
Towards a New Algebraic Approach

to Graph Transformation.

Basic Concepts, Sequentialization

and Parallelism: Long Version

Pedro Pablo Pérez Velasco

Juan de Lara

Universidad Autónoma de Madrid
Escuela Politécnica Superior

Ingenieŕıa Informática
pedro.perez@uam.es, jdelara@uam.es

Informe Técnico 3/2006

Towards a New Algebraic Approach to Graph Transformation.

Basic Concepts, Sequentialization and Parallelism: Long Version

Pedro Pablo Pérez Velasco, Juan de Lara
Escuela Politécnica Superior

Universidad Autónoma de Madrid

Spain

{ pedro.perez, jdelara }@uam.es

Abstract

This paper presents a new characterization of graph transformation rules for simple digraphs based on
boolean matrix algebra. We introduce the concept of coherence, which allows the analysis of potential
incompatibilities among rules that take part in a sequence of productions. Concurrency is studied under
the interleaving and the explicit parallelism views. For the former, the notion of sequential independence is
generalized to arbitrary permutations of rules. For the latter, rule composition is defined, which does not
generate intermediate states.

Keywords: Graph Transformation, Single and Double Pushout Approaches, Boolean Matrix Algebra,
Sequential Independence, Explicit Parallelism

1 Introduction

Graph Transformation [8] is becoming increasingly popular in computer science as it provides a formal basis
for graph manipulation. Transformations of this data structure are central to many application areas, such as
modelling with visual languages [19], visual simulation [16], picture processing and generation [5] and model
transformation [12].

The classical algebraic approach to graph transformation is based on category theory [6], and has a rich body
of theoretical results which have been developed over the last 30 years (see [8]). Thus, graph transformations
expressed as graph rewriting become not only graphical and intuitive but also formal, declarative and high-level
models, subject themselves to analysis [8] [9] [14]. Nonetheless, methods to increase efficiency and new analysis
techniques that can be implemented in tools are needed for real industrial applications.

In contrast to the categorical-algebraic approach, we propose an algebraic characterization based on boolean
matrix algebra. Thus, in the present paper we start working with simple digraphs, which can be represented
as boolean matrices. In this way, a graph transformation rule can be characterized by two matrices L and
R representing the left and right hand sides (LHS and RHS), together with deletion and addition matrices
(specifying which edges are deleted and added respectively). Similar concepts apply to nodes.

We present the concept of coherence for a sequence of rules of arbitrary length, together with the conditions
that must be fulfilled by the rules for the sequence to be applicable, in the sense that a rule does not prevent
the execution of the following ones. Moreover, we introduce the complementary concept of compatibility by
considering the application of the sequence to a minimal initial simple digraph and giving some conditions
under which the resulting digraph is well defined. A third basic concept, which we call G-applicability examines
the impact on elements used by productions inside a concatenation in case, for example, a permutation is
applied.

Similar concepts are introduced for the composition of rules, where a single rule is obtained comprising all
the rules in the sequence (thus, no intermediate states are generated, modelling explicit parallelism). We also
generalize the classical concept of sequential independence by considering permutations in rule sequences of
arbitrary lengths.

In the present work, most analysis are made independently of the host graph, that is, we do not consider
the match from the rule’s LHS to the host graph. However, the match can be seen as an operator modifying

1

the rule’s LHS and RHS by including the context in which the rules are applied (induced by the match)1. The
advantages of this approach are twofold. First, all properties under study are inherent to the grammar,2and
second, it has the practical advantage that the analysis can be performed by a tool in the phase of specification
of the grammar, independently of any host graph. From a practical point of view, once the grammar is specified,
the calculated results for coherence, parallel independence and all information gathered can then be used when
a host graph is considered, while on the theoretical side concepts introduced need not be modified.

The rest of the paper is organized as follows. Section 2 presents related approaches to graph transformation
with their main results. Section 3 introduces the basic concepts of our approach and the characterization of
graph transformation rules. Section 4 presents the notion of concatenation of productions and the conditions
for the sequence to be applicable (that is, coherence). Section 5 defines the related concept of composition
of a set of rules, where no intermediate steps are generated, and the conditions for such composition to be
compatible (the resulting rule produces a simple digraph). Related concepts are compatibility and minimal
initial digraph. Section 6 studies permutation of rules and sequential independence, introducing G-applicability.
Section 7 presents the results on explicit parallelism and finally, section 8 ends with the conclusions and future
work.

2 Related Work

The algebraic approach to graph transformation [8] is based on category theory [18]. There are two main
approaches, the double pushout (DPO) [6] [3] and the single pushout (SPO) [17] [10]. Both approaches model
direct derivations as one or two pushouts, in order to carry out the gluing and deletion of elements in the graph
where the rule is applied (called host graph). The main ideas of both approaches are shown in subsections 2.1
and 2.2. In [20], they transform simple digraphs, but still, they follow a categorical approach by defining
category Pfn(Graph) of simple digraphs and partial functions and using pushouts to model derivations. Other
approaches (double pullback [7], logic-based [21], algebraic-logic [4], relation-algebraic [15]) are less relevant to
our approach and will not be discussed.

2.1 Double Pushout Approach

In the DPO approach to graph rewriting, a direct derivation is represented by a double pushout in the Graph
category of graphs and total graph morphisms. Productions can be defined as three graph components, sep-
arating the elements that should be preserved from the left and right hand sides of the rule. In this way, a
production p : (L l←− K

r−→ R) consists of a production name p and a pair of injective graph morphisms
l : K → L and r : K → R. Graphs L, R and K are called the left-hand side (LHS), right-hand side (RHS) and
the interface of p. Morphisms l and r are usually injective and can be taken to be inclusions without loss of
generality.

The interface of a production depicts the elements that should be preserved by the production application.
The elements in L − K are deleted, while the elements of R − K are added. Figure 1 shows a simple DPO
production named del. It can be applied if a path of three nodes is found. If this is the case, the production
eliminates the last node and creates a loop edge in the second node. Morphisms l and r between L, K and R
are depicted with numbers. This is the convention we use throughout the paper.

del:

L K R
1 2 1 2 21

Figure 1: A simple DPO production.
1The idea behind this is to adapt the rule to the context on the one hand and on the other to avoid dangling edges or, using

the jargon introduced in this paper, maintain compatibility.
2More precisely, to the graph transformation system.

2

A direct derivation can be defined as an application of a production to a graph through a match by con-
structing two pushouts. Thus, given a graph G, a production p : (L l←− K

r−→ R), and a match m : L → G, a
direct derivation from G to H using p (based on m) exists iff the diagram in Figure 2 can be constructed, where
both squares are required to be pushouts in Graph. D is called the context graph, and we write G

p,m
=⇒ H or

G
p

=⇒ H.

L

m

²²

K
loo r //

d

²²

R

m∗

²²
G D

l∗oo r∗ // H

Figure 2: Direct Derivation as DPO construction.

Figure 3 shows the application of the del rule to a graph. Morphisms m, d and m∗ are depicted by showing
the correspondence of the vertices in the production and the graph.

m*

a

b c

d

G

1−a

2−c

a

b c

D

L K R

2 1 2 21

del:

3

1

1−a

2−c

3−d

1−a

2−c

a

b c

H

m d

Figure 3: DPO Direct Derivation Example.

In order to apply a production to a graph G, a pushout complement has to be calculated to obtain graph D.
The existence of this pushout complement is guaranteed iff the so-called dangling and identification conditions
are satisfied. The first one establishes that a node in G cannot be deleted if this causes dangling edges. The
second condition states that two different nodes or edges in L cannot be identified (by means of a non-injective
match) as a single element in G if one of the elements is deleted and the other is preserved. Moreover, the
injectivity of l : K → L guarantees the uniqueness of the pushout complement. In the example in Figure 3 the
match (1 − a, 2 − b, 3 − c) does not fulfil the dangling condition, as the deletion of the c node would cause
dangling edges. Thus, the production cannot be applied at this match.

A graph grammar can be defined as G = 〈(p : L
l←− K

r−→ R)p∈P , G0〉 [3], where (p : L
l←− K

r−→ R)p∈P

is a family of productions indexed by their names, and G0 is the starting graph of the grammar.3The semantics
of the grammar are all the reachable graphs that can be obtained by applying the rules in G, until none of
them are applicable. Note how a system state can be described with a graph. The events changing the system
state can thus be modelled using graph transformation rules. In real systems, parallel actions can take place.
Two main approaches can be followed in order to describe and analyze parallel computations. In the first one,
parallel actions are sequentialized, giving rise to different interleavings. In the second approach, the actions are
really simultaneous and this is called explicit parallelism.

In the interleaving approach, two actions (i.e. rule applications) are considered to be parallel if they can
be performed in any order yielding the same result. This can be observed from two points of view. The first
one is called parallel independence, and states that two alternative direct derivations H1

p1⇐= G
p2=⇒ H2 are

independent if there are direct derivations such that H1
p2=⇒ X

p1⇐= H2. That is, both derivations are not in
conflict, but one can be postponed after the other. If one element is preserved by one derivation, but deleted by

3If G0 is not considered, but the family of productions alone, then it is called a graph transformation system.

3

the other one, then the latter is said to be weakly parallel independent of the first. Thus, parallel independence
can be defined as mutual weak parallel independence. On the other hand, two direct derivations are called
sequential independent if they can be performed in a different order without changing the result. That is, both
G

p1=⇒ H1
p2=⇒ X and G

p2=⇒ H2
p1=⇒ X yield the same result.

The conditions for sequential and parallel independence are given in the Local Church Rosser theorem [3].
It says that two alternative parallel derivations are parallel independent if their matches only overlap in items
that are preserved. Two consecutive direct derivations are sequentially independent if the match of the second
one does not depend on elements generated by the first one, and the second derivation does not delete an item
that has been accessed by the first. Moreover, if two direct alternative derivations are parallel independent,
their concatenation is sequential independent and vice versa.

The explicit parallelism [3] [1] view abstracts from any application order. Thus, no intermediate states are
produced. In this approach, a derivation is modelled by a single production, called parallel production. Given
two productions, p1 and p2, the parallel production p1 +p2 is the disjoint union of both. The application of such
production is denoted as G

p1+p2=⇒ X. Two problems arise here: the sequentialization of a parallel production
(analysis), and the parallelization of a derivation (synthesis). In the DPO, the parallelism theorem states that a
parallel derivation G

p1+p2=⇒ X can be sequentialized into two derivations (G
p1=⇒ H1

p2=⇒ X and G
p2=⇒ H2

p1=⇒ X)
that are sequentially independent. Conversely, two sequential independent derivations can be put in parallel if
they are sequentially independent.

