
�

�

�

�

�

�

�

�

14

Self-Reconfigurable Constant Multiplier for FPGA

JAVIER HORMIGO, Universidad de Málaga
GABRIEL CAFFARENA, Universidad CEU San Pablo
JUAN P. OLIVER, Universidad de la República
EDUARDO BOEMO, Universidad Autónoma de Madrid

Constant multipliers are widely used in signal processing applications to implement the multiplication of
signals by a constant coefficient. However, in some applications, this coefficient remains invariable only
during an interval of time, and then, its value changes to adapt to new circumstances. In this article, we
present a self-reconfigurable constant multiplier suitable for LUT-based FPGAs able to reload the constant
in runtime. The pipelined architecture presented is easily scalable to any multiplicand and constant sizes,
for unsigned and signed representations. It can be reprogrammed in 16 clock cycles, equivalent to less than
100 ns in current FPGAs. This value is significantly smaller than FPGA partial configuration times. The
presented approach is more efficient in terms of area and speed when compared to generic multipliers,
achieving up to 91% area reduction and up to 102% speed improvement for the case-study circuits tested.
The power consumption of the proposed multipliers are in the range of those of slice-based multipliers
provided by the vendor.

Categories and Subject Descriptors: B.2.4 [Arithmetic and Logic Structures]: High-Speed Arithmetic

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Constant multiplier, runtime reconfiguration, FPGA

ACM Reference Format:
Hormigo, J., Caffarena, G., Oliver, J. P., and Boemo, E. 2013. Self-reconfigurable constant multiplier for
FPGA. ACM Trans. Reconfig. Technol. Syst. 6, 3, Article 14 (October 2013), 17 pages.
DOI:http://dx.doi.org/10.1145/2490830

1. INTRODUCTION

FPGA devices offer high computational power and reconfiguration capabilities that
allow for complete customization and runtime adaptation of the circuit functionality.
Many applications require these features in order to adjust the design to particular
parameters at any given time step. Reconfiguration is a thriving field, but the long re-
configuration times and storage or generation of the new bitstream are still important
issues [Compton et al. 2002; Dandalis and Prasanna 2005; Kalra and Lysecky 2010].

In signal processing, it is usual that one of the multiplier operands is a constant
coefficient. Thus, it is possible to optimize its hardware structure to improve area

This work was partially supported by projects P07-TIC-02630 (Junta of Andalucı́a), TIN2006-01078 (Min-
istry of Education and Science of Spain), and USP-BS PPC05/2010 (University CEU San Pablo and Banco
Santander).
Authors’ addresses: J. Hormigo, Department of Computer Architecture, University of Málaga, Málaga,
Spain; email: hormigo@ac.uma.es; G. Caffarena (corresponding author), Department of Information Tech-
nologies, University CEU San Pablo, Spain; email: gabriel.caffarenafernandez@ceu.es; J. P. Oliver, Facultad
de Ingenierı́a, Universidad de la República, Uruguay; E. Boemo, Universidad Autónoma de Madrid, Spain.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1936-7406/2013/10-ART14 $15.00
DOI:http://dx.doi.org/10.1145/2490830

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

14:2 J. Hormigo et al.

usage and computation speed with respect to conventional blocks [Gustafsson 2007;
Xu et al. 2008]. However, in some applications, these constants may change in certain
time steps, which prevents the use of standard constant multipliers [Bosı́ et al. 1999;
Bouganis et al. 2009; Huang et al. 2008; Shoufan et al. 2010]. Some researchers [Chen
and Chang 2009; Demirsoy et al. 2007; Turner and Woods 2004] have addressed
this problem when the constant changes to several predefined values, as it does in
FFT, DCT, filters, and many others. Other authors have proposed reconfigurable
architectures for specific applications (i.e., FIR filters [Mahesh and Vinod 2010; Park
et al. 2004]) that enable the use of a priori unknown constants. In this article, we
propose a new reconfigurable constant multiplier that combines the advantages of the
previous works, covering a wider range of applications (e.g., adaptive filters, neural
networks, channel equalization, gain control, cryptography, etc.).

