continuación se realizó una completa búsqueda y analisis de diversos algoritmos. Una vez

que se hubo entendido el funcionamiento de los algoritmos (basados en color), se hizo una se-

lección de los mas relevantes. La idea principal era utilizar algoritmos que abarcaran diferentes

enfoques: incluyendo información de fondo, capaces de hacer frente a cambios de escala y ori-

entación y con enfoques determinísticos y probabilísticos. Todos ellos tienen en común el uso de

un rasgo: el color. Toda la información acerca de los algoritmos seleccionados se encuentra en el

capítulo 3.

Una vez que los algoritmos habían sido seleccionados e implementados fue necesario desarrol-

lar un protocolo para su evaluación teniendo en cuenta diversos aspectos: estudio de parámetros

óptimos, robustez a errores de inicializacion, precisión, estabilidad y e�ciencia. Para la evalu-

ación de precisión (accuracy), el número de métricas existentes es abrumador, sin embargo, tras

un cuidado estudio, se hizo evidente que la mayoría de las métricas proporcionaban información

redundante o no proporcionaban resultados �ables debido a detalles omitidos en sus de�niciones.

Se realizó entonces una selección meditada para utilizar las métricas que proporcionaran buenos

resultados e incluirlas en el protocolo de evaluación para evaluar las secuencias. Una vez que

1Se usara el término video tracking en lugar de la traducción en español, seguimiento de objetos en video.
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tanto los algoritmos como las métricas estuvieron listos, surgió la necesidad de crear un completo

dataset. A la hora de diseñarlo, el objetivo principal era cubrir la mayor cantidad de situaciones y

problemas posibles, y despues de un estudio intensivo de los datasets existentes, se seleccionaron,

crearon y anotaron un total de 122 secuencias. Todo este trabajo se encuentra detallado en el

capítulo 4.

En último lugar, el protocolo completo fue probado para comprobar su funcionamiento a

la hora de evaluar los algoritmos seleccionados. El primer objetivo era comprobar cómo se

comportaban los algoritmos cuando determinados problemas aparecían en las escenas así como

el funcinamiento cuando ocurrían otros problemas (por ejemplo, mala inicialización). Este paso

permitió determinar qué algoritmo (teniendo en cuenta que sólo se realizó una implementación de

cada algoritmo) se comportaba mejor y proporcionaba mejores resultados no sólo en cada caso por

separado sino con el dataset completo. El segundo objetivo era determinar otros detalles como

el consumo de tiempo de cada algoritmo, cómo se veían afectados los algoritmos al modi�car

algunos de sus parámetros o cómo se veía afectado el funcionamiento con diferentes enfoques

(probabilístico o determinístico). Toda la información acerca de los resultados experimentales

obtenidos tras un extensivo análisis del protocolo se encuentran en el capítulo 5.

G.2 Conclusiones

Tras analizar los resultados obtenidos en el capítulo 5, se puede determinar que el mejor algoritmo

es CBWH, ya que tuvo la mayor tasa de éxito en el dataset completo. Por otro lado, también

tiene tiempos de ejecución menores que la mayoría de algoritmos, algo que es crucial cuando se

analizan secuencias largas. MS obtuvo resultados similares a CBWH en cuanto a tasa de éxito

con tiempos de ejecución algo mejores. El peor algoritmo es SOAMST sin lugar a dudas: baja

tasa de éxito, comportamiento errático y alto tiempo de procesado. Sin embargo, este algoritmo

proporcionó los resultados más estables en secuencias cuya anotación tenía algún tipo de error

en la inicialización (en posición, tamaño o una combinación de ambos), debido al hecho de que

el área de búsqueda dinámica permite al algoritmo ajustarse para encontrar el target con mayor

precisión. La versión adaptada de MS, MSA, no proporcionó resultados favorables ya que la

actualización del modelo suponía que en el momento en que se producía una ligera inclusión de

características no deseables el algoritmo perdía fácilmente el target sin ser capaz de encontrarlo

de nuevo. Por último, PF se comportó peor de lo esperado, que como se comentó anteriormente,

puede ser debido al hecho de que las métricas empleadas no son las más apropiadas para este

algoritmo, o a que no es posible con�gurar óptimamente los parámetros en un dataset con

sequencias tan dispares y diferentes entre sí. Todas las conclusiones, resultados y comparaciones

son válidas para este dataset especí�co.

