
Our system for
constructing Web
documents features
visual interactive
simulations and other
hypermedia
elements. It uses a
continuous simu-
lation language com-
posed of abstraction
layers that describe
the simulation mod-
els’ behavior, pages
or slides, and courses,
articles, or presenta-
tions. The methods
and tools presented
stress key points in
the development of
Web-based appli-
cations such as main-
tainability, reusability
integration, and easy
testing.

T
he Web is changing the way we work.
We see educational courses, articles,
and presentations on the Web. These
publications can sometimes be direct-

ly accessed online and other times must be down-
loaded. Online documents range from simple
lecture notes to pages including more sophisti-
cated elements such as animated graphics and
simulations.

The Web environment as a hyper document
container offers some advantages, including a
common user interface (the browser), richer inter-
action possibilities, and platform independence.1

More interactive possibilities are offered by plug-
ins. For example, one of the most popular is the
Java Virtual Machine, which makes it possible to
run Java programs (or applets) embedded in
hypertext markup language (HTML) pages (see
http://java.sun.com).

Interactive simulation lets students experiment
with a model and answer “what if ... ?” questions.
It also lets users play a more active role in the
learning process. Thus, current education is mov-
ing from a teacher-centered paradigm to a stu-
dent-centered view.2 Simulation applets in Web
courses3 can be an effective complement to lab
experiments.4 In particular, multimedia elements5

synchronized with simulations let teachers pre-
sent in a richer format and at the appropriate
moment.

The term “Web-based simulation”6 can be
understood in several ways, but here we use it to

describe a hypermedia element embodied in Web
documents.

For the purpose of distance learning, there’s a
need for tools and procedures to integrate interac-
tive simulations with Web documents. Simulation
models and documents may not be completely
independent since sometimes the document body
may require information contained in the simula-
tion model. Simulation models should also be
reusable in pages or documents. We need some
way to describe simulation models, the pages
where these simulations reside, and the grouping
of these pages to form Web documents. Because of
the dynamic nature of Web-based information,
these documents must be easy to modify. We also
need procedures and techniques for designing
Web applications in a systematic way.7

Here we present a three-layer language as an
answer to these requirements. The lower layer pro-
grams the simulation models, the intermediate
layer describes page content, and the upper layer
groups pages and defines common appearance
properties. The system liberates the end user from
low-level details such as programming in Java or
HTML. It also enhances productivity and stresses
quality practices.

System overview
Here we describe our three-level system.

OOCSMP
The object oriented continuous system model-

ing program (OOCSMP) continuous simulation
language was conceived in 19978 as an object-ori-
ented language. A compiler (C-OOL) was built for
this language that creates C++ code or Java applets
from simulation models. Simulation-based Web
courses for gravitation, partial differential equa-
tions, ecology, and basic electronics have been
generated using this language (see http://www.
ii.uam.es/~jlara/investigacion).

The language and the compiler have the follow-
ing features, which provide an educational focus:

❚ Web developers can generate several forms of
output displays in the same simulation.

❚ Web developers can configure the user inter-
face with compiler options. For example, if we
present a simulation to a naive user, we can
restrict the interface to prevent the user from
changing the parameters. On the contrary, if
the user is an expert, we can provide more pos-
sibilities for changing the parameters such as

42 1070-986X/01/$10.00 © 2001 IEEE

Constructing
Simulation-
Based Web
Documents

Juan de Lara and Manuel Alfonseca
Universidad Autónoma of Madrid

Web Engineering

buttons to add or delete simulation objects.

❚ Users can modify, add, or delete parameters
and object attributes during the simulation
execution. This gives students more interaction
possibilities.

❚ Teachers can design alternative simulations
accessible from the main simulation making it
possible to plan interesting situations that arise
when a parameter is changed or an object is
added.

❚ Teachers can include additional multimedia
elements and synchronize them with the sim-
ulation. Thus, model behavior explanations
may be presented at the appropriate moment.

The description of document pages is governed
by a set of instructions termed simulation course
description language 1st level (Soda-1L). This set
of instructions describes Web documents con-
taining hypermedia elements not available in
HTML such as simulations, two- and three-dimen-
sional graphics, and isosurface maps. Soda-1L
forms a higher language abstraction layer than
OOCSMP because the models defined in OOCSMP
can be treated as hypermedia elements from the
Soda-1L viewpoint.