2.2 Single Pushout Approach

In the single pushout approach (SPO) to graph transformation, rules are modelled with two component graphs
(L and R), and direct derivations are built with one pushout (which performs the gluing and the deletion).
Thus SPO works with the GraphP category of graphs and partial graph morphisms. An SPO production p
can be defined as p : (L r→ R), where r is an injective partial graph morphism. A match for a production p in
a graph G is a total morphism m : L → G. Given a production p and match m for p in G, the direct derivation
from G is the pushout of p and m in GraphP .

Figure 4 shows an example of the rule in Figure 1, but expressed in the SPO approach. The rule is applied
to the same graph G as in Figure 2, but at a different match. The match in the SPO example was not valid
in the previous DPO example. In SPO, there is no dangling condition: if an edge dangles, it is deleted. Thus
the rule can be seen as having side effects. In addition, in case of a conflict with the identification condition,
because of a non-injective matching, the conflicting elements are deleted. In the example, node c is deleted and
edges (a, c) and (c, d) are also erased, as they were dangling edges.

d

L

2

del:

3

1

1−a

2−b

3−c

a

b c

d

G H

R

21

1−a

2−b

a

b

Figure 4: SPO Direct Derivation Example.

Results for explicit parallelism are slightly different in SPO. In this approach, a parallel direct derivation
G

p1+p2=⇒ X can be sequentialized into G
p1=⇒ H1

p2=⇒ X if G
p2=⇒ H2 is weakly parallel independent of G

p1=⇒ H1

(and similar for the other sequentialization). Thus, as this condition may not hold, there are parallel direct
derivations that do not have an equivalent interleaving sequence.

4

3 Characterization And Basic Properties

This section presents the basic concepts in our approach. We start defining simple digraphs, which can be
represented as boolean matrices, introduce basic operations on these matrices and show a characterization of
graph transformation rules using them. We formulate the conditions for a production to be compatible (that is,
it defines a simple digraph) and the concept of completion, where matrices representing graphs are modified to
permit operations between them.

A graph G = (V, E) consists of two sets, one of nodes V = {Vi | i ∈ I} and one of edges E = {(Vi, Vj) ∈
V × V }, that can be simply thought of as arrows connecting two nodes. If every arrow has a direction then we
shall call it a digraph, which stands for “directed graph”. In this paper we are concerned with simple digraphs,
“simple” meaning that only one arrow is allowed between two nodes. As an example, the complete simple
digraph with three vertices may be found in figure 5 below.

Figure 5: Complete Simple Digraph with Three Nodes

Any simple digraph G is uniquely determined through its associated matrix, known as adjacency matrix AG,
whose element aij is defined to be one if there exists an arrow joining vertex i with vertex j, and zero otherwise.
In addition, a vector that we call nodes vector VG is associated to our digraph G, with its elements equal to
one if the corresponding node is present in G and zero otherwise.

Definition 3.1 (Boolean Matrix Product) Let MG = (gij)i,j∈{1,...,n} and MH = (hij)i,j∈{1,...,n} be the
adjacency matrix of digraphs G and H, respectively. Their boolean product is a matrix whose elements are
defined by:

(MG ¯MH)ij =
n∨

k=1

(gik ∧ hkj) (1)

Element (i, j) in the boolean product matrix is one if there exists an edge joining node i in digraph G with
some node k in the same digraph and another edge in digraph H starting in k and ending in j. The value will
be zero otherwise. If for example we want to check whether node j is reachable starting in node i in h steps or
less, we may calculate

∨n
k=1 A(k) and test if element (i, j) is one.4

Definition 3.2 (Compatibility) A boolean matrix M and a vector of nodes N are compatible if they define
a simple digraph: no edge is incident to any node that does not belong to the digraph. That is, there are no
dangling edges.

In the algebraic-categorical approach this condition is checked when building a direct derivation. The
condition is known as dangling condition and the idea behind it is to obtain a closed set of entities. The next
proposition provides a criteria for testing compatibility for simple digraphs.

Definition 3.3 (Norm of a Boolean Vector) Let N = (v1, . . . , vn) be a boolean vector, then its norm ‖ · ‖1
is given by

‖N‖1 =
n∨

i=1

vi (2)

4In order to distinguish when we are using the standard or boolean product, in the latter, exponents will be enclosed between
brackets.

5

Proposition 3.4 A pair (M, N), where M is an adjacency matrix and N a vector of nodes, is compatible if
and only if they verify ∥∥(

M ∨M t
)¯N

∥∥
1

= 0 (3)

where t denotes transposition.

Proof
¤In an adjacency matrix, row i represents outgoing edges from vertex i, while column j are incoming edges
to vertex j. Moreover, (M)ik ∧

(
N

)
k

= 1 iff (M)ik = 1 and (N)k = 0, and thus the i− th element of vector
M ¯N is one if and only if there is a dangling edge in row number i.

We have just considered outgoing edges, but not incoming ones. In this case we have a very similar term:
M t ¯N .

To finish the sufficient part of the proof - necessity is straightforward - we OR both terms and take norms,
in order to detect if there is a 1.¥

Remark. We have used in the proof of proposition 3.4 distribution of ¯ and ∨, or in other words,
(M1 ∨M2) ¯ M3 = (M1 ¯M3) ∨ (M2 ¯M3). In addition, we also have the distributive law on the left,
i.e., M3 ¯ (M1 ∨M2) = (M3 ¯M1) ∨ (M3 ¯M2). Besides, we shall state without proof that ‖ω1 ∨ ω2‖1 =
‖ω1‖1 ∨ ‖ω2‖1.

Now we consider productions and their characterization. In this paper, we define a production as an
application which transforms a simple digraph into another simple digraph, p : L → R. We can describe a
production p with two matrices (those with an E superindex) and two vectors (those with an N superindex).
In this way, p = (LE , RE ; LN , RN), where the components are respectively the left hand side edges matrix and
nodes vector, and the right hand side edges matrix and nodes vector. For further reference,

Definition 3.5 (Production) A production p is a morphism between two simple digraphs L and R, and can
be specified by the tuple

p =
(
LE , RE ;LN , RN

)
(4)

where E stands for edge and N for node. L is the left hand side and R is the right hand side.

A production models deletion and addition actions on both edges and nodes, carried out in the order just
mentioned, i.e., first deletion and then addition, so appropriate matrices are introduced to represent them and
will be used throughout the paper to prove properties of the rules.

Definition 3.6 (Deletion and Addition of Edges) Matrices for deletion and addition of edges are defined
elementwise by the formulae

eE = (e)ij =
{

1 if edge (i, j) is to be erased
0 otherwise (5)

rE = (r)ij =
{

1 if edge (i, j) is to be added
0 otherwise (6)

Note how given a production p = (LE , RE ; LN , RN), both matrices can be calculated as follows:

eE = LE ∧ (LE ∧RE) = LE ∧RE (7)

rE = RE ∧ (LE ∧RE) = RE ∧ LE (8)

where LE ∧ RE are the elements that are preserved by the rule application (similar to the K component
in DPO rules). Thus, using the previous construction, the following two conditions hold and will be frequently
used: edges can be added if they do not currently exist and may be deleted only if they are present in the left
hand side of the production.

eE ∧ LE = eE (9)

rE ∧ LE = rE (10)

In a similar way, vectors for the deletion and addition of nodes can be defined.

6

Definition 3.7 (Deletion and Addition of Nodes)

eN = (e)i =
{

1 if node i is to be erased
0 otherwise (11)

rN = (r)i =
{

1 if node i is to be added
0 otherwise (12)

The following simple conditions are apparent. The first two state that edges or nodes cannot be rewritten
(erased and created or vice versa) by a rule application. This is a consequence of the way in which matrices e
and r are calculated. This contrasts with the DPO approach, in which edges and nodes can be rewritten in a
single rule. The latter may be useful to forbid the rule application if the dangling condition is violated. The
remaining two conditions say that if a node or edge is in the RHS, then it is not deleted, and that if a node or
edge is in the LHS, then it is not created.

Proposition 3.8 Let p : L → R be a production, the following identities are immediate

rE ∧ eE = rE rN ∧ eN = rN (13)

eE ∧ rE = eE eN ∧ rN = eN (14)

RE ∧ eE = RE RN ∧ eN = RN (15)

LE ∧ rE = LE LN ∧ rN = LN (16)

Proof
¤¥

Finally we are ready to characterize a production p : L → R using deletion and addition matrices, starting
from its LHS:5

RN = rN ∨
(
eN ∧ LN

)
(17)

RE = rE ∨
(
eE ∧ LE

)
(18)

The resulting graph R is calculated by first deleting the elements in the initial graph – eX ∧LX – and then
adding the new elements – rX ∨

(
eX ∧ LX

)
–. It can thus be demonstrated, using proposition 3.8, that in fact

it doesn’t matter whether deletion is carried out first and addition later or viceversa.
So there are two ways to characterize a production so far, either using its initial and final states (see definition

3.5) or the operations it specifies:
p =

(
eE , rE ; eN , rN

)
(19)

As a matter of fact, they are not completely equivalent. Using L and R gives more information because those
elements which are present in both of them are mandatory if the production is to be applied to a host graph,
but they do not appear in the e-r characterization.6

Some conditions have to be imposed on matrices and vectors of nodes and edges to keep compatibility when
a rule is applied, that is, the following conditions are necessary in order to avoid dangling edges once the rule
is applied. From a conceptual point of view, the idea is the same as that of the dangling condition7in DPO.

1. An incoming edge cannot be added to a node that is going to be deleted:
∥∥rE ¯ eN

∥∥
1

= 0. (20)

Similarly, for outgoing edges, the condition is:
∥∥∥
(
rE

)t ¯ eN
∥∥∥

1
= 0. (21)

5In the rest of the paper we shall omit ∧ if possible, and avoid unnecessary parenthesis bearing in mind that ∧ has priority over

∨. Thus, for example, formula (18) shall be written RE = rE ∨ eELE .
6These usage of elements, whose presence is demanded but are not used, is a sort of positive application condition in the sense

of application conditions in DPO and SPO approaches.
7At times referred to as gluing condition.

7

2. Another forbidden situation is deleting a node with some incoming edge, if the edge is not deleted as well:
∥∥∥eE LE ¯ eN

∥∥∥
1

= 0. (22)

Similarly for outgoing edges: ∥∥∥∥
(
eE LE

)t

¯ eN

∥∥∥∥
1

= 0. (23)

3. It is not possible to add an incoming edge to a node which is neither present in the LHS nor added by
the production: ∥∥∥rE ¯

(
rN LN

)∥∥∥
1

= 0. (24)

Similarly, for edges starting in a given node:
∥∥∥
(
rE

)t ¯
(
rN LN

)∥∥∥
1

= 0. (25)

4. Finally, our last conditions state that it is not possible that an edge reaches a node which does not belong
to the LHS and which is not going to be added:

∥∥∥
(
eELE

)
¯

(
rN LN

)∥∥∥
1

= 0. (26)

And again, for outgoing edges: ∥∥∥∥
(
eELE

)t

¯
(
rN LN

)∥∥∥∥
1

= 0. (27)

Thus we arrive naturally at the next proposition:

Proposition 3.9 Let p : L → R be a production, if conditions (20) – (27) are fulfilled then (17) and (18) are
compatible.