En las próximas secciones se expondrán los resultados obtenidos con respecto a diferentes
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características de los algoritmos seleccionados.

Modelo �jo En este caso tenemos dos algoritmos: MS y TM. Ambos son métodos simples,

pero mientras que TM busca una imagen �ja comparando la intensidad de los píxeles, MS

utiliza histogramas (de color en este caso) para encontrar una mejor equivalente. Esta mejora

se muestra claramente en los resultados: MS tiene un comportamiento mucho mejor en general.

La desventaja de MS frente a TM es que consume el doble de tiempo. En algunos casos como

movimiento complejo, cambios abruptos de iluminación u objetos similares en la escena, ambos

algoritmos presentan un comportamiento similar. En el caso de oclusiones, TM es una mejor

opción debido al hecho de que el área de búsqueda es la imagen completa y por lo tanto, una

vez que el target es visible de nuevo (la oclusión termina), TM consigue encontrarlo mas rápido

que otros algoritmos (como MS), pero MS tiene un comportamiento mejor en cambios graduales

de iluminación, ruido, cambios de escala, y más importante, secuencias complejas con varios

problemas debido a las limitaciones obvias de usar un modelo �jo (TM) frente a un histograma

de color (MS).

Modelo adaptado En este caso, se realizó una modi�cación de MS para que el algoritmo

tuviera en cuenta la información del frame anterior: en lugar de utilizar un modelo �jo a partir

de la información del primer frame, el modelo se creaba en cada frame. Sin embargo, a pesar de

que esto puede parecer una ventaja, el algoritmo propociona resultados mucho peores ya que se

acumulan los errores a lo largo del proceso de seguimiento (drift). Por lo tanto, un modelo ciego

(blind adaptative scheme model) no está recomendado.

Información de fondo El algoritmo CBWH, una mejora de MS, utiliza información del fondo

(background), proporcionando los mejores resultados en general para todo el dataset. La única

desventaja es, como ya se ha comentado, el mayor tiempo de ejecución debido a la necesidad de

realizar más pasos en cada frame. Este problema puede solucionarse en parte disminuyendo el

tamaño de ventana, aunque eso supondría una menor precisión (menor SFDA). En general, la

inclusión de información del fondo es una adicción al algoritmo básico MS muy recomendable.

Información de tamaño En este caso tenemos dos algoritmos: SOAMST y PF. Ambos

tratan los problemas de escalas desde su enfoque: punto de vista determinista (SOAMST) o

probabilista (PF). En este caso, ambos algoritmos presentan resultados similares en cuanto a

la tasa de éxito: en algunos casos SOAMST tiene un mejor comportamiento, mientras que en

determinados problemas es PF el que propociona mejores resultados. En secuencias con una

combinación de problemas (Level 4), PF es claramente el algoritmo que propociona mayor tasa

de exito. Dado que estos algoritmos están preparados para tratar con los cambios de escala, es

importante comentar que el comportamiento cuando se prueban secuencias con dicho problema
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no es bueno: no sólo presentan resultados peores que otros algoritmos (como CBWH), sino que

hay situaciones (como en objetos similares) en las que la precisión es mayor. Como apunte �nal,

PF es el algoritmo más rápido mientras que SOAMST es el más lento: tarda unas 10 veces más

que PF.

Los algoritmos que no incluyen tratamiento de cambios de escala se comportan bien en este

dataset. Una posible razón es el hecho de que en los cambios de escala en los que el objeto se

aleja de la cámara (reduce su tamaño), el algoritmo tiene mayores probabilidades de encontrarlo

ya que su zona de búsqueda será muy grande, mejorando de esta manera la precisión general (a

pesar de que el área será entonces mayor de lo necesario).

Enfoque determinista frente a probabilista Como se observa en la �gura 5.23, hay una

diferencia clara entre los mejores algoritmos (CBWH en la mayoría de los casos) frente PF. Por

lo tanto, con este dataset y las implementaciones realizadas para cada algoritmo, así como las

métricas empleadas, se puede decir que el enfoque deterministca proporciona resultados mejores

que el probabilista. La mayor ventaja de PF es sin duda el menor tiempo de ejecución, mientras

que la mejor característica de CBWH es la mayor precisión (valores altos de SFDA).

G.3 Trabajo futuro

Las conclusiones presentadas en el apartado anterior demuestran que algunos algoritmos operan

de forma mucho mejor que otro y son, por tanto, una mejor opción a la hora de diseñar un

sistema de video tracking. Sin embargo, es importante mencionar que estos resultados no deberían

tomarse como una regla general debido a las limitaciones del protocolo diseñado e implementado.