An additional level, called Simulation Course
Description Language 2nd Level (Soda-2L), can
group several of the Soda-1L pages to form a
course, a presentation or an article. Soda-2L has
primitives that add navigation links to the pages,
headers, footnotes, and that create and place
indexes. They can be embedded in the resulting
HTML pages or added as frames. At this level we

usually add interface details common to all the
pages to make the Soda-1L pages reusable.

Figure 1 shows the three layers—OOCSMP,
Soda-1L, and Soda-2L—and their interrelations.

Although the instructions of each level are usu-
ally included in different files, they can be mixed
because they’re part of a unique language and all
three levels use the same compiler. Division in dif-
ferent files allows reuse, maintainability, and easy
change of the documents.

Soda-1L
The Soda-1L level consists of a set of instructions

to describe a document page. At this level we can use
simulations defined in the OOCSMP level. The OOC-
SMP and Soda-1L aren’t completely separated. From
the Soda-1L level we can access the OOCSMP level
to evaluate expressions and obtain values of vari-
ables. For example, if the result of an expression is a
vector, in the Soda-1L level an HTML table shows the
values of the elements in the vector. At this level the
user can also manually insert HTML code.

We provide instructions to insert tables,
images, links, sections, and references. We also
offer table counters, image counters, and variables
that define the author name, the author’s email
address, and the construction date. These vari-
ables can be accessed in footnotes and headers to
make them more general and reusable. It’s also
possible to define writing styles and macros.
Macros direct the compiler to translate some pat-
terns to HTML. Also, the appearance of some of
the Soda-1L built-in instructions can be modified
using macros. This can be used to change the
appearance with references, which are tracked by
the compiler and sorted by name, year, and other
criteria at the Soda-2L level.

43

Jan
uary–M

arch
 2001

Soda-2L

Soda-1L

OOCSMP

C-OOL

Page navigation,
indexes, references,
headers, footnotes,

and so on

HTML pages

Java applets

So
da

-2
L

le
ve

l
So

da
-1

L
le

ve
l

O
O

C
SM

P
le

ve
l

Course Article Presentation

Figure 1. The three-level

scheme used to generate

simulation-based

documents.

Two- and three-dimensional graphics and iso-
surface maps can also be included. These elements
are Java components reused from the OOCSMP
output displays.

Soda-2L
The Soda-2L level lets us define features to

apply to all the pages in a document, making it
possible to change these pages simultaneously.
Some of the available instructions in this level let
us:

❚ Define the type of document (course, article, or
presentation).

❚ Define common backgrounds, headers, and
footnotes, and their placement as frames or
embedded in the HTML page.

❚ Automatically generate an index for the docu-
ment. The index elements could be the sec-
tions or the HTML pages. The location of this
index (a separate page, a frame, and so on) can
also be defined.

❚ Track references and order them by name, year,

and other criteria. It’s also possible to choose
the location of the reference list (embedded in
the last page, as a separate page, and so on).
Macros can change the style of the references.

❚ Specify the navigation links between pages. We
can do this for each page in the document or
use a default. For example, if we’re construct-
ing a presentation, the default navigation is
sequential and shows all the presentation
slides.

Soda-2L scripts facilitate the modification of
documents. Changing the navigation order of the
pages of a document only requires a modification
of the script; the pages remain unchanged. Thus,
reuse of document pages is improved.

Three kinds of files can be compiled with
C-OOL:

❚ single OOCSMP models that generate Java files,

❚ Soda-1L pages that generate the associated
HTML file and the Java files (if the page con-
tains a simulation model), and

❚ Soda-2L script where all the pages and the
models contained in the script will be recom-
piled if needed.

Adding interactivity
With our system, users can generate simula-

tion-based documents and interactive articles, pre-
sentations, and Web courses.

Generating simulation-based documents
Figure 2 depicts the following procedure to

generate simulation-based documents.

1. Decide how many pages the document will
have and which models will be contained in
every page.

2. Build the models. When possible, encapsulate
them in OOCSMP classes.

3. Adapt the model to the page. In most cases,
creating a particular model requires declaring
OOCSMP objects and connecting them by
invoking methods.

4. Validate the models. The interface generated
automatically by the compiler facilitates test-
ing the models.

44

IE
EE

 M
ul

ti
M

ed
ia

Design the course on paper

Build the neccessary models

Adapt the model to the page

Validate the model

Include multimedia elements

Decide the type and
position of the output forms

Describe the page
using Soda-1L instructions

Define characteristics
applicable to all the pages

More pages?