There are many approaches that tackle constant multiplier design, but not all of
them are suitable for runtime reconfiguration to any constant value. For instance, the
shift and add method produces efficient designs for most of the cases, although the
resulting architectures and their features (i.e., area, delay, etc.) strongly depend on
the constant value [Gustafsson et al. 2006; Nguyen and Chattejee 2000]. Other ideas
are based on storing the results of partial products in lookup tables (LUT), which are
added to compose the final multiplication value [Chapman 1996; Meher 2010; Wirthlin
2004]. In Wirthlin [2004], the application of such methods to FPGA designs are thor-
oughly studied. The main advantage of this method is that the architecture is fixed
disregarding the value of the constants: only the values of the tables change. Thus,
such multipliers are easier to design or to generate automatically. Therefore, they can
be straightforwardly reconfigured if a different constant is required. Also, their area-
time-power figure is known, and the same multipliers structure is utilized, indepen-
dently of the constant value. In this article, we select this approach as the starting
point to implement an on-the-fly reconfigurable constant multiplier.

Our proposed circuit enhances the regular LUT-based constant multiplier from
Wirthlin [2004], enabling real-time reconfiguration of the constant with no restric-
tions on the possible constant values. The latter point is achieved by dedicating a
portion of the multiplier to compute the contents of the LUTs, given a particular con-
stant value. Thus, the multiplier is capable of reconfiguring itself. The circuit is able
to self-reconfigure without implementing any standard FPGA reconfiguration tech-
niques. Therefore, it can perfectly replace conventional multipliers in those applica-
tions where one of its operands changes its value only at particular time steps, being
constant during long intervals of time (i.e., n clock cycles or n data computations). Do-
mains that are suited well for this situation are cryptography, gain control, channel
equalization, etc.

In this article, we use middle-cost Spartan-3 or Virtex-4 families Xilinx FPGA as
the technology framework for validating the proposed ideas. Nevertheless, most of the
concepts can be easily extended to high-end current FPGAs (which have different LUT
size) (see Section 3.3). The work is divided into the following parts: Section 2 explains
the fundamental ideas about LUT-based constant-coefficient multipliers optimized for
FPGA devices. Section 3 deals with the architecture of the proposed self-reconfigurable
multiplier. In Section 4, the implementation results and the comparison to other ap-
proaches are shown. Finally, conclusions are drawn in Section 5.

2. LUT-BASED CONSTANT MULTIPLIERS

In this section, we present the mathematical modeling which supports the design of
LUT-based constant multipliers. Additionally, the specific architecture for FPGAs pro-
posed in Wirthlin [2004] is shown, since it has been chosen as a starting point to de-
velop our self-reconfigurable multiplier.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

Self-Reconfigurable Constant Multiplier for FPGAs 14:3

Table I. Content of Partial
Product Tables

Unsigned Signed
di Output dm/3 Output

000 0 · K 000 0 · K
001 1 · K 001 1 · K
010 2 · K 010 2 · K
011 3 · K 011 3 · K
100 4 · K 100 −4 · K
101 5 · K 101 −3 · K
110 6 · K 110 −2 · K
111 7 · K 111 −1 · K

2.1. Theory

First, let us assume that data is composed of natural numbers. All the concepts ex-
plained can be easily applied to fixed-point real numbers. The main idea is to decom-
pose the nonconstant m-bit multiplicand (A) in digits of the same size (i.e., q bits, where
q < m).

A =
�m/q�∑

i=1

di2q·(i−1), (1)

where each digit complies with 0 ≤ di < 2q. Therefore, the product of A by the constant
K is expressed as

K · A =
�m/q�∑

i=1

(K · di)2q·(i−1). (2)

The values of the partial products of all possible digits by the constant (i.e., from
K · 0 to K · (2q − 1)) are stored in tables. The final results are obtained by means of
adding the partial products K · di, applying the corresponding shifting, as shown in
Equation (2). The value of parameter q allows a trade-off between the amount of mem-
ory and the number of addition operations. Thus, as long as the value of q increases,
the number of additions required is reduced, but more memory is needed. For FPGA
implementations, q is usually chosen to match the number of inputs of the FPGA LUT.

