
1

Using Simulation and Virtual Reality for Distance
Education

Juan de Lara, Manuel Alfonseca
Dept. Ingeniería Informática, Universidad Autónoma de Madrid

Campus de Cantoblanco, 28049 Madrid
E-Mail: {Juan.Lara, Manuel.Alfonseca}@ii.uam.es

Keywords: Continuous Simulation, Web-based simulation, Virtual Reality, Distance
Education.

Abstract: This paper describes the construction of virtual reality simulations for distance
education trough Internet. This is accomplished by means of an object oriented
continuous simulation language, called OOCSMP, and a Java generating
compiler for this language called C-OOL. This compiler is also able to create
VRML worlds. The behaviour of the VRML world is specified in the
OOCSMP models. Change of simulation parameters is possible at run time by
means of a Java interface, generated by the compiler. An example of the
simulation of the inner Solar System is presented.

Introduction

The growing popularity of Internet, and the increasing number of
computers connected to it, makes it an ideal framework for distant
education. Not only educational sciences, but also a large number of
disciplines are re-thinking their traditional philosophies and
techniques to adapt to the new technologies [1]. One of these
disciplines is computer simulation.

Virtual Reality (VR) techniques offer immersive environments in
which the user has great possibilities of interaction. The emergence of
the Virtual Reality Modelling Language VRML [2] and browser plug-

2 Juan de Lara, Manuel Alfonseca

ins for this language [3] has made it possible to build virtual worlds
accessible through Internet. The VRML97 [4] standard defines an
external API that allows us to control VRML objects from a Java
applet.

Its advantages, such as new possibilities of interaction and more
realistic and pleasant learning environments, are turning VR into a
valuable tool in distance education [5,6].

In this paper we present some improvements to the tools that we use
to automatically generate web courses based on simulation [7]. These
enhancements include the possibility of incorporating VR panels to
the simulation applets. An example with the simulation of the Inner
Solar System is presented.

Our Simulation Tools

The OOCSMP continuous simulation language was conceived in 1997
[8] as an object oriented language. The language is specially suited
when the system can be modelled with similar interacting objects. A
compiler (C-OOL) was built for this language in order to produce C++
code or Java applets with the simulation models. This approach
simplifies the generation of simulation based web courses. Several
web courses have been generated using this language, on gravitation,
partial differential equations, ecology and basic electronics, which can
be accessed from:

http://www.ii.uam.es/~jlara/investigacion

The language and the compiler have been designed with an
educational focus, for example:

n It is possible to include several forms of output displays in the
same simulation.

n Multimedia elements can be synchronized with the simulation
execution.

n The user interface allows changing parameters, object attributes or
even adding or deleting objects during the simulation execution.

n Alternative simulations can be designed and can be accessed from
the main simulation. In this way, the teacher can identify

VR in distance education. 3

interesting situations that arise when changing some parameter, or
when adding some object, etc.

n There are also instructions that allow us to describe the appearance
of the web page where the simulation models are going to be
placed.

Extending the language to handle VR

In OOCSMP, there is the possibility of associating an icon to each
object taking part in the simulation. This icon can be used in all the
output forms. The VR extensions allow us to assign also a VRML node
to each object, by means of the new attribute type VRMLobject.

A new instruction (VRMLworld), to include OOCSMP objects
(considered as dynamic components of the Virtual World) in a virtual
world, has also been added. This instruction also configures the virtual
world with static elements.

For example, suppose we want to simulate the behaviour of the inner
solar system [9]. To model it, we will encapsulate the behaviour of a
planet in a class, and declare an object associated with each planet of
the solar system. The class has an attribute to assign to the planet a
VRML object. A scheme of the OOCSMP Planet class is shown in
listing 1.

[1] CLASS Planet { * Definition of Planet class
[2] NAME name * Name of the planet
[3] VRMLobject obj * VRML object associated with the Planet
[4] DATA M, X0, Y0, XP0, YP0, FI
[5] INITIAL * Compute initial data (FIR, CFI and SFI)
[6] FIR:=FI*PI/180
[7] CFI:=COS(FIR)
[8] SFI:=SIN(FIR)
[9] DYNAMIC * Distance to the Sun
[10] R2 := X*X+Y*Y
[11] R := SQRT(R2)
[12] ...
[13] ACTION Planet P * Mutual actions of two planets
[14] DPP2 := (P.X-X)*(P.X-X)+(P.Y-Y)*(P.Y-Y)+(P.Z-Z)*(P.Z-Z)
[15] DPP := SQRT(DPP2)
[16] ...
[17] FINISH R<.05
[18] VRMLworld X, Y, Z}

Listing 1: Outline of an OOCSMP class representing a planet.