Este documento propone un protocolo determinado al que se le podrían introducir varios

cambios para obtener resultados mas precisos.

• En primer lugar, la característica empleada en todos los algoritmos para de�nir el target es

el color. Esta implementación tiene muchas ventajas, pero obviamente, se podría utilizar

un modelo mas complejo y analizar cómo afecta al comportamiento de los algoritmos.

• En segundo lugar, a pesar de que el dataset fue creado lo mas completo posible, es impor-

tante tener en cuenta que sólo se han analizado determinados problemas. Se podrían crear

y añadir secuencias con importantes cambios de apariencia u otros problemas de tracking

para tener un dataset más completo.

• A pesar de que el sistema se realizó lo mas automático posible, sería interesante optimizar el

funcionamiento, especialmente si el dataset aumenta. Esto incluye (pero no está limitado) a

la prueba de videos con cada algoritmo, la creación y evaluación de los �cheros de anotación

para cada prueba y el análisis de dichos �cheros para determinar la precisión en cada caso.
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• Sería interesante también comprobar los tiempos de ejecución de forma más exhaustiva,

teniendo en cuenta por ejemplo cómo afecta el cambio de diferentes parámetros al consumo

de tiempo .

• Por último, se ha observado que la de�nición de un buen comportamiento de un sistema

de seguimiento no está demasiado clara, ya que un solapamiento espacial del 50% (entre la

estimación del target y la anotación del ground-truth) es válida para algunas aplicaciones

y no para otras. Por lo tanto, se podrían investigar nuevas métricas que no dependieran

de la aplicación (como se detalla en [7]).
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Appendix H

Presupuesto

1) Ejecución Material

• Compra de ordenador personal (Software incluido)
2.000 ¤

• Alquiler de impresora láser durante 6 meses
260 ¤

• Material de o�cina
150 ¤

• Total de ejecución material
2.400 ¤

2) Gastos generales

• sobre Ejecución Material
352 ¤

3) Bene�cio Industrial

• sobre Ejecución Material
132 ¤

4) Honorarios Proyecto

• 1800 horas a 15 ¤/ hora
27000 ¤

5) Material fungible

• Gastos de impresión
280 ¤

• Encuadernación
200 ¤

6) Subtotal del presupuesto

• Subtotal Presupuesto
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32.774 ¤

7) I.V.A. aplicable

• 16% Subtotal Presupuesto
5.243,8 ¤

8) Total presupuesto

• Total Presupuesto
38.017,8 ¤

Madrid, Febrero de 2012

El Ingeniero Jefe de Proyecto

Fdo.: Mónica Lozano Cruz

Ingeniero Superior de Telecomunicación
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Appendix I

Pliego de condiciones

Este documento contiene las condiciones legales que guiarán la realización, en este proyecto,

de un protocolo de evaluación de algoritmos de seguimiento de objeto (tracking). En lo que

sigue, se supondrá que el proyecto ha sido encargado por una empresa cliente a una empresa

consultora con la �nalidad de realizar dicho sistema. Dicha empresa ha debido desarrollar una

línea de investigación con objeto de elaborar el proyecto. Esta línea de investigación, junto con el

posterior desarrollo de los programas está amparada por las condiciones particulares del siguiente

pliego.

Supuesto que la utilización industrial de los métodos recogidos en el presente proyecto ha

sido decidida por parte de la empresa cliente o de otras, la obra a realizar se regulará por las

siguientes:

Condiciones generales

1) La modalidad de contratación será el concurso. La adjudicación se hará, por tanto, a la

proposición más favorable sin atender exclusivamente al valor económico, dependiendo de

las mayores garantías ofrecidas. La empresa que somete el proyecto a concurso se reserva

el derecho a declararlo desierto.

2) El montaje y mecanización completa de los equipos que intervengan será realizado total-

mente por la empresa licitadora.

3) En la oferta, se hará constar el precio total por el que se compromete a realizar la obra y

el tanto por ciento de baja que supone este precio en relación con un importe límite si este

se hubiera �jado.

4) La obra se realizará bajo la dirección técnica de un Ingeniero Superior de Telecomunicación,

auxiliado por el número de Ingenieros Técnicos y Programadores que se estime preciso para

el desarrollo de la misma.
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5) Aparte del Ingeniero Director, el contratista tendrá derecho a contratar al resto del per-

sonal, pudiendo ceder esta prerrogativa a favor del Ingeniero Director, quien no estará

obligado a aceptarla.