The extension of this method to signed constants is direct. The partial products must
be stored in two’s complement (TC) format, and the addition must use sign extension. If
the multiplicand is represented using TC format, then only the most significant partial
product lookup table has to be changed, since all digits (di) are unsigned except for the
most significant one (d�m/q�). Thus, for this digit, the values of the partial product from
−2q−1 ·K to (2q−1 −1) ·K have to be stored in the table. The correct storing order would
be from 0 · K to (2q−1 − 1) · K and from −2q−1 · K to −1 · K. Table I shows an example
of the values stored for unsigned and TC digits, supposing q = 3.

2.2. Architecture

There are several adder architectures able to perform the partial product summation.
In this article, we focus on a cascaded array of carry-propagated adders. It provides
a good trade-off between area and speed when implemented in FPGAs, and it can be
directly pipelined. For the sake of clarity, the technique is illustrated for generic four-
input LUTs (LUT4). The value q is selected to 3 instead of 4, since this allows for an
important area reduction, as we will explain next.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

14:4 J. Hormigo et al.

Fig. 1. Architecture for constant multiplier: (a) main blocks (E(i)) and additional circuit for reprogramming
(in gray); (b) inner details of an E(i) block particularized for K = 5.

Figure 1(a) displays the architecture selected for multiplying an n-bit constant by an
m-bit multiplicand (black ink). Each block E(i) processes a three-bit digit di and part
of the accumulated partial product Ac(i − 1) from the previous stage. Internally, di is
used to obtain the (n + 3)-bit partial product (K · di) from the table (see Figure 1(b)).
Ac(i−1) is sign-extended and added to this partial product. As an example, Figure 1(b)
shows the content of the table for K = 5(0101). There are a total of �m/3� stages, each
with an (n + 3)-bit adder and a lookup table. Note that the three least significant bits
of the accumulated sums Ac(i) are directly connected to the final result (due to the
shifting), and the remaining bits are the inputs of the next stage, E(i + 1)). Therefore,
the bit-width of the constant K determines the size of each stage E(i), whereas the size
of the multiplicand determines the number of stages required.

An efficient FPGA implementation of the previous scheme which reduces the overall
size of the multiplier by 33% is presented in Wirthlin [2004]. The author combines
the table and the addition operation corresponding to one bit within a single logic cell.
A LUT4 is used to implement a three-input table plus a half-addition, as shown in
Figure 2, for bit position j. The three-bit table outputs the bit j of the partial product
corresponding to digit di, which is added to the previous accumulated sum (Ac(i)j). The
operation is completed by means of another half-addition (corresponding to the carry
signal cinj) implemented by using the specific FPGA carry-logic resource. It generates

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

Self-Reconfigurable Constant Multiplier for FPGAs 14:5

Fig. 2. LUT configuration for bit j within stage E(i) (example for K = 5 and j = 0). Reconfiguration elements
are in gray area.

the next accumulated sum Ac(i + 1)j and carry coutj. As an example, Figure 2 shows
the values for the least significant bit (LSB) supposing K = 5(0101).

Hence, in order to efficiently implement the architecture showed in Figure 1(b), each
stage E(i) is composed of n + 3 of the circuits shown in Figure 2 working in parallel.
All these circuits are interconnected through the carry chain and have the same input
di. Each LUT4 stores the bit j of the addition corresponding to all possible partial
products and the previous accumulated sum. It must be stressed that all stages E(i)
are identical. The described architecture is valid for any constant value. Changing this
parameter only involves modifying the data stored in the tables.