Proof
¤ We have to check

∥∥(M ∨M t)¯N
∥∥

1
= 0, with M = rE ∨ eELE and N = rN

(
eN ∨ LN

)
. Applying (14) in

the second equality we have

(
M ∨M t

)¯N =
[(

rE ∨ eELE
)
∨

(
rE ∨ eELE

)t
]
¯

[
rN

(
eN ∨ LN

)]
=

=
[
rE ∨ eELE ∨ (

rE
)t ∨

(
eELE

)t
]
¯

(
eN ∨ rN LN

)
(28)

Conditions (20) – (27) are taken from this identity.¥
Next we introduce the concept of completion. Until now we have assumed that when operating with matrices

and vectors these had the same size, but in general matrices and vectors represent graphs with different sets of
nodes or edges, although probably there will be common subsets. Completion modifies matrices (and vectors)
to allow some specified operation. Two problems may occur: matrices may not fully coincide with respect to
the nodes under consideration and, even if they are the same, they may well not be ordered as needed.

To address the first problem, matrices and vectors are enlarged, adding the missing vertices. When matrices
and vectors are defined, an ordering is automatically given, but it may be that elements are not equally sorted
in different matrices. If for example an AND is specified between two matrices, say A∧B, the first thing to do
is to reorder elements so it makes sense to AND element by element, i.e., elements representing the same node
are operated. If we are defining a grammar on a computer, the tool or environment will automatically do it,
but some procedure has to be followed. For the sake of an example, the following procedure is proposed:

1. Find the set C of common elements.

2. Move elements of C upwards by rows in A and B, maintaining the order. A similar operation must be
done moving corresponding elements to the left by columns.

8

3. Sort common elements in B to obtain the same ordering as in A.

4. Add remaining elements in A to B sorted as in A, immediately after the elements accessed in previous
step.

5. Add remaining elements in B to A sorted as in B.

Addition of elements and reordering – the operations needed for completion – extend and modify productions
syntactically but not from a semantical point of view.

Example. Consider the production depicted in Figure 6. The associated matrices, where rightmost columns
represent nodes, are:

Figure 6: Example of Production

LE
1 =

0 1 1 2
0 0 0 4
1 0 1 5

 LN

1 =

1 2
1 4
1 5

 RE

1 =

0 1 1 2
0 1 0 3
0 1 1 5

 RN

1 =

1 2
1 3
1 5

eE
1 =

0 1 0 2
0 0 0 4
1 0 0 5

 eN

1 =

0 2
1 4
0 5

 rE

1 =

0 1 0 2
0 1 0 3
0 1 0 5

 rN

1 =

0 2
1 3
0 5

For example, if we needed to perform the operation eE
1 rE

1 , then both matrices need to be completed. If we
follow the steps described above, we obtain:

eE
1 =

0 1 0 0 2
0 0 0 0 4
1 0 0 0 5
0 0 0 0 3

 rE

1 =

0 0 0 1 2
0 0 0 0 4
0 0 0 1 5
0 0 0 1 3

 LN

1 =

1 2
1 4
1 5
0 3

 RN

1 =

1 2
0 4
1 5
1 3

where, besides the erasing and addition matrices, the completion of the nodes vectors for both left and right
hand sides are displayed. Now we shall see that rN

1 ∨ eN
1 LN

1 and rE
1 ∨ eE

1 LE
1 are compatible, i.e., RE

1 and RN
1

define a simple digraph. Proposition (3.4) and equation (3) are used, so we need to compute (28) and, as

rE
1 ∨ eE

1 LE
1 =

0 0 1 1 2
0 0 0 0 4
0 0 1 1 5
0 0 0 1 3

 , rN

1

(
eN
1 ∨ LN

1

)
=

0 2
1 4
0 5
0 3

,

substituting we finally arrive at

(28) =

0 0 1 1 2
0 0 0 0 4
0 0 1 1 5
0 0 0 1 3

 ∨

0 0 0 0 2
0 0 0 0 4
1 0 1 0 5
1 0 1 1 3

¯

0 2
1 4
0 5
0 3

 =

0 2
0 4
0 5
0 3

as desired.
It should be recalled that the numbering used so far in graphs for nodes – and edges – is merely a means to

distinguish one among the rest and does not represent types of elements (we are not dealing with typed graphs
yet). In particular it is not possible to have two nodes with the same “name” and thus completion does not
decide on any kind of matching between elements when more than one production is considered, id est, elements
with the same name are in fact the same element.

9

Regarding graphs as typed graphs would only complicate matters in the sense that inside one graph, for
example the left hand side of a production, several nodes can bear the same label. Completion of two matrices
would not be two matrices anymore, but the set of matrices in which all possible combinations would be
considered.8

This paper introduces concepts which apply to concrete productions and hence, if several nodes can play the
same role, it must be determined beforehand “who is who”, for example as commented above by considering
all possible combinations. In this case, every node is clearly identified and distinguishable from the rest,
independent of the type or whatever.

Finally, it should be noted that up to this point only the production itself has been taken into account.
Matching is not considered as part of the grammar rules (graph transformation system), in contrast with DPO
or SPO approaches.

4 Concatenation and Coherence

Once we are able to characterize a single production, we are interested in studying finite sets of them. Two
main operations, composition and concatenation, which are in fact closely related, are introduced in this section
and the next one, along with notions that make it possible to speak of “potential definability”: coherence and
compatibility.

Definition 4.1 (Concatenation) Given a set of productions {p1, . . . , pn}, the notation sn = pn; pn−1; . . . ; p1

defines a sequence of productions establishing an order in their application, starting with p1 and ending with pn.

In the literature of graph transformation, the concatenation operator is defined back to front, this is, in
the sequence p2; p1, production p2 should be applied first and p1 right afterwards [3]. The ordering already
introduced is preferred because it follows the mathematical way in which composition is defined and represented.

It is worth stressing that there exists a total order of productions in concatenation, one production being
applied after the previous has finished, and thus intermediate states are generated. These “intermediate states”
are indeed the difference between concatenation and composition of productions. The study of concatenation
is related to the interleaving approach to concurrency, while composition is related to the explicit parallelism
approach.

A production is moved forward, moved to the front or advanced if it is shifted one or more positions to
the right inside a sequence of productions, either in a composition or a concatenation. On the contrary, move
backwards or delay means shifting the production to the left, which implies delaying its application.

Definition 4.2 (Coherence) Given a finite set of productions {p1, . . . , pn}, the sequence sn = pn; pn−1; . . . ; p1

is called coherent if actions of any production do not prevent the application of the productions that follow it,
taking into account the effects of intermediate productions.

Coherence is a concept that deals with potential applicability to a host graph of a sequence sn of productions.
It does not guarantee that the application of sn and a coherent reordering of sn, say σ (sn) leads to the same
result. This latter case is a sort of generalization9of sequential independence applied to sequences, which will
be studied in section 6.

Example. We extend the previous example with two more productions. Recall that our first production q1

deletes edge (5, 2), which starts in vertex 5 and ends in vertex 2. As depicted in Figure 7, production q2 adds
this edge and q3 uses it. If only this vertex was to be considered, then s3 = q3; q2; q1 would be coherent.

Now we study the conditions that have to be satisfied by the matrices associated with a coherent sequence
of productions. Instead of stating a result concerning conditions on coherence and proving it immediately
afterwards, we begin by discussing the case of two productions in full detail, we continue with three and we
finally set a theorem – theorem 4.5 – for a finite number of them.

Let’s consider the concatenation s1 = p2; p1. In order to decide whether these two productions do not
exclude each other, we impose three conditions on edges:

8Assuming it is not possible to know a priori which elements are related one with another, all combinations do not need to be
considered. For example, if we are studying coherence of a concatenation (refer to section 4) it may be possible that conditions
imposed by previous productions discard some arrangements.

9in the sense that, a priori, we are considering any kind of permutation.

10

Figure 7: Some More Productions.

1. The first production – p1 – does not delete any edge used by p2:

eE
1 LE

2 = 0 (29)

2. p2 does not add any edge used, but not deleted, by p1:

rE
2 LE

1 eE
1 = 0 (30)

3. No common edges are added by both productions:

rE
1 rE

2 = 0 (31)

The first condition is needed because if p1 deletes an edge used by p2, then p2 would not be applicable. The
last two conditions are mandatory in order to obtain a simple digraph (with at most one edge between two
nodes). Conditions (30) and (31) are equivalent to rE

2 RE
1 = 0 because, as both are equal to zero, we can do

0 = rE
2 LE

1 eE
1 ∨ rE

2 rE
1 = rE

2

(
rE
1 ∨ eE

1 LE
1

)
= rE

2 RE
1

which may be read “p2 does not add any edge that comes out from p1’s application”. All conditions can be
synthesized in the following identity:

rE
2 RE

1 ∨ eE
1 LE

2 = 0 (32)

Our immediate target is to obtain a closed formula to represent these conditions for the case with n productions.
Applying (13) and (14), equation (32) can be transformed to get

RE
1 eE

2 rE
2 ∨ LE

2 eE
1 rE

1 = 0 (33)

A similar reasoning gives the corresponding formula for nodes:

RN
1 eN

2 rN
2 ∨ LN

2 eN
1 rN

1 = 0 (34)

Next we introduce a graphical notation for boolean equations: a vertical arrow means ∧, while a fork stands
for ∨. We use these diagrams because formulae grow very fast with the number of nodes. As an example, the
representation of equations (33) and (34) is shown in Figure 8.

Lemma 4.3 Let s2 = p2; p1. If equations (33) and (34) hold, then s2 is coherent.

Proof
¤ Only edges are considered because a symmetrical reasoning sets the result for nodes. Call D the action of
deleting an edge, A its addition and U its use, i.e., the edge appears in both LHS and RHS. The following table
comprises all nine possibilities for two productions

D2; D1 (29) D2;U1
√

D2; A1
√

U2;D1 (29) U2; U1
√

U2;A1
√

A2; D1
√

A2; U1 (30) A2; A1 (31)

11

Figure 8: Coherence for Two Productions

A tick means that the action is allowed, while a number refers to the condition that prohibits the action.¥
Now we proceed with three productions. We must check that p2 does not disturb p3 and that p1 does not

prevent the application of p2. Notice that both of them are covered in our previous explanation (in the two
productions case), and thus we just need to ensure that p1 does not exclude p3, taking into account that p2 is
in the middle.