6) El contratista tiene derecho a sacar copias a su costa de los planos, pliego de condiciones y

presupuestos. El Ingeniero autor del proyecto autorizará con su �rma las copias solicitadas

por el contratista después de confrontarlas.

7) Se abonará al contratista la obra que realmente ejecute con sujeción al proyecto que sirvió

de base para la contratación, a las modi�caciones autorizadas por la superioridad o a las

órdenes que con arreglo a sus facultades le hayan comunicado por escrito al Ingeniero

Director de obras siempre que dicha obra se haya ajustado a los preceptos de los pliegos

de condiciones, con arreglo a los cuales, se harán las modi�caciones y la valoración de las

diversas unidades sin que el importe total pueda exceder de los presupuestos aprobados.

Por consiguiente, el número de unidades que se consignan en el proyecto o en el presupuesto,

no podrá servirle de fundamento para entablar reclamaciones de ninguna clase, salvo en

los casos de rescisión.

8) Tanto en las certi�caciones de obras como en la liquidación �nal, se abonarán los trabajos

realizados por el contratista a los precios de ejecución material que �guran en el presupuesto

para cada unidad de la obra.

9) Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase a las condiciones

de la contrata pero que sin embargo es admisible a juicio del Ingeniero Director de obras, se

dará conocimiento a la Dirección, proponiendo a la vez la rebaja de precios que el Ingeniero

estime justa y si la Dirección resolviera aceptar la obra, quedará el contratista obligado a

conformarse con la rebaja acordada.

10) Cuando se juzgue necesario emplear materiales o ejecutar obras que no �guren en el pre-

supuesto de la contrata, se evaluará su importe a los precios asignados a otras obras o

materiales análogos si los hubiere y cuando no, se discutirán entre el Ingeniero Director y

el contratista, sometiéndolos a la aprobación de la Dirección. Los nuevos precios convenidos

por uno u otro procedimiento, se sujetarán siempre al establecido en el punto anterior.

11) Cuando el contratista, con autorización del Ingeniero Director de obras, emplee materiales

de calidad más elevada o de mayores dimensiones de lo estipulado en el proyecto, o sustituya

una clase de fabricación por otra que tenga asignado mayor precio o ejecute con mayores

dimensiones cualquier otra parte de las obras, o en general, introduzca en ellas cualquier

modi�cación que sea bene�ciosa a juicio del Ingeniero Director de obras, no tendrá derecho

sin embargo, sino a lo que le correspondería si hubiera realizado la obra con estricta sujeción

a lo proyectado y contratado.
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12) Las cantidades calculadas para obras accesorias, aunque �guren por partida alzada en el

presupuesto �nal (general), no serán abonadas sino a los precios de la contrata, según las

condiciones de la misma y los proyectos particulares que para ellas se formen, o en su

defecto, por lo que resulte de su medición �nal.

13) El contratista queda obligado a abonar al Ingeniero autor del proyecto y director de obras

así como a los Ingenieros Técnicos, el importe de sus respectivos honorarios facultativos

por formación del proyecto, dirección técnica y administración en su caso, con arreglo a las

tarifas y honorarios vigentes.

14) Concluida la ejecución de la obra, será reconocida por el Ingeniero Director que a tal efecto

designe la empresa.

15) La garantía de�nitiva será del 4% del presupuesto y la provisional del 2%.

16) La forma de pago será por certi�caciones mensuales de la obra ejecutada, de acuerdo con

los precios del presupuesto, deducida la baja si la hubiera.

17) La fecha de comienzo de las obras será a partir de los 15 días naturales del replanteo o�cial

de las mismas y la de�nitiva, al año de haber ejecutado la provisional, procediéndose si no

existe reclamación alguna, a la reclamación de la �anza.

18) Si el contratista al efectuar el replanteo, observase algún error en el proyecto, deberá

comunicarlo en el plazo de quince días al Ingeniero Director de obras, pues transcurrido

ese plazo será responsable de la exactitud del proyecto.

19) El contratista está obligado a designar una persona responsable que se entenderá con el

Ingeniero Director de obras, o con el delegado que éste designe, para todo relacionado con

ella. Al ser el Ingeniero Director de obras el que interpreta el proyecto, el contratista deberá

consultarle cualquier duda que surja en su realización.