4 Juan de Lara, Manuel Alfonseca

The previous OOCSMP class defines some blocks (DYNAMIC and
ACTION) to simulate the behaviour of a particular planet, whose full
listing can be found at [7]. It also declares a termination condition
(FINISH), and inserts all the objects of the Planet class in the virtual
world (VRMLworld), where they will be the dynamic elements. The
three parameters (X, Y, Z) control the position of the object inside the
virtual world.

Listing 2 shows the remainder of the OOCSMP model, which uses the
Planet class to generate a model of the inner Solar System.

[1] * Universal data, and Sun data
[2] DATA G:=0.00011869, PI:=3.141592653589793, MS:=332999
[3] INCLUDE "Planet.csm"
[4] Planet Mercury("Mercu", “mercury.wrl”, 0.055271, ...)
[5] Planet Venus ("Venus", “venus.wrl”, 0.81476, 0.7233,...)
[6] Planet Earth ("Earth", ”earth.wrl”, 1, 0, 1, ...)
[7] Planet Moon ("Moon", “moon.wrl”, 0.01235, 0, ...)
[8] Planet Mars ("Mars", “mars.wrl”, 0.10734, 1.5233, ...)
[9] Planet Apollo ("Apolo", “Apollo.wrl”, 1957E-14, ...)
[10] Planet Jupiter("Jupit", “jupiter.wrl”, 317.94, ...)
[11] Planet InnerSystem := Mercury, Venus, Earth, Moon, Mars,
[12] Apollo, Jupiter
[13] DYNAMIC
[14] InnerSystem.STEP()
[15] InnerSystem.ACTION(InnerSystem)
[16] TIMER delta:=.0005, FINTIM:=2, PRdelta:=.1, PLdelta:=.01
[17] VRMLworld “sun.wrl”
[18] METHOD ADAMS

Listing 2: The OOCSMP model for the inner solar system.

Line 17 adds the sun (a static element) to the VRML world. When
declaring each planet, we have to specify the VRML node associated
with it. In our case, each VRML node will be a sphere with an
hyperlink. When the user clicks in the hyperlink, useful data of the
planet will be presented in an HTML frame. For example, the
following listing shows the wrl file associated to planet Mars.

#VRML V2.0 utf8

Anchor {
 url "mars.html" parameter ["target=Details"]
 children [
 Shape {
 appearance Appearance {
 material Material{

VR in distance education. 5

 diffuseColor 1 0 0
 shininess .5
 }
 }
 geometry Sphere { radius 0.25 }

 }
]
}

Listing 3: VRML node associated with planet Mars.

Generating a VR simulation

When compiling the model with C-OOL, several files are generated:

n A wrl file, containing all the VRML objects declared in the model.
n A Java applet, with the simulation logic, the simulation controls,

and the other graphical output forms, if any has been selected in
the model. The Java applet allows the user to start and stop the
simulation, to change the model parameters, etc., and
communicates with the Virtual World by means of the External
Authoring Interface (EAI) [10]. Using proprietary technologies
such as Netscape’s LiveConnect [11] is widely extended [2, 5], but
we think our solution is better, because additional libraries are not
needed, we are compatible with Internet Explorer, and the
communication between the Java applet and the Virtual World is
done directly from the program, rather than indirectly trough
JavaScript.

Figure one shows the working scheme of all these components. There
is a graphical and numerical Java library placed in the Server (for
developing pourposes, it can be placed in the client), used by the
generated Java programs. When the user accesses the simulation page,
the VRML code, the Java applets, and the necessary Java classes are
first downloaded from the server, but are then executed locally

The necessary elements to run the simulations are thus:

n A graphic browser.
n A VRML97-compliant plug-in, such as CosmoPlayer.
n A Java Virtual Machine plug-in, understanding at least Java 1.1

code.

6 Juan de Lara, Manuel Alfonseca

Figure 1: Working scheme of a VR simulation page.

The next figure shows a moment in the execution of the simulation.

Figure 2: A moment in the simulation of the inner solar system.