1. p1 does not delete any edge used by p3 and not added by p2:

eE
1 LE

3 rE
2 = 0 (35)

2. p3 does not add any edge stemming from p1 and not deleted by p2:

rE
3 RE

1 eE
2 = 0 (36)

Again, the last condition is needed in order to obtain a simple digraph. The full condition for s3 is given by
the equation:

LE
2 eE

1 ∨ LE
3

(
eE
1 rE

2 ∨ eE
2

)
∨RE

1

(
eE
2 rE

3 ∨ rE
2

)
∨RE

2 rE
3 = 0 (37)

Proceeding as before, identity (37) is completed:

LE
2 eE

1 rE
1 ∨ LE

3 rE
2

(
eE
1 rE

1 ∨ eE
2

)
∨

∨ RE
1 eE

2

(
rE
2 ∨ eE

3 rE
3

)
∨RE

2 eE
3 rE

3 = 0 (38)

Its representation is shown in Figure 9 for both nodes and edges.

Figure 9: Coherence. Three Productions.

Remark. Lemma 4.3 can be extended slightly to include three productions in an obvious way, but we shall
not discuss this further because the generalization to cover n productions is theorem 4.5.

Example. Recall productions q1, q2 and q3 introduced in Figures 6 and 7. Sequences q3; q2; q1 and q1; q3; q2

are coherent, while q3; q1; q2 is not. The latter is due to the fact that edge (5, 5) is deleted (D) by q2, used (U)
by q1 and added (A) by q3, being two pairs of forbidden actions. For the former sequences, we have to check
all actions performed on all edges and nodes by the productions in the order specified by the concatenation,
verifying that they do not exclude each other.

Before generalizing to n productions, we define two useful operators.

12

Definition 4.4 Let F (x, y) and G(x, y) be two boolean functions dependant on parameters x, y ∈ I in some
index set I. Operators delta 4 and nabla 5 are defined through the equations:

4t1
t0 (F (x, y)) =

t1∨
y=t0

(
t1∧

x=y

(F (x, y))

)
(39)

5t1
t0 (G(x, y)) =

t1∨
y=t0

(
y∧

x=t0

(G(x, y))

)
(40)

In order to justify theorem 4.5, Figure 10 includes the edges digraphs for s4 = p4; p3; p2; p1 and s5 =
p5; p4; p3; p2; p1.

Figure 10: Coherence. Four and Five Productions.

Now we are ready to characterize coherent sequences of arbitrary finite size.

Theorem 4.5 The concatenation sn = pn; pn−1; . . . ; p2; p1 is coherent if for edges and nodes we have

n∨

i=1

(
RE

i 5n
i+1

(
eE
x rE

y

)
∨ LE

i 4i−1
1

(
eE
y rE

x

))
= 0 (41)

n∨

i=1

(
RN

i 5n
i+1

(
eN
x rN

y

)
∨ LN

i 4i−1
1

(
eN
y rN

x

))
= 0 (42)

Proof
¤ An induction argument similar to what we have done for s2 proves the result.¥

Example. We are going to verify that s1 = q1; q3; q2 is coherent (only for edges), where qi are the productions
introduced in previous examples. We start expanding formula (41) for n = 3:

3∨

i=1

(
RE

i 53
i+1

(
eE
x rE

y

)
∨ LE

i 4i−1
1

(
eE
y rE

x

))
=

= RE
1

(
rE
2 ∨ eE

2 rE
3

)
∨RE

2 rE
3 ∨ LE

2 eE
1 ∨ LE

3

(
eE
1 rE

2 ∨ eE
2

)

which should be zero. Note that this equation applies to concatenation s = q3; q2; q1 and thus we have to
map (1, 2, 3) → (2, 3, 1) to obtain

RE
2

(
rE
3 ∨ eE

3 rE
1

)

︸ ︷︷ ︸
(∗)

∨RE
3 rE

1 ∨ LE
3 eE

2︸ ︷︷ ︸
(∗∗)

∨LE
1

(
eE
2 rE

3 ∨ eE
3

)

︸ ︷︷ ︸
(∗∗∗)

= 0 (43)

Before checking whether these expressions are zero or not, we have to complete the involved matrices. All
calculations have been divided into three steps and, as they are operated with “or”, if one fails to be zero, the

13

result should not be null.

(∗) =

0 0 0 1 0 2
1 0 0 0 0 3
1 0 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

1 0 0 0 0 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 1 0 0 1
0 0 0 0 0 4

∨

1 1 1 1 1 2
0 1 1 1 1 3
1 1 1 1 1 5
1 1 1 0 1 1
1 1 1 1 1 4

0 1 0 0 0 2
0 1 0 0 0 3
0 1 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

= 0

(∗∗) =

1 0 0 1 0 2
0 0 0 0 0 3
1 0 1 0 0 5
0 0 1 0 0 1
0 0 0 0 0 4

0 1 0 0 0 2
0 1 0 0 0 3
0 1 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

∨

0 0 0 1 0 2
1 0 0 0 0 3
1 0 0 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

0 1 0 0 0 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

= 0

(∗∗∗) =

0 0 0 0 1 2
0 0 0 0 0 3
1 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

0 1 0 0 0 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

0 1 1 1 1 2
1 1 1 1 1 3
1 1 0 1 1 5
1 1 0 1 1 1
1 1 1 1 1 4

∨

0 0 0 0 0 2
1 0 0 0 0 3
0 0 0 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

= 0

where, as usual, a matrix filled up with zeros is represented by 0.
Now consider sequence s2 = q2; q3; q1. The condition for its coherence is

RE
1

(
rE
3 ∨ eE

3 rE
2

)

︸ ︷︷ ︸
(∗)

∨RE
3 rE

2 ∨ LE
3 eE

1︸ ︷︷ ︸
(∗∗)

∨LE
2

(
eE
1 rE

3 ∨ eE
3

)

︸ ︷︷ ︸
(∗∗∗)

= 0 (44)

If we focus just on the first term in equation (44)

(∗) =

0 1 1 0 0 2
0 1 0 0 0 3
0 1 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

1 0 0 0 0 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 1 0 0 1
0 0 0 0 0 4

∨

1 1 1 1 1 2
0 1 1 1 1 3
1 1 1 1 1 5
1 1 1 0 1 1
1 1 1 1 1 4

0 0 0 0 1 2
1 0 0 0 0 3
1 0 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

we obtain a matrix filled up with zeros except in position (3,3) which corresponds to an edge that starts and
ends in node 5. In this way, we realize that the sequence is not coherent, and in addition we obtain information
on which node or edge may present problems when applied to an actual host graph.

Note that a sequence not being coherent does not necessarily mean that the grammar is not well defined,
but that we have to be especially careful when applying it to a host graph because it is mandatory for the match
to identify all problematic parts in different places. Somehow, matches should spread doubtful subsets of the
concatenation across the host graph.

This information could be used when actually finding the match; a possible strategy, if parallel matching
for different productions is required, is to start with those elements which may present a problem. The same
applies to G-congruence, to be studied in section 6.

5 Compatibility, Composition and Minimal Initial Digraph

In this section we deal with compatibility and introduce composition of a sequence of productions and its
associated minimal initial digraph.

Example. We start considering productions u and v defined in Figure 11. It is easy to see that v; u is
coherent, but it seems a little more difficult to define their composition v ◦u, as if they were applied to the same
nodes we would get a dangling edge. Although coherence itself does not guarantee applicability of a sequence,
we shall see that compatibility is sufficient (generalized to consider concatenations, not only single productions
as in definition 3.2).

14

Figure 11: Non-Compatible Productions.

Defining compatibility for a sequence of productions is not straightforward, nor its composition starting with
a coherent concatenation, and it will be necessary to bring in the concept of minimal initial digraph.

The example shows a problem that led us to consider not only productions, but also the context in which
they are to be applied. This is something we try to avoid as we want to study productions alone without host
graphs, matches, etcetera, so please allow us to explain.

Two possibilities are found in the literature in order to define a match, depending whether DPO or SPO is
followed [8]. In the latter, deletion prevails, and thus in the present example production v would be “enlarged”
in order to delete edge (4, 2). Our approximation to the match of a production will follow this basically but be
slightly different, considering it as an operator that acts on a space whose elements are productions.

Compatibility is determined by the result of applying a production to an initial graph and checking nodes
and edges of the result. If we try to define compatibility for a concatenation or composition, we have to decide
which is the initial graph, but as earlier mentioned before we prefer not to begin our analysis of matches yet.
This situation might be overcome if we are able to define a minimal and unique host graph which permits the
application of a given concatenation or composition of productions. We call it a minimal initial digraph. Note
that we were able to set when a single production is compatible in definition 3.2 because it is clear (so obvious
that we did not mention it) which one is the minimal initial digraph: its left hand side.

One graph is known which permits the application of pn; . . . ; p1 – supposing it is coherent –, namely
∨n

i=1 Li,
in the sense that it has enough elements to carry out all operations. We shall only consider coherent productions,
so it is not necessary to repeat nodes in this minimal host graph.

Theorem 5.1 Given a coherent concatenation of productions sn = pn; . . . ; p1, the minimal initial digraph is
defined by the equation

Mn = 5n
1 (rxLy) (45)

Superscripts have been omitted in order to read the formulae more easily. In figure 12, formula (45) and its
negation (55) are expanded for four productions.

Figure 12: Minimal Initial Digraph (45) and Its Negation (55) for Four Productions.

Recall our previous comments about completion, where it was pointed out that if several nodes are of the
same “type”, completion of the concatenation will result in the set of all (or part of all) possible combinations

15

such that every node10can be uniquely identified, i.e., if there are nodes labeled with a 1, it is decided which
ones continue to be 1 (are the same), which are called 1′ (and thus are the same), and so on. It is not possible,
once the process of completion has finished, to have two nodes with the same label inside the same production
because from an operational point of view it is mandatory to know all relations between nodes.11

Proof of Theorem 5.1
¤To properly demonstrate this theorem we have to prove that Mn has enough edges and nodes in order to apply
all productions in the specified order, that it is minimal and finally that it is unique (up to isomorphisms). We
shall proceed by induction on the number of productions.