3. RUNTIME SELF-RECONFIGURATION

In this section, we propose a modification of the previous architecture to enable run-
time self-reconfiguration. Two basic tasks must be carried out. First, a local mecha-
nism to change the LUT4s that contain the partial products tables is included. Thus,
the long transactional time involved in conventional FPGA reconfiguration is avoided.
Second, the values to be stored in the LUT4s must be computed on-the-fly.

The first task can take advantage of the fact that in Xilinx FPGAs, the slices allow
K-LUTs also to be used as shift registers (SRL-2K blocks).1 For example, in Spartan-
3 and Virtex-4, it is possible to reprogram the LUT4 by simply shifting the register
16 times. In order to add runtime reconfiguration capabilities to the constant multi-
plier just described, we use the SRL16E primitive instead of the LUT4 primitive. The
SRL16E has some extra inputs: shift enable (CE), serial input (0), and a clock signal
(clk). The LUT4 is loaded through the serial input by activating the shifting. After the
new constant is entered, the shifting is disabled and the block acts as a constant multi-
plier. Self-reconfiguration can be achieved if a method for automatically obtaining the
sequence of values for reconfiguration is developed. This is dealt with in the following
sections.

1http://www.xilinx.com/support/documentation/index.htm

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

14:6 J. Hormigo et al.

Table II. Content of LUT4 Tables

A[3:0] S A[3:0] S
di[2:0] Ac(i) di[2:0] Ac(i)

000 0 0 · K 100 0 4 · K
000 1 0 · K 100 1 4 · K
001 0 1 · K 101 0 5 · K
001 1 1 · K 101 1 5 · K
010 0 2 · K 110 0 6 · K
010 1 2 · K 110 1 6 · K
011 0 3 · K 111 0 7 · K
011 1 3 · K 111 1 7 · K

3.1. Unsigned Multiplicand

As we explained in Section 2.2, LUT4 should be configured to implement the addition
(i.e., the XOR) of the partial product di · K and the accumulated addition Ac(i) (see
Figure 2). Hence, since 0 ≤ di < 8, the partial products from 0 · K to 7 · K have to
be stored if Ac(i) = 0. Otherwise, these values are negated. The position in the LUT
of all these values depends on how the inputs Ac(i) and di are connected. The easiest
sequence to be serially generated occurs if Ac(i) is connected to the least significant
bit of the four inputs of the LUT4. This sequence corresponds to the partial products
sorted in increasing order, negating those in even positions, as shown in Table II.

The generation of the programming sequence previously described is easily achieved
by the following recurrence.

P(i + 1) =
⎧⎨
⎩

0, i = 0,
P(i) + 1, i even,
P(i), i odd,

(3)

S(i) =
⎧⎨
⎩

P(i), i even,

P(i), i odd.
(4)

Figure 3 shows the circuit proposed for implementing Equations (3) and (4). Partial
products (register P) are obtained serially by adding the constant (K) to the previ-
ous computed partial product, starting from the value 0, which corresponds to 0 · K.
The next partial products are generated every two clock cycles until 7 · K is reached.
The XOR gates allow for selectively negating the partial products at each clock cycle.
When a constant K is introduced and new is activated, the programing sequence is
generated and signal pe (program enable) is activated during the 16 cycles. As an ex-
ample, Figure 3 shows the programming values (pv) generated for K = 5(0101). In
each clock cycle, one column is produced, starting from the left to the right. Each row
corresponds to the programming sequence (pvj) associated with one LUT4 according
to its bit position (j). It can be seen that the highlighted row (j = 0) coincides with the
programing values in Figure 2.

Figure 1 displays in gray how this element is connected to the constant multiplier
in order to perform runtime self-reconfiguration. Now, each stage E(i) is constructed
using n + 3 SRL16E primitives instead of the LUT4 of Section 2 (fixed constant case
from Figure 2). As in the fixed case, these elements are arranged in parallel, with
the carry signals connected from the least to the most significant one. The same di is
shared by all of them. Signal pe (program enable) is connected on each stage E(i) to
all the SRL16E elements in order to allow the shift operation and, consequently, the
reprogramming of the LUT4s. Bus pv also goes to all the stages, and each of its bits

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

Self-Reconfigurable Constant Multiplier for FPGAs 14:7

Fig. 3. Circuit for generating the new programming sequence (inverse order). Example for K = 5.