Soda-2L level

Soda-1L level

OOCSMP level

A
ut

om
at

ic
 p

ro
ce

ss
M

an
ua

l
p

ro
ce

ss

Figure 2. Procedure to

generate simulation-

based Web documents.

5. Decide which output forms to use and their
position in the user interface. Users can place
up to nine different output forms in the main
panel and in separate windows.

6. Decide whether to include multimedia ele-
ments and identify the moments in the simu-
lation where to place them.

7. Describe the document page using Soda-1L
instructions. Users should only be concerned
with the contents since most of the appear-
ance details will be determined at the next
step.

8. Define features applicable to all the pages such
as background, navigation, and frames with
indexes. Defining the user interface details at
this level will improve the standardization of
the appearance of all the document pages and
facilitates their reuse.

Creating an interactive article for the Web
At an increasing frequency scientists submit

papers to journals as HTML files and these articles
are directly published on the journal’s Web site. It
would be beneficial to replace static images of the
simulation results with the real simulations in
papers dealing with computer simulations. Then
readers would be able to experiment with the sim-
ulation models and draw their own conclusions.
This can be accomplished with our system since
the document viewer serves as a navigator.

For example, we submitted an article to an
electronic journal (Journal of Artificial Societies and
Social Simulation, http://jasss.soc.surrey.ac.uk/
JASSS.html) using our system. The article con-
tained embedded simulation applets instead of
figures showing the simulation results (see
http://www.ii.uam.es/~jlara/investigacion/ecomm
/otros/JASSS.html). Figure 3 shows the Soda-2L
script we used to compile the article.

Line 3 declares the document type and the
background color. The next three lines define vari-
ables with data for the authors. These variables are
reusable facilitating the definition of generic foot-
notes and headers. Line 7 sets options on the user
interface. Line 8 causes the compiler to generate a
section index that will be placed as a left frame,
occupying 20 percent of the page width. Line 9
defines where the references must be located (in
the last page), how they must be sorted (by short-
name), and where their source is located (in file
JASSrefs.csm). Lines 10 and 11 insert a header and

a footnote in each page, the latter in the form of
a frame. Line 12 declares the navigation links to
be inserted in the pages in the form of a list. The
last four lines declare the article pages (Soda-1L
files) and the navigation between them. Each page
will have a link to the next page and to the previ-
ous one. Declaring the navigation in this way pro-
vides reusability of the document pages.

The cost of building the article was low because
the models it includes were used previously in our
research. In this way, the cost of including simu-
lation models instead of pictures is negligible (in
fact, it’s less expensive, because we aren’t required
to capture a particular moment of the simulation
execution). Figure 4 (next page) shows one of the
pages of the article.

Creating an interactive presentation
Current applications, such as Microsoft

PowerPoint, facilitate building visual presenta-
tions. It can launch external browsers, for exam-
ple, to see Java applets. However, this interaction
occurs outside PowerPoint control, and it’s not

45

Jan
uary–M

arch
 2001

[1] INCLUDE “macros.csm”

[2] INCLUDE “styles.csm”

[3] ARTICLE “Belief propagation in multi-agent

communities”

BACKGROUND=“ORANGE”

[4] AUTHOR Juan de Lara, Manuel Alfonseca

[5] EMAIL Juan.Lara@ii.uam.es,

Manuel.Alfonseca@ii.uam.es

[6] WEBADDRESS http://www.ii.uam.es/~jlara,

http://www.ii.uam.es/~alfonsec

[7] SIMULATIONS-noFrame -noLeyenda –noScaleWindow

-WIDTH=400 -HEIGHT=400

[8] INDEX [SECTIONS], [FRAME,W,20]

[9] REFERENCES [LAST], [SORT SHORTNAME],

“JASSrefs.csm”

[10] HEADER “header1.csm”

[11] FOOTNOTE [FRAME], “footnote1.csm”

[12] NAVIGATION [LIST]

[13] PAGE “JASSt1.csm” NAVIGATION [2]

[14] PAGE “JASSt2.csm” NAVIGATION [1,3]

[15] PAGE “JASSt3.csm” NAVIGATION [2,4]

[16] PAGE “JASSt4.csm” NAVIGATION [3]

Figure 3. Soda-2L script

for compiling an

interactive article.

seamless. Furthermore, the results obtained when
creating an online PowerPoint presentation aren’t
ideal because slides are converted to graphic files.
One solution would be to make the presentation
available in the form of a .ppt file to be down-
loaded, but this may not be accessible from all
platforms, resulting in lower flexibility.