By hypothesis we know that the concatenation is coherent and thus the application of one production does
not exclude the ones coming after it. In order to see that there are sufficient nodes and edges, it is enough to
check that sn (

∨n
i=1 Li) = sn (Mn), as the most complete digraph to start with is

∨n
i=1 Li, which has enough

elements due to coherence.
If we had a sequence consisting of only one production s1 = p1, then it should be obvious that the minimal

digraph needed to apply the concatenation is L1.
In the case of a sequence of two productions, say s2 = p2; p1, what p1 uses is again needed. All edges that p2

uses, except those added by p1, are also mandatory. Note that the elements produced by p1 are not considered
in the minimal initial digraph. If an element is used and not erased by p1, then it should not be taken into
account either:

L1 ∨ L2r1 (e1L1) = L1 ∨ L2r1

(
e1 ∨ L1

)
= L1 ∨ L2R1 (46)

This formula can be paraphrased as “elements used by p1 plus those needed by p2’s left hand side, except the
ones resulting from p1 application”. It provides enough elements to s2:

p2; p1

(
L1 ∨ L2R1

)
= r2 ∨ e2

(
r1 ∨ e1

(
L1 ∨ L2R1

))
=

= r2 ∨ e2

(
R1 ∨ r1R1L2 ∨ e1R1L2

)
=

= r2 ∨ e2 (r1 ∨ e1 (L1 ∨ L2)) = p2; p1 (L1 ∨ L2)

Let’s move one step forward with the sequence of three productions s3 = p3; p2; p1. The minimal digraph needs
what s2 needed, but even more so. We have to add what the third production uses, except what comes out
from p1 and is not deleted by p2, and finally remove what comes out from p2.

L1 ∨ L2R1 ∨ L3(e2 R1)R2 = L1 ∨ L2R1 ∨ L3R2

(
e2 ∨R1

)
(47)

Similarly to what has already been done for s2, we check that the minimal initial digraph has enough elements
such that it is possible to apply p1, p2 and p3.

p3; p2; p1 (M3) = r3 ∨ e3

(
r2 ∨ e2

(
r1 ∨ e1

(
L1 ∨ L2R1 ∨ L3R2

(
e2 ∨R1

))))
=

= r3 ∨ e3

r2 ∨ e2

e1L2 ∨ e1e2L3R2 ∨R1 ∨ L3e1R1R2︸ ︷︷ ︸

R1∨L3e1R2

 =

= r3 ∨ e3

e2r1 ∨ e2 e1L1 ∨ e2 e1L2 ∨ r2 ∨ L3e1 e2 r2L2︸ ︷︷ ︸

r2∨L3e1 e2L2

 =

= r3 ∨ e3 (r2 ∨ e2 (r1 ∨ e1 (L1 ∨ L2 ∨ L3))) =
= p3; p2; p1 (L1 ∨ L2 ∨ L3)

Reasoning for the case of four productions, the condition derived is L1∨L2R1∨L3(e2 R1)R2∨L4(e3 e2R1) (e3R2) R3.
Minimality is inferred by construction, because for each Li all elements added and not deleted by any production
pj , j < i, are removed. If any other element is erased from the minimal initial digraph, some production in sn

would no longer be applicable.12

Now we want to express previous formulae using operators ∇ and ∆. The expression

LE
1 ∨

n∨

i=2

[
LE

i 4i−1
1

(
RE

x eE
y

)]
(48)

10and by extension every edge.
11It is compulsory to clearly specify matrices e and r.
12Matches for this approach will be introduced in a future contribution, together with the notion of initial digraph set which can

be used to properly prove minimality.

16

is close but we would be adding terms that include RE
1 eE

1 , and clearly RE
1 eE

1 6= RE
1 , which is what we have in

the minimal initial digraph.13Thus, considering the fact that ab ∨ a b = a, we eliminate them by performing
“or” operations:

eE
1 5n−1

1

(
RE

x Ly+1

)
(49)

Please refer to figure 13, where on the right side expression (50) is represented while on the left the same
equation, but simplified, is depicted for n = 4.

Figure 13: Minimal Initial Digraph (Intermediate Expression). Four Productions.

Thus we have a formula for the minimal initial digraph which is slightly different from that in the theorem:

Mn = L1 ∨ e1 5n−1
1

(
RxLy+1

) ∨
n∨

i=2

[
Li 4i−1

1

(
Rx ey

)]
(50)

Our next step is to show that previous identity is equivalent to

Mn = L1 ∨ e1 5n−1
1 (rxLy+1) ∨

n∨

i=2

[
Li 4i−1

1 (rx ey)
]

(51)

illustrating the way to proceed for n = 3. To this end, equation (16) is used as well as the fact that a∨ab = a∨b.
L1 ∨ L2R1 ∨ L3R2

(
e2 ∨R1

)
=

= L1 ∨ L2r1

(
e1 ∨ L1

) ∨ (
L3r2e2 ∨ L3r2L2

) (
e2 ∨ r1e1r1L1

)
=

= L1 ∨ L2r1L1 ∨ L2e1 ∨ L3e2 ∨ L3e2e1 ∨ L3e2r1L1 ∨ L3e2L2︸ ︷︷ ︸
disappears due to L3e2

∨

∨ L3r2L2r1L1 ∨ L3r2L2e1 =
= L1 ∨ L2 (r1 ∨ e1) ∨ L3L2r2 r1 ∨ L3e2 ∨ L3L2r2e1 =
= L1 ∨ L2r1 ∨ L3r2 (e2 ∨ r1)

But (51) is what we have in the theorem, because as the concatenation is coherent, the third term in (51)
is zero:

n∨

i=2

[
Li 4i−1

1 (rx ey)
]

= 0 (52)

Finally, as L1 = L1 ∨ e1, it is possible to omit e1 and obtain (45), recalling that rL = L.¥
Example. Let s2 = u; v and s′2 = v; u (see Figure 11 for the definition of the productions). Minimal initial

digraphs for these productions are represented in Figure 14. In the way we have introduced the concept of
minimal initial digraph, M2 (which allows the application of v;u) cannot be considered as such. In the same
figure the minimal initial digraphs for productions q3; q2; q1 and q1; q3; q2 are also represented.

13Not in (45), but in expressions derived up to now for minimal initial digraph: (46) and (47).

17

Figure 14: Minimal Initial Digraph. Examples and Counterexample.

We shall explicitly compute the minimal initial digraph for the concatenation q3; q2; q1. In this example,
and in order to illustrate some of the steps used to prove the previous theorem, formula (50) is used. Once
simplified it lays the equation:

LE
1 ∨ LE

2 RE
1︸ ︷︷ ︸

(∗)

∨LE
3 RE

2

(
eE
2 ∨RE

1

)

︸ ︷︷ ︸
(∗∗)

(∗) =

0 0 1 0 1 2
0 0 0 0 0 3
1 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

∨

0 1 0 0 0 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

1 0 0 1 1 2
1 1 0 1 1 3
1 0 0 1 1 5
1 1 1 1 1 1
1 1 1 1 1 4

=

0 0 1 0 1 2
0 0 0 0 0 3
1 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

(∗∗) =

0 0 0 1 0 2
1 0 0 0 0 3
1 0 1 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

1 1 1 1 0 2
0 1 1 1 1 3
1 1 1 1 0 5
1 1 1 1 1 1
1 1 1 1 1 4

0 1 0 0 0 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

∨

1 0 0 1 1 2
1 1 0 1 1 3
1 0 0 1 1 5
1 1 1 1 1 1
1 1 1 1 1 4

(∗) ∨ (∗∗) =

0 0 1 0 1 2
0 0 0 0 0 3
1 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

∨

0 0 0 1 0 2
0 0 0 0 0 3
1 0 0 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

=

0 0 1 1 1 2
0 0 0 0 0 3
1 0 1 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

A closed formula for the effect of the application of a coherent concatenation might be useful if we want to
operate in the general case. This is where next corollary comes in.

Corollary 5.2 Let sn = pn; . . . ; p1 be a coherent concatenation of productions, and Mn its minimal initial
digraph, as defined in (45). Then,

sn

(
ME

n

)
=

n∧

i=1

(
eE
i ME

n

)
∨4n

1

(
eE
x rE

y

)
(53)

sn (ME
n) =

n∧

i=1

(
rE
i ME

n

)
∨4n

1

(
rE
x eE

y

)
(54)

Proof
¤Theorem 45 proves that sn

(
ME

n

)
= sn (

∨n
i=1 Li). To derive the formulae apply induction on the number of

productions and (13).¥

18

The negation of the minimal initial digraph which appears in identity (54) – seen in figure 12 – can be
explicitly calculated in terms of nabla:

Mn = ∇n−1
1

(
Lx ry

) ∨
n∧

i=1

Li (55)

For the sake of curiosity, if we used formula (51) to calculate the minimal initial digraph, the representation
of its negation is included in figure 15 for n = 3 and n = 4. It might be useful to find an expression using
operators ∆ and ∇ for these digraphs.

Figure 15: Negation of Minimal Initial Digraph (Intermediate Expression (51)) for Three and Four productions.

Next we are going to introduce compatibility for production sequences. When a concatenation of productions
is considered, we are not only concerned with the final result but also with intermediate states – or partial results
– of the sequence. Compatibility should take this into account and thus a concatenation is said to be compatible
if the overall effect on its minimal initial digraph gives as result a compatible digraph starting from the first
production and increasing the sequence until we get the full concatenation. We should then test compatibility
for the growing sequence of concatenations S = {s1, s2, . . . , sn} where sm = qm; qm−1; . . . ; q1, 1 ≤ m ≤ n.

Definition 5.3 Coherent concatenation sn is said to be compatible if ∀m ∈ {1, . . . , n} the following identities
are verified: ∥∥∥

[
sm

(
ME

m

) ∨ (
sm

(
ME

m

))t
]
¯ sm (MN

m)
∥∥∥

1
= 0 (56)

Coherence examines whether actions specified by a sequence of productions are feasible. It warns us if one
production adds or deletes an element which it should not, as some later production might need to carry out
an operation that becomes impossible. Compatibility is a more basic concept because it examines if the result
is a digraph, that is, if the class of all digraphs is closed under the operations defined in the sequence.

So far we have presented compatibility and the minimal initial digraph and shall finish studying composition
and the circumstances under which it is possible to define a composition starting with a coherent concatenation.

When we introduced the notion of production, we first defined its LHS and RHS and then we associated some
matrices (e and r) with them. The situation for defining composition is similar, but this time we first observe
the overall effect of the production and then decide its LHS and RHS. Assume sn = pn; . . . ; p1 is coherent. The
composition of its productions is again a production defined by the rule c = pn ◦ pn−1 ◦ . . . ◦ p1.14To describe
its erasing matrix e and its addition matrix r, consider matrices

SE =
n∑

i=1

(
rE
i − eE

i

)
. (57)

SN =
n∑

i=1

(
rN
i − eN

i

)
. (58)

14The concept and notation are those commonly used in mathematics.

19

Due to coherence we know that elements of SE , SN are either +1, 0 or −1, so they can be split in their
positive and negative parts, SE = rE

+ − eE
−, SN = rN

+ − eN
− , where all r+ and e− elements are either zero or one.

We thus have:

Proposition 5.4 Let sn = pn; pn−1; . . . ; p1 be a coherent and compatible concatenation of productions. Then,
the composition c = pn ◦ pn−1 ◦ . . . ◦ p1 defines a production with matrices rE = rE

+, rN = rN
+ and eE = − eE

−,
eN = − eN

− .

Proof
¤¥

The LHS is the minimal digraph necessary to carry out all operations specified by the composition. As it is
only one production, its LHS equals its erasing matrix and its right hand side is just the image.