Fig. 4. Circuit for generating the new programming sequence (direct order). Example for K = 5.

is connected to the serial inputs of SRL16E (pvj) according to its weight. Thus, on all
stages E(i), each row of values represented on Figure 3 is used to program one of the
SRL16E elements, from j = 0 (top row) to j = n + 2 (lowest row). See how the values in
row j = 0 from Figure 3 coincide with the values stored in the LUT4 in Figure 2. When
signal new is activated, the LUT4s are reloaded with the new programming values
(according to the new constant) by shifting them during 16 clock cycles.

It must be noted that the SRL16E block shifts its bits from the least to the most
significant ones. Thus, the programming sequence is generated in inverse order by the
circuit just described. It is not difficult to design a circuit which generates the sequence
correctly. It should start from 8 · K value (by taking the constant shifted three bits to
the left) and subtract K every two cycles to obtain the partial product sequence in cor-
rect order. Figure 4 shows the architecture for producing the programming sequence in
direct order. In the architecture shown in Figure 3, the register P is initialized to zero
by using a reset signal, whereas in the new direct architecture (Figure 4), this register
should be initialized to 8·K. Thus, the reset signal cannot be used, and it is necessary to
add a multiplexer at the input of register P. Therefore, as we will show in Section 4, the
circuit implemented using this approach is slower than the corresponding one to the in-
verse method. For this reason, we use the inverse architecture, negating all the bits of
the multiplicand before indexing the LUT. Thus, both approaches are now equivalent.

3.2. Signed Multiplicand

As aforementioned in Section 2, only the table corresponding to the most significant
digit of the multiplicand is affected, since in TC, all bits have a positive weight except
for the most significant one (the sign bit), which has a negative weight. Thus, a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

14:8 J. Hormigo et al.

Fig. 5. Architecture for signed multiplier based on the unsigned one.

different partial product sequence should be computed ranging from −4 · K to 3 · K
and following the order described in Section 2.

In principle, this implies designing a different programming circuit for the last
stage. As an alternative, we propose adding a correction step at the end of the signed
multiplier to correct the result provided by the unsigned unit. Figure 5 shows the
architecture used to build a signed multiplier based on the unsigned one. When
the multiplicand is positive, the result from the unsigned unit does not require any
correction. On the contrary, when the multiplicand is negative, its most significant bit
is one, and then the value K · 2m−1 already has been added to the final product of the
unsigned multiplier. This value should have been subtracted instead of added, since in
TC representation format, this bit has a negative weight. Hence, the quantity K · 2m

(i.e., two times K · 2m−1) is subtracted from the output of the unsigned multiplier to
obtain the correct result. Figure 5 depicts how the correction step is implemented by
a final subtracter which is driven by the output of the unsigned multiplier (input A)
and 2m · K or zero (input B), depending on the sign bit of the multiplicand.

3.3. Extension to Different FPGA Families

The ideas explained so far can be applied to any FPGA containing configurable logic
blocks that can be used as lookup tables as well as shift registers. For instance, we find
that this capability is supported by Xilinx FPGA families, such as Spartan-3, Virtex-
4, Spartan-6, Virtex-6, Virtex-7, etc. We would like to stress that our approach is not
limited to LUT4-based FPGAs and that 6-LUT-based devices can also be used. For
these devices, the design presented in Section 2.2 can be applied by selecting q as 5
instead of 3. In Xilinx, the LUT6 is implemented through two five-input LUTs (LUT5)
combined by a multiplexer, and the shift register of M-slices is only associated to one of
the LUT5s. Thus, if runtime reconfiguration is desired, q should be fixed to 4, and only
one of the LUT5s would be used. In this case, the only difference with the architectures
previously presented is that 32 cycles are required to complete the configuration of a
new constant value. The runtime self-reconfiguration scheme could be applied also to
other LUT-based FPGA devices, given that a mechanism for changing the content of
the LUT at runtime is provided.