20) Durante la realización de la obra, se girarán visitas de inspección por personal facultativo

de la empresa cliente, para hacer las comprobaciones que se crean oportunas. Es obligación

del contratista, la conservación de la obra ya ejecutada hasta la recepción de la misma,

por lo que el deterioro parcial o total de ella, aunque sea por agentes atmosféricos u otras

causas, deberá ser reparado o reconstruido por su cuenta.

21) El contratista, deberá realizar la obra en el plazo mencionado a partir de la fecha del con-

trato, incurriendo en multa, por retraso de la ejecución siempre que éste no sea debido a

causas de fuerza mayor. A la terminación de la obra, se hará una recepción provisional

previo reconocimiento y examen por la dirección técnica, el depositario de efectos, el inter-

ventor y el jefe de servicio o un representante, estampando su conformidad el contratista.
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22) Hecha la recepción provisional, se certi�cará al contratista el resto de la obra, reservándose

la administración el importe de los gastos de conservación de la misma hasta su recepción

de�nitiva y la �anza durante el tiempo señalado como plazo de garantía. La recepción

de�nitiva se hará en las mismas condiciones que la provisional, extendiéndose el acta cor-

respondiente. El Director Técnico propondrá a la Junta Económica la devolución de la

�anza al contratista de acuerdo con las condiciones económicas legales establecidas.

23) Las tarifas para la determinación de honorarios, reguladas por orden de la Presidencia del

Gobierno el 19 de Octubre de 1961, se aplicarán sobre el denominado en la actualidad �Pre-

supuesto de Ejecución de Contrata� y anteriormente llamado �Presupuesto de Ejecución

Material� que hoy designa otro concepto.

Condiciones particulares

La empresa consultora, que ha desarrollado el presente proyecto, lo entregará a la empresa

cliente bajo las condiciones generales ya formuladas, debiendo añadirse las siguientes condiciones

particulares:

1) La propiedad intelectual de los procesos descritos y analizados en el presente trabajo,

pertenece por entero a la empresa consultora representada por el Ingeniero Director del

Proyecto.

2) La empresa consultora se reserva el derecho a la utilización total o parcial de los resultados

de la investigación realizada para desarrollar el siguiente proyecto, bien para su publicación

o bien para su uso en trabajos o proyectos posteriores, para la misma empresa cliente o

para otra.

3) Cualquier tipo de reproducción aparte de las reseñadas en las condiciones generales, bien

sea para uso particular de la empresa cliente, o para cualquier otra aplicación, contará

con autorización expresa y por escrito del Ingeniero Director del Proyecto, que actuará en

representación de la empresa consultora.

4) En la autorización se ha de hacer constar la aplicación a que se destinan sus reproducciones

así como su cantidad.

5) En todas las reproducciones se indicará su procedencia, explicitando el nombre del proyecto,

nombre del Ingeniero Director y de la empresa consultora.

6) Si el proyecto pasa la etapa de desarrollo, cualquier modi�cación que se realice sobre él,

deberá ser noti�cada al Ingeniero Director del Proyecto y a criterio de éste, la empresa

consultora decidirá aceptar o no la modi�cación propuesta.
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7) Si la modi�cación se acepta, la empresa consultora se hará responsable al mismo nivel que

el proyecto inicial del que resulta el añadirla.

8) Si la modi�cación no es aceptada, por el contrario, la empresa consultora declinará toda

responsabilidad que se derive de la aplicación o in�uencia de la misma.

9) Si la empresa cliente decide desarrollar industrialmente uno o varios productos en los que

resulte parcial o totalmente aplicable el estudio de este proyecto, deberá comunicarlo a la

empresa consultora.

10) La empresa consultora no se responsabiliza de los efectos laterales que se puedan producir en

el momento en que se utilice la herramienta objeto del presente proyecto para la realización

de otras aplicaciones.

11) La empresa consultora tendrá prioridad respecto a otras en la elaboración de los proyectos

auxiliares que fuese necesario desarrollar para dicha aplicación industrial, siempre que no

haga explícita renuncia a este hecho. En este caso, deberá autorizar expresamente los

proyectos presentados por otros.

12) El Ingeniero Director del presente proyecto, será el responsable de la dirección de la apli-

cación industrial siempre que la empresa consultora lo estime oportuno. En caso contrario,

la persona designada deberá contar con la autorización del mismo, quien delegará en él las

responsabilidades que ostente.
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