VR in distance education. 7

In the previous figure, the user has clicked on the planet Mars, and the
associated data are being shown in the upper frame. The sizes of the
planet shapes are not proportional to their real sizes, to make them
visible in the image scale. Figure 3 shows a similar simulation, where
a two dimensional plot has been selected as a graphical output form.
The animation of both panels is synchronized, because the simulation
engine sends messages to CosmoPlayer and to the 2D Java panel
every time step.

Figure 3: Simulation using Virtual Reality and 2D plots.

There is a problem in the integration of VRML panels in the user
interface generated by our compiler, because these panels are not
placed inside the Java applet, but in the HTML page in an <EMBED>
HTML tag. This complicates the construction of the user interface,
that we have solved using tables. In figure 3, the VRML world and the
applet have both been placed inside an HTML table.

8 Juan de Lara, Manuel Alfonseca

Conclusions and future work

In the present article, we have presented some extensions to facilitate
the construction of Virtual Reality simulations trough Internet. The
simulation behaviour is modelled by means of the OOCSMP
language, that allows us to assign VRML nodes to the OOCSMP
objects. The compiler takes charge of generating the VR world and the
necessary Java files. The programmer only has to model the system
behaviour, in a high-level simulation language, and specify the
appearance of each object by means of simple VRML nodes. The
inclusion of these simulations in educational courses is thus
straightforward. In the generated Java code, the inclusion of a VRML
panel only represents a few lines of code: some of them in the
inizialization, to get a handle to the VRML browser, the others in the
main simulation loop (in the function that updates all the graphical
output forms), to actualize the position of the corresponding VRML
nodes.

VRML also offers other possibilities of interaction, that we have
exploited in the example, such as setting hyperlinks in the simulation
objects, which can be used to explain the role of the object in the
simulation or, as in our case, to show additional data.

The example can be accessed from:

http://www.ii.uam.es/~jlara/investigacion/ecomm/solar3.html

The primitives that add Virtual Reality capabilities to our system only
deal with the displacement of objects. Other primitives could also be
added to handle other object properties, such as rotation, size, colour,
etc.

We are currently working in an authoring tool for the construction of
simulated-based web documents. These documents can be educational
web courses, but also electronic articles - with simulation and
interactive elements - or interactive presentations. We are planning to
incorporate the possibility of designing VRML worlds to this tool, or
at least allow an easy interaction with some VRML development tool.

VR in distance education. 9

Acknowledgment

This paper has been sponsored by the Spanish Interdepartmental
Commission of Science and Technology (CICYT), project number
TEL1999-0181.

References

[1] Page E.H. Buss, A., Fishwick, P.A., Healy, K., Nance, R.E., Paul, R.J.
2000. Web-Based Simulation: Revolution or Evolution?, to appear in ACM
Transactions on Modeling and Computer Simulation.

[2] Hartman, J., Wernecke, J. 1996. “The VRML 2.0 Handbook. Building
Moving Worlds on the Web”. Addison-Wesley.

[3] Cosmo Player, at: http://www.cosmosoftware.com/products/player

[4] VRML97 Specification: www.web3d.or/Specifications/VRML97

[5] Schmid, Ch. 1999. “A Remote Laboratory Using Virtual Reality on the
Web”. Simulation. Special Issue: Web-Based Simulation. Vol.73:1, 13-21.

[6] Virtual Reality for Education Resources on the Net:
http://www.hitl.washington.edu/projects/knowledge_base/education.html

[7] Alfonseca, M., de Lara, J., Pulido, E., 1999. “Semiautomatic Generation
of Web Courses by Means of an Object-Oriented Simulation Language”,
Simulation. Special Issue: Web-Based Simulation, Vol 73:1, 5-12.

[8] Alfonseca, M., Pulido, E., Orosco, R., de Lara, J. 1997. "OOCSMP: an
object-oriented simulation language". ESS'97, Passau, pp. 44-48.

[9] Alfonseca,M., de Lara, J., Pulido, E. 1998. "Semiautomatic Generation
of Educational Courses in the Internet by Means of an Object-Oriented
Continuous Simulation Language". ESM'98, Manchester, pp. 547-551.

[10] Introduction to the VRML and Java EAI:
http://www.dcs.gls.uk/people/personal/snowdonp/vrml/intr.html

[11] LiveConnect, at Netscape ftp site: ftp.netscape.com in
pub/sdk/plugin/windows/oct_21_97