Corollary 5.5 With the above notation, c (Mn) = sn (Mn).

Composition is helpful when we have a coherent concatenation and intermediate states are useless or unde-
sired. It will be used in sequential independence and explicit parallelism.

Example. We finish this section considering sequence s321 = q3; q2; q1, calculating its composition c321 and
comparing its result with that of s321. Recall that SE (s321) =

∑3
i=1

(
rE
i − eE

i

)
= rE

+ − eE
−.

3∑

i=1

(
rE
i

)
=

0 1 0 0 0 2
0 1 0 0 0 3
0 1 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

+

0 0 0 0 1 2
1 0 0 0 0 3
1 0 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

+

1 0 0 0 0 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 1 0 0 1
0 0 0 0 0 4

=

1 1 0 0 1 2
1 1 0 0 0 3
1 1 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

3∑

i=1

(
eE
i

)
=

0 0 0 0 1 2
0 0 0 0 0 3
1 0 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

+

0 1 0 0 0 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

+

0 0 0 0 0 2
1 0 0 0 0 3
0 0 0 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

=

0 1 0 0 1 2
1 0 0 0 0 3
1 0 1 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

SE (s321) =

1 0 0 0 0 2
0 1 0 0 0 3
0 1 0 0 0 5
0 0 0 −1 0 1
0 0 0 0 0 4

=

1 0 0 0 0 2
0 1 0 0 0 3
0 1 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

−

0 0 0 0 0 2
0 0 0 0 0 3
0 0 0 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

= rE
+ − eE

−

Sequence s321 has been chosen not only to illustrate composition, but also compatibility and the sort of
problems that may arise if it is not fulfilled. In this case, q3 deletes node 3 and edge (3,2) but does not specify
anything about edges (3,3) and (3,5) – the dotted elements in figure 16.

The previous example provides us with some clues as to the way the match could be defined. The basic idea
is to introduce an operator over the set of productions, so once a match (an injective map from the LHS of the
production) identifies a place in the host graph where the rule may be applied, the operator modifies the rule
enlarging the deletion matrix so no dangling edge may occur (it should enlarge the grammar rule to include
the context of the original rule in the graph, adding all elements on both LHS and RHS). Essentially, a match
should be an injective morphism plus an operator. Pre-calculated information for coherence, sequentialization,
and the like, should help and hopefully reduce the amount of calculation during runtime.

This section ends noting that, in this approach, one production is a morphism between two simple digraphs
and thus it may carry out just one action on each element. When the composition of a concatenation is
performed we get a single production. Suppose one production specifies the deletion of an element and another
its addition, the overall mathematical result of the composition should leave the element unaltered. When a
match is considered, depending on the chosen approach, all dangling edges incident to those erased nodes should
be removed, establishing an important difference between a sequence and its composition.

20

Figure 16: Composition and Concatenation of a non-Compatible Sequence.

6 Permutations and Sequential Independence

Once we know what a sequence of productions is and when it is potentially safe to define them, we are ready to
deal with position interchange inside a concatenation. Let s3 = p3; p2; p1 be a coherent concatenation made up
of three productions and suppose we want to move p3 forward one position to obtain σ (s3) = p2; p3; p1. This
may be thought of as a permutation σ acting on s3 represented via a matrix or a vector15

σ =
(

1 2 3
2 1 3

)
= [1 2]

to be read as element on first position goes to second position and element on second position goes to first
position, while element on third position remains unaffected. The idea behind sequential independence is that
changes of order in the position of productions inside a sequence do not alter the result of their application.

Definition 6.1 Let sn = pn; . . . ; p1 be a concatenation and let σ be a permutation. Then, sn and σ (sn) are
said to be sequentially independent if both add and remove the same elements and have the same minimal initial
digraph.

If we have compatibility and coherence, then automatically we have sequential independence if it is possible
to guarantee the same minimal initial digraph for both sequences.

Theorem 6.2 With the notation as above, if sn is compatible and coherent and σ (sn) is compatible and coherent
and both have the same minimal initial digraph, then they are sequentially independent.

¤By hypothesis we can define two productions cs, cσ(s) which are respectively the compositions coming from
sn and σ(sn). Using commutativity of sum in formulae (57) and (58) – i.e., the order in which elements are
added does not matter – we directly see that sn and σ(sn) add and remove the same elements.¥

Note that, even though the final result is the same when moving sequential independent productions inside
a given concatenation, intermediate states can be very different. By hypothesis, minimal initial digraphs are
equal: later in this section we shall call it G-congruence.

15Vector representation is possible only if the permutation is a cycle.

21

In the rest of this section we shall discuss permutations that move one production forward or backward a
certain number of positions, maintaining the output of the sequence. We are going to investigate, assuming
compatibility, the conditions needed to move one production without changing the result. That is, using theorem
6.2, the conditions to be satisfied such that starting with a coherent concatenation we again get a coherent
concatenation after applying the permutation, and besides both the original sequence and the permuted one
have the same minimal initial digraph.

First, we recall a simple notation for cycles moving forward and backward a production:

1. advance production n-1 positions: φn = [1 n n− 1 . . . 3 2]

2. delay production n-1 positions: δn = [1 2 . . . n− 1 n]

Example. Consider advancing three positions the production p5 in s5 = p5; p4; p3; p2; p1 to get σ (s5) =
p4; p3; p2; p5; p1, where σ = [1 4 3 2]. To illustrate the way in which we represent delaying a production, moving
backwards production p2 two places p5; p4; p3; p2; p1 7−→ p5; p2; p4; p3; p1 has as associated cycle [2 3 4].16

Theorem 6.3 Consider coherent productions tn = pα; pn; pn−1; . . . ; p2; p1 and sn = pn; pn−1; . . . ; p2; p1; pβ and
permutations φn+1 and δn+1.

1. φn+1 (tn) is coherent if
eE
α 5n

1

(
rE
x LE

y

)
∨RE

α 5n
1

(
eE
x rE

y

)
= 0 (59)

2. δn+1 (sn) is coherent if
LE

β 4n
1

(
rE
x eE

y

)
∨ rE

β 4n
1

(
eE
x RE

y

)
= 0 (60)

Proof
¤Both cases have a very similar demonstration so only production advancement is included. The way to proceed
is to check differences between the original sequence tn and the swapped one, φn (tn), discarding conditions
already imposed by tn.

We start with t2 = pα; p2; p1 7−→ φ3 (t2) = p2; p1; pα, where φ3 = [1 3 2]. Coherence of both sequences
specify several conditions to be fulfilled, included in the following table:

Coherence of pα; p2; p1 Coherence of p2; p1; pα

eE
2 LE

α = 0 (t.1.1) eE
1 LE

2 = 0 (t.1.7)
eE
1 LE

2 = 0 (t.1.2) eE
α LE

1 = 0 (t.1.8)
eE
1 LE

α rE
2 = 0 (t.1.3) eE

α LE
2 rE

1 = 0 (t.1.9)
rE
α RE

2 = 0 (t.1.4) rE
2 RE

1 = 0 (t.1.10)
rE
2 RE

1 = 0 (t.1.5) rE
1 RE

α = 0 (t.1.11)
rE
α RE

1 eE
2 = 0 (t.1.6) rE

2 RE
α eE

1 = 0 (t.1.12)

Conditions (t.1.7) and (t.1.10) can be found in the original sequence – (t.1.2) and (t.1.5) – so they can
be disregarded. Now we want to set these identities expressed using operators delta (39) and nabla (40). In
addition, we would like the matrices that are dependant on the production moved forward to be clearly apart
from the rest of elements in the equation. We make use of (16) on (t.1.8) and (t.1.9) to get:

eE
α LE

1 rE
1 = 0 (61)

eE
α LE

2 rE
2 rE

1 = 0 (62)

For the same reason, applying (13) to conditions (t.1.11) and (t.1.12):

rE
1 eE

1 RE
α = 0 (63)

rE
2 eE

2 RE
α eE

1 = 0 (64)

16Note that numbers in the permutation refer to the place the production occupies in the sequence, numbering from left to right,
and not to its subindex.

22

Condition (t.1.4) may be split in two parts – recall (30), (31) and the remark right afterwards – being
rE
2 rE

3 = 0 one of them. Doing the same operation on (t.1.12), rE
2 rE

3 eE
1 = 0 is obtained, which is automatically

verified and therefore should not be considered. It is not ruled out since, as stated above, we want to get
formulae expressible using operators delta and nabla. Finally we get the equation:

RE
α eE

1

(
rE
1 ∨ eE

2 rE
2

)
∨ eE

α rE
1

(
LE

1 ∨ rE
2 LE

2

)
= 0 (65)

Performing similar manipulations on the concatenation t3 = pα; p3; p2; p1 7−→ φ4 (t3) = p3; p2; p1; pα, where
φ4 = [1 4 3 2], we find out that the condition to be satisfied is:

RE
α eE

1

(
rE
1 ∨ eE

2

[
rE
2 ∨ eE

3 rE
3

])
∨

∨ eE
α rE

1

(
LE

1 ∨ rE
2

[
LE

2 ∨ rE
3 LE

3

])
= 0 (66)

Figure 17 includes the associated graphs to these last examples and to n = 4, where in both cases a dashed
box isolates the advanced production. The proof can be finished by induction.¥

Figure 17: Advancing Productions. Three and Five Productions.

Example. Reusing some productions introduced in previous examples (q1, q2 and q3), we are going to check
coherence for a sequence of three productions in which one is directly delayed two positions. As commented
in preceeding example, it is mandatory to change q3 in order to keep compatibility, so a new production q′3 is
introduced, depicted in Figure 18.

Figure 18: New production q′3.

23

The minimal initial digraph for q′3; q2; q1 remains unaltered, i.e. Mq′3;q2;q1 = Mq3;q2;q1 , but the one for
q1; q′3; q2 is slightly different and can be found in Figure 19 along with the concatenation s′123 = q1; q′3; q2 and
its intermediate states.

Figure 19: Composition and Concatenation. Three Productions.

In this example, production q1 is delayed two positions inside q′3; q2; q1 to obtain q1; q′3; q2. We can express
such permutation as δ3 = [1 2 3]. Formula (59) expanded, simplified and adapted for this case is:

LE
1

(
eE
2 rE

3 ∨ eE
3

)

︸ ︷︷ ︸
(∗)

∨ rE
1

(
eE
3 RE

2 ∨RE
3

)

︸ ︷︷ ︸
(∗∗)

(67)

Finally, all elements are substituted and the operations are performed, checking that the result is the null
matrix.