4. IMPLEMENTATION RESULTS AND COMPARISON

4.1. Area and Time Results

The advantages of the ideas proposed in this article are proved by implementing a
parametric self-reconfigurable constant multiplier VHDL module. This block allows
setting the size of both the constant and the multiplicand (N × M). Also, signed or
unsigned operations can be selected. The degree of pipeline depth is controlled by the
number of partial product levels contained within each stage (E). For instance, E = 1
implies a finest-grain pipeline, and E = �m/3� leads to a combinational version.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

Self-Reconfigurable Constant Multiplier for FPGAs 14:9

Table III. Maximum Operation Frequency in MHz

E 1 2 3 4 5 6 1
N Signed Unsigned

6 278.0 198.2 140.5 108.8 88.8 75.0 278.6
12 259.2 186.8 134.6 105.2 86.4 73.3 278.6
18 257.1 176.6 129.2 101.9 84.1 71.6 278.6
24 238.2 167.4 124.3 98.8 82.0 70.1 256.5
32 216.9 156.6 118.2 94.9 79.3 68.1 232.0
48 183.0 138.7 107.7 88.1 74.5 64.5 194.8
64 158.2 124.5 98.9 82.1 70.2 61.2 167.8

Table IV. Occupied Area in Slices for Fully-Pipelined and Combinational Designs, Respectively

Fully-Pipelined - Combinational

M 6 12 18 24 32 48 64
N Signed Operands
6 40– 32 64–51 89–70 114–89 152–118 216– 165 304–222

12 64– 54 99–85 136–116 172–147 228–194 322– 271 446–364
18 88– 75 134–118 184–161 231–204 302–269 426– 376 585–505
24 111–97 170–152 230–207 288–262 378–345 532– 482 727–647
32 144–125 216–196 293–267 366–338 478–445 672– 622 915–835
48 210–182 318–285 428–388 537–491 700–646 983– 903 1,332–1,212
64 277–240 424–375 572–510 719–645 940–848 1,320–1,185 1,786–1,590
N Unsigned Operands
6 36–29 60–48 85–67 110–86 149–115 212–162 298–219

12 57–48 93–79 129–110 166–141 221–188 314–265 437–358
18 78–66 125–109 181–152 236–195 320–260 459–367 573–496
24 100–85 158–140 218–195 276–250 366–333 518–470 711–635
32 127–109 201–180 276–251 350–322 462–429 655–606 896–819
48 183–158 292–261 402–364 510–467 674–622 954–879 1,302–1,188
64 241–208 387–343 535–478 682–613 903–816 1,279–1,153 1,747–1,558

The module has been synthesized with Xilinx ISE 9.2 and Spartan3E-5 devices using
a wide range of parameters values (N × M × E). The results have been condensed in
several tables where least-relevant parameters have been omitted.

In Table III, we present the maximum frequency of operation for the pipeline
multiplier depending on the constant size (N) and the pipeline depth (E). The width
of the multiplicand is omitted since it only affects the total number of stages, not the
frequency, except for a combinational design. For the unsigned case, only results for
fully-pipelined designs are shown, since the others are very similar to those of signed
multipliers.

Table IV shows the occupied area (slices) for different sizes and signed/unsigned
operands. We only show the extreme cases, that is, fully-pipelined and combinational,
since the differences in area for other values of E are relatively small. The area values
shown in Table IV cover the Wirthlin LUT-based multiplier [Wirthlin 2004] as well as
the newly added blocks: the programmer and the correction stage for the signed case.
The area increase with respect to the nonreconfigurable constant multiplier proposed
by Wirthlin is shown in Table V (the value of M does not affect this quantity). Thus, the
efficient architecture proposed by Wirthlin for performing constant multiplication has
been modified to also support constant reconfiguration with a reasonable area increase.