With our system, presentations can contain
simulation applets with no need to launch exter-
nal browsers. Furthermore, the presentation can
be published on the Web and viewed online with-
out any loss of interaction.

We prepared an interactive presentation for an
educational simulation summer school. It con-
tains simulation applets, and the students will be
able to access the presentation online. Figure 5

shows a scheme of the
Soda-2L script that we
used to generate the
presentation.

When presentations
are compiled, the nav-
igation is set by default
to the next slide and
the previous one. In
this case, the hyper
links used for naviga-
tion are placed as
images (line 9) inside a
green HTML table.
Line 10 configures the
user interface for the
simulation applets.
This can be changed in
the Soda-1L level for
special cases. We have
also set the default font
face and size for the
titles and the texts.
Line 11 inititates the

slides that form the presentation (Soda-1L files).
Slides and simulation models can be reused in
other documents without any change. It‘s also
easy to change the position of the slides in the
presentation.

We created the slides, which with Soda-1L code
can include simulations. The Soda-1L code for one
slide is simple as Figure 6 shows.

Figure 6 declares the slide’s title, incorporates
descriptive text, and includes a simulation model
(OOCSMP file gordon.csm). This model solves
Gordon’s sine equation using OOCSMP (see
Figure 7). Details about the OOCSMP extensions
to solve partial differential equations can be

46

IE
EE

 M
ul

ti
M

ed
ia

Figure 4. Screen shot of an interactive article page.

[1] INCLUDE “macros.csm”

[2] INCLUDE “styles.csm”

[3] PRESENTATION “Web based Simulation”

BACKGROUND=“BLUE”

[4] FONT TITLE TYPE=“Tahoma”, SIZE=“+4”, COLOR=“BLUE”

[5] FONT TYPE=“Arial,Helvetica”, SIZE=“+2”

[6] AUTHOR Juan de Lara, Manuel Alfonseca

[7] EMAIL Juan.Lara@ii.uam.es,

Manuel.Alfonseca@ii.uam.es

[8] WEBADDRESS http://www.ii.uam.es/~jlara,

http://www.ii.uam.es/~alfonsec

[9] NAVIGATION [TABLE, 80, “GREEN”],[IMAGES

“prev.gif”,”next.gif”]

[10] SIMULATIONS -noFrame -noScaleWindow –

noLeyenda -WIDTH= 500 -HEIGHT= 350

[11] SLIDE “portada.csm”

[12] SLIDE “objetivos.csm”

[13] ...

Figure 5. Soda-2L script for compiling an interactive presentation.

[1] TITLE Gordon’s sine equation

[2] DESCRIPTION \CENTER {This is

a quasi-linear equation that

is given by:

[3] DESCRIPTION \ITALIC

{U\SUB{xx}-

U\SUB{tt}=sin(U)}.}

[4] MODEL “gordon.csm”

Figure 6. Soda-1L slide for the presentation.

found in de Lara and Alfonseca.9

Figure 8 shows the resulting slide at a particular
moment in the simulation. During the presenta-
tion, the speaker will be able to show the results
of changing some of the parameters in the
models.

The construction cost of this presentation was
low because we reused all the models from sever-
al existing articles and courses. For example, we
used the model in Figure 7 in the partial differen-
tial equations course described in the next section.

Creating a simulation-based Web course
Computer simulations prove useful to enhance

laboratory learning, and they’re commonly used
in educational courses.10 Thus, students explore
the simulation models remotely in a hands-on
paradigm.

We’ve generated several courses with our sys-
tem, among them one on partial differential equa-
tions (PDEs). The course consists of 16 pages and
contains an introduction to different numerical
techniques to solve PDEs. Figure 9 shows one of
the pages dealing with the finite element method.
In this page, we placed several 3D graphics to
show the 2D “shape functions” this method uses.

The second set of pages solves typical PDEs
such as the heat equation (in one and two dimen-
sions) and the transport equation (diffusive and
nondiffusive). Also included are several pages
showing examples of mesh generation.