(∗) =

0 0 0 0 1 2
0 0 0 0 0 3
1 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

0 1 0 0 1 2
0 0 0 0 0 3
0 0 1 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

0 1 1 1 1 2
1 1 1 1 1 3
1 1 0 1 1 5
1 1 0 1 1 1
1 1 1 1 1 4

∨

0 0 0 0 0 2
1 1 0 0 0 3
0 1 0 0 0 5
0 0 0 1 0 1
0 0 0 0 0 4

= 0

(∗∗) =

0 1 0 0 1 2
0 1 0 0 0 3
0 1 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

1 1 1 1 1 2
0 0 1 1 1 3
1 0 1 1 1 5
1 1 1 0 1 1
1 1 1 1 1 4

0 0 0 1 0 2
1 0 0 0 0 3
1 0 0 0 0 5
0 0 0 0 0 1
0 0 0 0 0 4

∨

1 0 0 1 0 2
0 0 0 0 0 3
1 0 1 0 0 5
0 0 1 0 0 1
0 0 0 0 0 4

= 0

Now we seek the conditions that must be fulfilled to guarantee sameness of the minimal initial digraphs,17first
for productions advancement and then for delaying. As before, we start with two productions, continue with
three, four and set the theorem for the general case.

Suppose we have a coherent sequence made up of two productions s2 = p2; p1 with minimal initial digraph M2

and applying the (only possible) permutation σ2 get another coherent concatenation s′2 = p1; p2 with minimal
initial digraph M ′

2.
17Sameness with respect to a digraph G will be defined as G-applicability later in this section.

24

Production p1 does not delete any element added by p2 because, otherwise, if p1 in s2 deleted something, it
should mean that it already existed (as p1 is applied first in s2) while p2 adding that same element in s′2 should
mean that this element wasn’t present (because p2 is applied first in s′2). This condition can be written as

e1r2 = 0 (68)

A similar reasoning states that p1 can’t add any element that p2 is going to use:

r1L2 = 0 (69)

Analogously for p2 against p1, we have
e2r1 = 0 (70)

r2L1 = 0 (71)

As a matter of fact two equations are redundant because they are already contained in the other two. Note
that eiLi = ei, i.e., in some sense ei ⊂ Li, so it is enough to ask for:

r1L2 ∨ r2L1 = 0 (72)

It would be necessary to check that M2 = M ′
2, but we are not going to include these calculations because

they are going to be carefully justified for three and four productions. It seems more interesting to compare
conditions for two productions with those of the SPO categorical-algebraic approach.

In references [8] [9], sequential independence is defined and categorically charaterized. It is not very difficult
to translate those conditions to our “matrix language”:

r1L2 = 0 (73)
e2R1 ≡ e2r1 ∨ e2 e1 L1 = 0 (74)

First condition is (69) and, as mentioned above, first part of second condition – e2r1 = 0 – is already
considered in (69) or in (73). Second part of second equation – e2 e1 L1 = 0 – is demanded for coherence.18

We shall proceed with three productions, so following a consistent notation we set s3 = p3; p2; p1, s′3 =
p2; p1; p3 with permutation σ3 = [1 3 2] and their corresponding minimal initial digraphs M3 = L1 ∨ r1 L2 ∨
r1 r2 L3 and M ′

3 = r3 L1 ∨ r3 r2 L2 ∨ L3. Conditions are deduced similarly to the two productions case and the
reader may find interesting to interpret them:

r3L1 = 0 r3L2r1 = 0 r1L3 = 0 r2L3e1 = 0

which can be put altogether in a single expression

L3 (r1 ∨ e1 r2) ∨ r3 (L1 ∨ r1 L2) = 0 (75)

Moving one production three positions forward in a sequence of four productions, i.e., p4; p3; p2; p1 → p3; p2; p1; p4,
while maintaining the minimal initial digraph has as associated conditions the equation

L4 (r1 ∨ e1 r2 ∨ e1 e2 r3) ∨ r4 (L1 ∨ r1 L2 ∨ r1 r2 L3) = 0 (76)

Definition 6.4 (G-congruence) Two sequences sn and σ (sn), where σ is a permutation, are called G-
congruent if and only if they have the same minimal initial digraph, Msn = Mσ(sn)

Conditions that must be fulfilled in order to maintain the minimal initial digraph will be called congru-
ence conditions and will be abbreviated as CC. By induction it can be proved that for advancement of one
production n − 1 positions inside the sequence of n productions sn = pn; . . . ; p1, the equation which contains
all CC can be expressed in terms of operator ∇ and has the form

CCn (φn−1, sn) = Ln∇n−1
1 (ex ry) ∨ rn∇n−1

1 (rx Ly) (77)

18In fact, what is mandatory for coherence is a bit stronger: e2L1 = 0.

25

Delaying a production n − 1 positions has a very similar associated formula. Suppose that we are moving
backwards production p1 in concatenation sn to get s′′n = p1; pn; . . . ; p2, i.e., we are applying δn−1

CCn (δn−1, sn) = L1∇n
2 (ex ry) ∨ r1∇n

2 (rx Ly) (78)

It is necessary to show that these conditions guarantee sameness of minimal initial digraphs, but first we
need a technical lemma that provides us with some identities used to transform the minimal initial digraphs.
Both, in the lemma and in the theorem, n = 3 and n = 4 are demonstrated in full detail, leaving the end of the
proofs to induction. Advancement and delaying are very similar so only advancement is considered in the rest
of the section.

Lemma 6.5 Suppose sn = pn; . . . ; p1 and s′n = σ (sn) = pn−1; . . . ; p1; pn and that CCn (φ) is satisfied. Then
the following identity may be or’ed to Mn without changing it.

DCn (φn−1, sn) = Ln∇n−2
i=1 (rx ey) (79)

Proof
¤Let’s start with three productions. Recall that M3 = L1 ∨ . . . and that L1 = L1 ∨ e1 = L1 ∨ e1 ∨ e1L3. Note
that e1L3 is (79) for n = 3.

For n = 4 apart from e1L4, we need to get e2r1L4. Recall again the minimal initial digraph for four
productions whose two first terms are M4 = L1∨r1L1∨ . . . = (L1 ∨ e1)∨(r1L1 ∨ r1e1)∨ . . . = (L1 ∨ e1 ∨ e1L1)∨
(r1L2 ∨ r1e2 ∨ r1e2L4) ∨ Last term r1e2L4 is (79) for n = 4. The proof can be ended by induction. ¥

Theorem 6.6 With notation as above, if sn and s′n are coherent and condition CCn (φn−1, sn) is satisfied then
they are G-congruent, Mn = M ′

n.

Proof
¤It will be shown for three and five productions, using CCi and DCi, that Mi = M ′

i . The identities a∨a b = a∨b
and a ∨ a b = a ∨ b will be used in this demonstration.

M3 ∨ CC3 ∨DC3 = L1 ∨ r1 L2 ∨ r1 r2 L3 ∨ r1L3 ∨ e1 r2L3 ∨ r3L1 ∨
∨ r1 r3L2 ∨ e1L3 = L1 ∨ r1 L2∨ 6 r1 r2 L3 ∨ r1L3 ∨
∨ 6 e1 r2L3 ∨ e1L3 = L1 ∨ r1 L2∨ 6 r2 L3 ∨ r2L3 =
= L1 ∨ r1 L2 ∨ L3

In our first step, as neither r3L1 nor r1 r3L2 are applied to M3, they have been omitted. Once r1L3 and e1L3

have been used, they are omitted as well.
Let’s check out M ′

3, where in second equality r1L3 and r2 e1 L3 are ruled out since they are not used.

M ′
3 ∨ CC3 = r3 L1 ∨ r1 r3 L2 ∨ L3 ∨ r1L3 ∨ r2 e1 L3 ∨ r3L1 ∨ r1 r3L2 =

= 6 r3 L1 ∨ r1 6 r3 L2 ∨ L3 ∨ r3L1 ∨ r1 r3L2 =
= L1 ∨ r1 L2 ∨ L3

The case for five productions will illustrate in detail the procedure to follow and how CC5 and DC5 are used to
prove that M5 = M ′

5. The key point is the transformation r1 r2 r3 r4 L5 → L5 and the followig identities show
in detail the way to proceed.

6 r1 r2 r3 r4 L5 ∨ r1L5 = r2 r3 r4 L5

6 r2 r3 r4 L5∨ 6 e1 r2L5 ∨ e1L5 = r3 r4 L5

6 r3 r4 L5∨ 6 e1 6 e2r3L5 ∨ e1L5∨ 6 r1e2L5 ∨ r1L5 = r4 L5

6 r4L5∨ 6 e1 6 e2 6 e3r4L5 ∨ e1L5∨ 6 r1e2L5 ∨ r1L5∨ 6 r1 6 r2e3L5∨ 6 e1r2L5 = L5 ¥
Previous theorems foster the following notation: if (59) is satisfied and we have sequential independence, we

shall write pα⊥ (pn; . . . ; p1) whereas if equation (60) is true and again they are sequential independent, it shall
be represented by (pn; . . . ; p1) ⊥ pβ . For example, if we have the coherent sequence made up of two productions
p2; p1 and we have that p1; p2 is coherent we can write p2⊥p1 to mean that either p2 may be moved to the front
or p1 to the back.

Example. It is not difficult to put an example of three productions t3 = w3;w2; w1 where the advancement
of the third production two positions to get t′3 = w2; w1; w3 has the following properties: their associated

26

minimal initial digraphs – N3 and N ′
3, respectively – coincide, they are both coherent (and thus sequential

independent in the sense introduced in this article) but t′′3 = w2; w3; w1 can not be performed, so it is not
possible to advance w3 one position and, right afterwards, another one, i.e., the advancement of two places must
be carried out in a single step.

Figure 20: Three Very simple Productions.

Using the notation already introduced, this is an example where w3⊥ (w2;w1) but w3 6 ⊥w2. As far as
we know, in SPO or DPO approaches, testing whether w3⊥ (w2;w1) or not has to be performed in two steps:
w3⊥w2, that would allow for w3; w2;w1 → w2;w3; w1, and w3⊥w1 to get the desired result.

As drawn in figure 20, w1 deletes edge (1, 2), w2 adds it while it is just used by w3 (appears on its left hand
side but it is not deleted).

7 Explicit Parallelism

This paper finishes analyzing which productions or group of productions can be computed in parallel and what
conditions guarantee this operation.

In the categorical-algebraic approach, the definition for two productions is settled considering the two alter-
native sequential ways in which they can be composed, and looking for sameness in their final state. Intermediate
states are disregarded using categorical coproduct of the involved productions. Then, the main difference be-
tween sequential and parallel execution is the existence of intermediate states in the former, as seen in Figure
21.

As stated in section 2.1, the parallel rule can only be constructed if the two sequences (G
p1=⇒ X1

p2=⇒ H

and G
p2=⇒ X2

p1=⇒ H) are sequential independent.