Regarding delay, our proposal does not modify the critical path of the constant mul-
tiplier proposed by Wirthlin, since the hardware for reconfiguration is independent of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

14:10 J. Hormigo et al.

Table V. Increment of Area (Slices) with Respect to
Nonreconfigurable Constant Multiplier

N 6 12 18 24 32 48 64

Area in Slices
signed 15 24 33 43 55 80 106

unsigned 12 18 24 31 39 56 74

Table VI. Reconfiguration Time

N 6 12 18 24 32 48 64

Reconfiguration Time in ns
direct 69 74 79 84 91 104 117

reverse 65 65 65 69 76 89 102

Table VII. Relative Increment of Maximum Operation Frequency (%) Achieved
Using OURS for Signed Operand

M 6 12 18 24 32 48 64 ALL
N OURS vs. SLICE
6 7.1 21.4 32.4 44.7 56.2 79.3 102.3

12 5.9 13.2 23.5 35.0 45.7 67.2 88.6
18 13.0 19.4 22.5 33.9 44.5 65.8 87.1
24 12.0 18.0 20.1 24.0 33.9 53.6 73.3
32 11.0 16.4 18.3 21.7 21.9 39.9 57.9
48 8.7 13.2 14.9 17.8 17.9 18.0 33.2
64 7.0 10.9 12.4 14.8 15.0 15.0 27.4

ALL 31.8
OURS vs. MULT

6 −2.9 −2.9 −2.9 −0.7 15.8 19.5 36.5
12 −9.5 −9.5 −9.5 0.6 11.3 14.0 35.3
18 −10.2 −10.2 −10.2 7.8 18.3 21.0 38.2
24 −14.9 −7.5 −0.2 8.4 18.2 34.2 48.9
32 −9.6 −6.9 −0.2 7.7 16.6 22.2 35.6
48 −21.4 −19.5 −13.9 3.1 3.1 4.0 14.4
64 −22.3 −17.4 −15.0 −1.1 −1.1 −1.1 24.9

ALL 4.9

the processing data path. The only time penalty is the one required for reprogramming
the LUTs when it is necessary to change the constant. The configuration time is shown
in Table VI for several sizes of the constant and the two programming schemes (i.e.,
direct or reverse, see Section 3). The direct scheme requires about 20% more time for
reconfiguration than the reverse one. It can be seen that the reconfiguration process is
extremely fast, in the order of 100 ns.

As a last step, we compare the proposed design (OURS) to standard multipliers im-
plemented using Xilinx Coregen v10. Multipliers based on both slices (SLICES) and
MULT blocks (MULT) are considered. Note that one of the multiplier’s inputs is regis-
tered in order to use the operator as a programmable constant multiplier.

Tables VII and VIII contain the relative increase of the maximum operation fre-
quency (decrease for negative values) obtained using the architecture proposed in this
article instead of each of the standard multipliers, for signed and unsigned operands,
respectively. Except when comparing with MULT for signed operands, where there are
some negative values, the use of our proposal always increases the maximum opera-
tion frequency. In general, this improvement is bigger when the size of the operand

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

Self-Reconfigurable Constant Multiplier for FPGAs 14:11

Table VIII. Relative Increment of Maximum Operation Frequency (%)
Achieved Using OURS for Unsigned Operand

M 6 12 18 24 32 48 64 ALL
N OURS vs. SLICE
6 5.2 20.7 31.9 44.8 56.5 79.6 102.7

12 13.8 20.7 31.9 44.8 56.5 79.6 102.7
18 22.4 29.3 31.9 44.8 56.5 79.6 102.7
24 20.7 27.0 29.4 33.4 44.2 65.4 86.6
32 18.7 24.4 26.5 30.2 30.4 49.6 68.8
48 15.7 20.5 22.3 25.3 25.5 25.6 41.7
64 13.5 17.7 19.2 21.8 22.0 22.0 35.2