The third set of pages contains more complex
models, such as one solving the heat equation on
moving pieces.

In this course, we spent most of our time vali-
dating the models. Our system facilitates assem-
bling pages, incorporating indexes, and deciding
the interface appearance.

Future work
We presented several tools and techniques that

simplify generating simulation-based documents.
Our system stresses several key points in develop-
ing Web-based applications such as maintainabil-
ity, reusability, easy testing, and integration.

The cost of constructing such Web documents
is reduced considerably. There’s no need to pro-
gram in low-level languages such as Java or HTML.
The user interface for the simulation applets is
generated automatically, reducing the effort of
building and testing the applets. Users will spend
most of their time modeling the simulations,
which can be reused between documents.

All the examples in this article can be accessed

47

Jan
uary–M

arch
 2001

[1] TITLE Gordon’s sine: Uxx-

Utt=sen(U)

[2] DOMAIN bar1d:=BAR(-

5.0,5.0,INITIAL(EXP(-X*X)),

INITIALDT(0),

PERIODIC(EDGE(1,2)))

[3] MESH Res :=

ISOPARAMETRIC(bar1d, LINE2,

ELEMENTS(200))

[4] PDE SG(-1, 1, 0, 1, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, -

SIN(SG), EXPLICIT)

[5] Res.setPDE(SG)

[6] DYNAMIC

[7] Res.STEP()

[8] TIMER FINTIM := 20.0, delta :=

0.01, PLdelta:= 0.01

[9] PLOT2D [C], Res

Figure 7. OOCSMP model that solves Gordon’s sine

equation.

Figure 8. One of the slides from the presentation on

Gordon’s sine equation.

Figure 9. Page from the PDEs course.

from http://www.ii.uam.es/~jlara/investigacion.
Other methods have been proposed for con-

structing hypermedia applications such as rela-
tionship management methodology (RMM),11

hypermedia design method (HDM),12 and object
oriented hypermedia design method (OOHDM).13

Our approach proves beneficial with documents
containing interactive simulations but can also be
applied to other kinds of documents. In the future
we plan to consider the possible interrelations of
our work with some of these hypermedia devel-
opment models.

We consider our system as a first step toward
an authoring tool for simulation-based Web doc-
uments. The tool should include all the steps in
our procedure (Figure 2) and should use graphical
interfaces for building models and pages. We plan
to address creating simulation models collabora-
tively, so that the model components could be
distributed via the Internet.14

In the area of simulation-based presentations,
we’d like to integrate our system with other
efforts on synchronized multimedia on the Web,
such as Synchronized Multimedia Integration
Language (SMIL).

Finally, our system currently adapts the user
interface of the simulation applet to a user’s capa-
bilities (a priori). However, we’d like to add adap-
tation capabilities to document contents,
integrating our system with adaptive hypermedia
systems, such as Tangow.15 MM

Acknowledgment
We’d like to thank the Spanish Interdepart-

mental Commission of Science and Technology
(CICYT) for sponsoring this article (project num-
ber TEL1999-0181).

References
1. A. Kristensen, “Developing HTML-Based Web

Applications,” Proc.First Int’l Workshop on Web

Engineering, April 1998, http://www-uk.hpl.hp.

com/people/ak/doc/webe98.html.

2. K. Maly et al., “Use of Web Technology for

Interactive Remote Instruction,” Proc. Web 97 Conf.,

1998, http://www7.scu.edu.au/programme/

posters/1855/com1855.htm.

3. C. Schmid, “A Remote Laboratory Using Virtual

Reality on the Web,” special issue of Simulation, Web-

Based Simulation, vol. 73, no. 1, July 1999, pp. 13-21.

4. R.C. Schank and C. Cleary, Engines for Education,

Lawrence Erlbaum Associates, Hillsdale, N.J., 1995.

5. M. Alfonseca and J. de Lara, “Integration of

Simulation and Multimedia in Automatically Generat-

ed Internet Courses,” Computers and Education in the

21st Century, M. Ortega and J. Bravo, eds., Kluwer

Academic Publishers, Dordrecht, 2000, pp. 47-54.

6. P.A. Fishwick, “Web-Based Simulation: Some

Personal Observations,” Proc. 1996 Winter Simulation

Conf., Soc. for Computer Simulation Int’l, San Diego,

1996, pp. 772-779.