X1

p2

¿$
BB

BB
BB

B

BB
BB

BB
B

G

p1

:B}}}}}}}

}}}}}}}

p2

¿$
AA

AA
AA

A

AA
AA

AA
A

p1+p2 +3 H

X2

p1

:B|||||||

|||||||

Figure 21: Parallel Execution.

We follow the same approach, but as host graphs to which apply rules are not considered, we shall say that
it is possible to execute two productions in parallel if the result does not depend on generated intermediate
states.

Definition 7.1 Two productions p1 and p2 are said to be truly concurrent if it is possible to define their
composition and it does not depend on the order:

p2 ◦ p1 = p1 ◦ p2 (80)

We use the notation p1 ‖ p2 to denote true concurrency. True concurrency defines a symmetric relation so
it does not matter whether p1 ‖ p2 or p2 ‖ p1 is written.

Next proposition compares true concurrency and sequential independence for two productions, which is the
parallelism theorem [3]. The proof is straightforward in our case and is not included.

27

Proposition 7.2 Suppose that a coherent concatenation p2; p1 is given and if p2⊥p1, they are G-congruent.
Then, p1 ‖ p2 if and only if p2⊥p1.

So far we have just considered one production per branch when parallelizing, as represented on the left of
figure 22. One way to deal with more general schemes – centre and right of the same figure – is to test for
example if pi ‖ pj , ∀i ∈ {3, 4, 5}, ∀j ∈ {1, 2, 3}, for the middle scheme in figure 22.

p2

p3

¤¤¤¤¤¤¤¤¤

;;
;;

;;
;;

; p0

;;;;;;;;;

¤¤
¤¤

¤¤
¤¤

¤

p1

p6; p5; p4

p7

¤¤¤¤¤¤¤¤¤

;;
;;

;;
;;

; p0

;;;;;;;;;

¤¤
¤¤

¤¤
¤¤

¤

p3; p2; p1

w3

w4

{{{{{{{{{{

<<
<<

<<
<<

< w0

CCCCCCCCCC

££
££

££
££

£

w2; w1

Figure 22: Examples of Parallel Execution.

Although it is not true in general, in many cases it is not necessary to check true concurrency for every two
productions. The following example illustrates the idea.

Example. Suppose a given concatenation with three productions w3;w2; w1, as those depicted in Figure
20. w1 deletes one edge, w2 adds the same edge while w3 uses it.

We have already seen that w3; w2;w1 is compatible and coherent and that w3⊥ (w2; w1). Both have the
same minimal initial digraph. Following our previous study for two productions we would like to put w3 and
w2; w1 in parallel, as depicted on the right of Figure 22.

From a sequential point of view this diagram can be interpreted in different ways, depending on how they
are computed. There are three dissimilar interleavings:

1. w3; w2; w1

2. w2; w1; w3

3. w2; w3; w1

Any problem involving the first two possibilities is ruled out by coherence. As a matter of fact w3 and w2; w1

can not be parallelized because it could be the case that w3 is using edge (1, 2) when w1 has just deleted it
and before w2 adds it, which is what the third case tries to express, leaving the system in an inconsistent state.
Thus, we do not have w3 ‖ w2 nor w3 ‖ w1 – we do not have sequential independence – but both w3; w2; w1 and
w2; w1; w3 are coherent. Next theorem tries to solve this problem.

Theorem 7.3 Let sn = pn; . . . ; p1 and tm = qm; . . . ; q1 be two compatible and coherent sequences wtih the same
minimal initial digraph, where either n = 1 or m = 1. Suppose rm+n = tm; sn is compatible and coherent and
either tm⊥sn or sn⊥tm. Then, tm ‖ sn through composition.

Proof
¤Using proposition (7.2)¥

In the last sentence, “through composition” means that the concatenation with length greater than one must
be transformed into a single production using composition. This is possible because it is coherent and we are
assuming compatibility in this section – please, refer to proposition 5.4 –. In fact it should not be necessary to
transform the whole concatenation using composition, but only the parts that present a problem.

Setting n = 1 corresponds to advancing a production in sequential independence, while m = 1 to moving
a production backwards inside a concatenation. In addition, in the hypothesis we ask for coherence of rn and
either tm⊥sn or sm⊥tn. In fact, if rm+n is coherent and tm⊥sn, then sn⊥tm. It is also true that if rm+n is
coherent and sn⊥tm, then tm⊥sn, by contradiction.

Although the idea behind theorem 7.3 is to erase intermediate states through composition, in a real system
this is not always possible or desirable if, for example, these states were used for synchronization of productions
or states.

28

8 Conclusions and Future Work

In this paper, a new, purely algebraic approach to graph transformation based on matrix algebra has been pro-
posed. A characterization of productions by means of matrices as well as the concepts of compatibility, coherence
and G-congruence have been introduced, applying them to the study of sequentialization and parallelism. The
latter has been approached both from the sequential point of view (by considering sequence interleavings) as
well as from the explicit parallelism view (by defining rule composition, which does not generate intermediate
states).

In our opinion, the approach is interesting because it provides a new viewpoint to graph transformation.
As it is purely algebraic, based on matrix manipulation, it has the potential to be efficiently implemented on
computers. The approach has permitted the generalization in some sense of known results in the categorical-
algebraic approach. For example the one for sequential independence which were defined for two productions. In
particular, we consider permutations of rule sequences of arbitrary length. Other known facts in the categorical
framework have a clear correspondence in our approach, and can be studied from another perspective, such as
the dangling edge condition (compatibility), sequential independence, parallel production, etc.

Another interesting issue is the fact that we can perform the analysis independent of the host graph. This
has the practical advantage that some information can be gathered a priori, when the graph transformation
rules are being specified.

With respect to future work, we will start defining the match and its characterization. The match will be
considered as an operator modifying the rule’s LHS and RHS. As stated throughout the paper, two options are
available here. In the style of SPO, the match operator could complete the rule, explictly erasing the dangling
edges. If the DPO style is followed, then a match would not be valid if some edge would dangle. In both cases,
the theory introduced so far would be applicable.

Additionally, we want to consider other kinds of digraphs, not only the family of simple digraphs. A lot
of concepts are not even mentioned, but are interesting to consider, such as application conditions (specially
negative application conditions) [13], type graphs [2], attributes [11], amalgamation [22], etc. Following with
the study of parallel independence, critical pair analysis [14] could also be considered.

Staying at the level introduced in this paper, it is also possible to study the algebra associated to the
operators introduced so far, or generalizations of them.

References

[1] Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U. and Rossi, F., 1999. Concurrent Semantics
of Algebraic Graph Transformations. In [9], pp.: 107-187.

[2] Corradini, A., Montanari, U., Rossi, F. 1996. Graph processes. Fundamenta Informaticae, 26(3-4), pp.: 241
- 265.

[3] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M. 1999. Algebraic Approaches to
Graph Transformation - Part I: Basic Concepts and Double Pushout Approach. In [8], pp.: 163-246

[4] Courcelle, B. 1990. Graph Rewriting: An Algebraic and Logic Approach Handbook of Theoretical Computer
Science, Vol. B. pp.: 193-242.

[5] Drewes, F., Habel, A., Kreowski, H.-J., Taubenberger, S. 1995. Generating self-affine fractals by collage
grammars. Theoretical Computer Science 145:159-187, 1995.

[6] Ehrig, H. 1979. Introduction to the Algebraic Theory of Graph Grammars. In V. Claus, H. Ehrig, and G.
Rozenberg (eds.), 1st Graph Grammar Workshop, pages 1-69. Springer LNCS 73, 1979.

[7] Ehrig, H., Heckel, R., Llabres, M., Orejas, F., Padberg, J., Rozenberg, G. 1998. Double-Pullback Graph
Transitions: A Rule-Based Framework with Incomplete Information. In Proc. Theory and Application of
Graph Transformations: 6th International Workshop, TAGT’98, LNCS 1764. Springer, pp.: 85-102.

[8] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. 1999. Handbook of Graph Grammars and Computing
by Graph Transformation. Vol 1. Foundations. World Scientific.

29

[9] Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. 1999. Handbook of Graph Grammars and Com-
puting by Graph Transformation. Vol.3., Concurrency, Parallelism and Distribution. World Scientific.

[10] Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A. 1999. Algebraic Ap-
proaches to Graph Transformation - Part II: Single Pushout Approach and Comparison with Double Pushout
Approach. In [8], pp.: 247-312.

[11] Ehrig, H., Prange, U., Taentzer, G. 2004. Fundamental Theory for Typed Attributed Graph Transformation.
Proceedings of International Conference of Graph Transformation (ICGT’04). Lecture Notes in Computer
Science 3256 pp.: 161-177. Springer.

[12] Ehrig, H., Ehrig, K., de Lara, J., Taentzer, T., Varr, D., Varr-Gyapay, S. 2005. Termination Crite-
ria for Model Transformation. Proceedings of Fundamental Approaches to Software Engineering FASE05
(ETAPS’05). Lecture Notes in Computer Science 3442 pp.: 49-63. Springer.

[13] Heckel, R., Wagner, A. 1995. Ensuring consistency of conditional graph rewriting - a constructive approach.
Proc. of SEGRAGRA 1995, Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and
Compu-tation, In ENTCS Vol 2, 1995.

[14] Heckel, R., Küster, J. M., Taentzer, G. 2002. Confluence of Typed Attributed Graph Transformation Sys-
tems. In ICGT’2002. LNCS 2505, pp.: 161-176. Springer.

[15] Kahl, W. 2002. A Relational Algebraic Approach to Graph Structure Transformation Tech.Rep. 2002-03.
Universität der Bundeswehr München.

[16] de Lara, J., Vangheluwe, H., 2004. Defining Visual Notations and Their Manipulation Through Meta-
Modelling and Graph Transformation. Journal of Visual Languages and Computing. Special issue on
“Domain-Specific Modeling with Visual Languages”, Vol 15(3-4), pp.: 309-330. 2004. Elsevier Science

[17] Löwe, M. 1993. Algebraic Approach to Single-Pushout Graph Transformation. Theoretical Computer Sci-
ence, 109:181-224.

[18] Mac Lane, S. 1997. Categories for the Working Mathematician . Volume 5 of Graduate Texts in Mathe-
matics. Springer-Verlag, Berlin, 2nd. Edition (1st ed., 1971).

[19] Minas, M. 2002. Concepts and realization of a diagram editor generator based on hypergraph transformation
Science of Computer Programming, Vol. 44(2), pp: 157 - 180.

[20] Mizoguchi, Y., Kuwahara, Y. 1995. Relational Graph Rewritings. Theoretical Computer Science, Vol 141,
pp. 311-328.

[21] Schürr, A. Programmed Graph Replacement Systems. In [8], pp.: 479 - 546.

[22] Taentzer, G. 1996. Parallel and Distributed Graph Transformation: Formal Description and Application to
Communication-Based Systems. Ph.D.Thesis, TU Berlin, Shaker Verlag, Germany.

30