7. S. Murugesan et al., “Web Engineering: A New

Discipline for Development of Web-Based Systems,”

Proc. First ICSE Workshop on Web Engineering, Int’l

Conf. on Software Engineering, Springer, London,

May 1999, pp.1-9, http//fistserv.macarthur.uws.

edu.au/san/icse99-webe/ICSE99-WebE-Proc/

San.doc.

8. M. Alfonseca et al., “OOCSMP: An Object-Oriented

Simulation Language,” Proc. European Simulation

Symposium, 1997, Soc. for Computer Simulation

Europe, Ghent, Belgium, pp. 44-48.

9. J. de Lara and M. Alfonseca, “Simulating Partial

Differential Equations in the World Wide Web,” Proc.

Euromedia 1999, Society for Computer Simulation

Europe, Ghent, Belgium, pp. 45-52.

10. A.M.C Campos and D.R.C. Hill, “An Agent-Based

Framework for Visual-Interactive Ecosystem

Simulations,” Trans. Society for Computer Simulation,

vol. 15, no. 4, 1998, pp. 139-152.

11. A. Díaz et al., “RMC: A Tool to Design WWW

Applications,” Proc. Fourth Int’l World Wide Web

Conf., 1995, http://www.dsi.unive.it/~smm/docs/

rmc/rmc.html.

12. F. Garzotto, D. Schwabe, and P. Paolini, “HDM—A

Model Based Approach to Hypermedia Application

Design,” ACM Trans. on Information Systems, vol. 11,

no. 1, Jan. 1993, pp. 1-26.

13. D. Schwabe, G. Rossi, and S.D.J. Barbosa,

“Abstraction, Composition and Lay-Out Definition

Mechanisms in OOHDM,” Electronic Proc. ACM

Workshop on Effective Abstractions in Multimedia,

ACM Press, New York, 1995.

14. R.M. Cubert and P.A. Fishwick, “OOPM: An Object-

Oriented Multimodeling and Simulation Application

Framework,” Simulation, vol. 70, no. 6, 1998,

pp. 379-395.

15. R.M. Carro, E. Pulido, and P. Rodríguez, “Tangow: A

System for Adaptive Distance Learning through

Internet,” Computers and Education in the 21st

Century, M. Ortega and J. Bravo, eds., Kluwer

Academic Publishers, Dordrecht, 2000, pp. 127-136.

48

IE
EE

 M
ul

ti
M

ed
ia

Juan de Lara is an associate pro-

fessor in the Department of Com-

puter Science at the Universidad

Autónoma of Madrid, where he

teaches software engineering and

programming. His research inter-

ests include Web-based simulation, distributed simula-

tion, automatic code generation, distance learning and

social agents. He received his PhD in June 2000, at the

Universidad Autónoma of Madrid. He graduated in 1994

with a Top of Class Award as a Technical Engineer in

Computer Science. In 1996 he received the honor of

Higher Engineer in Computer Science.

Manuel Alfonseca is the Faculty

Subdirector in the Department of

Computer Science at the Univer-

sidad Autónoma of Madrid where

he teaches and conducts research.

His research interests include com-

puter languages, simulation, complex systems, graphics,

artificial intelligence, object-orientation and theoretical

computer science. He received his PhD in electrical engi-

neering in 1972 and his MSc in computer science in

1976, both at the Universidad Politecnica of Madrid. He

is a member of the Society for Computer Simulation,

New York Academy of Sciences, IEEE Computer Society,

ACM, British APL Association, and Spanish Association

of Scientific Journalism.

Readers may contact de Lara and Alfonseca at Escuela

Tecnica Superior de Informatica, Universidad Autónoma

de Madrid, Campus de Cantoblanco, 28049, Madrid,

Spain, email {juan.lara, manuel.alfonseca}@ii.uam.es.

49

Jan
uary–M

arch
 2001http://www.ieee.org/renewal

✔ 12 issues of
Computer

✔ Member discounts
on periodicals,
conferences,
books,
proceedings

✔ Free membership
in Technical
Committees

✔ Digital library
access at the
lowest prices

✔ Free e-mail alias
@computer.org

RENEWRENEW
your Computer Society
membership for

your Computer Society
membership for

Join a community that targets your discipline.

In our Technical Committees, you’re in good company.

computer.org/TCsignup/

Looking for a community targeted to your
area of expertise? Computer Society
Technical Committees explore a variety

of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

JOIN A
THINK
TANK