ALL 39.6
OURS vs. MULT

6 −2.7 −2.7 −2.7 0.9 17.9 19.7 38.2
12 −2.7 −2.7 0.9 9.6 21.0 22.5 46.9
18 −2.7 −2.7 9.6 18.2 29.6 31.1 49.7
24 −7.0 0.9 10.1 18.1 28.6 44.5 60.3
32 −3.4 0.8 9.2 16.3 25.9 30.7 45.0
48 −16.3 −13.4 9.7 9.7 9.7 10.7 21.7
64 −16.7 −11.5 4.9 4.9 4.9 4.9 32.6

ALL 12.9

(M) increases. The speed improvements with respect to SLICES are very significant,
ranging from 5.9% to 102.3% for signed, and from 5.2% to 102.7% for unsigned, with
a mean of 31.8% and 39.6%, respectively. Compared to MULT, the embedded blocks
are faster in approximately half of the signed cases and in less than a third of the
unsigned ones. It must be noted that for values of N and M bigger than or equal to
18 bits, only 20% of MULT perform better than OURS for the signed case; as for the
unsigned case, all of OURS are faster. The speedup ranges from −22.3% to 48.9% with
a mean of 4.9% for the signed case, and from −16.7% to 60.3% with a mean of 12.9%
for the unsigned case. This improvement, although smaller than that of SLICES, is
very valuable, since it should be remembered that MULT uses specialized multipliers
directly implemented on silicon, whereas OURS uses general logic resources. Also, it
must be noted that MULT is beating our approach in terms of speed for small-size
multipliers mainly.

In the second experiment, we have synthesized each type of multiplier unit with
49 combinations of N × M, different pipeline depths, and 26 frequencies ranging from
50 MHz to 300 MHz. An XC3S1600E-5 device is utilized as the technological frame-
work. The comparison is made by selecting the number of pipeline stages which pro-
duces multipliers with minimum areas that comply with a certain operation frequency
constraint. For the sake of fairness, the area comparison is made by using the met-
ric that accounts for the maximum number of multiplier units that fit the device
[Bouganis et al. 2009; Caffarena et al. 2009], that is, the total number of resources
available in the device divided by the number of resources used in the design, where
the resources could be slices or dedicated multipliers.

Figures 6 and 7 display the maximum number of multiplier units versus frequency
results for several combinations of parameters. When one architecture is not able to
achieve the required frequency, a zero value is represented. For the signed case, we can
see in Figure 6 that OURS clearly outperforms SLICES in area-time for the majority
of cases, whereas it requires much fewer resources than MULT implementations. On
the other hand, the unsigned case from Figure 7 shows a similar trend with slightly
better results.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

14:12 J. Hormigo et al.

Fig. 6. Maximum number of multiplier units on an XC3S1600E-5 device versus clock frequency (MHz) for
different N × M signed multipliers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

Self-Reconfigurable Constant Multiplier for FPGAs 14:13

Fig. 7. Maximum number of multiplier units on an XC3S1600E-5 device versus clock frequency (MHz) for
different N × M unsigned multipliers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

14:14 J. Hormigo et al.

Table IX. Average Area Reduction (%) Achieved for Signed

M 6 12 18 24 33 48 64
N OURS vs. SLICE
6 −24.12 −16.29 −12.67 −9.36 −7.84 −4.26 −1.34

12 −29.34 2.53 3.39 5.60 6.92 7.71 10.13
18 −29.30 0.23 18.08 19.77 20.32 21.91 23.35
24 −31.11 −0.94 18.38 19.65 20.10 20.89 23.05
32 −41.12 −6.85 14.27 16.23 20.41 21.91 23.94
48 −30.17 −1.80 18.53 19.98 24.12 30.21 32.92
64 −32.35 −2.65 17.21 19.82 24.10 31.39 34.11

ALL 3.92
OURS vs. MULT

6 91.42 85.89 80.33 87.44 83.79 84.21 84.53
12 85.49 76.75 68.22 79.83 74.36 74.95 75.22
18 79.59 67.96 55.95 72.23 64.62 65.81 66.08
24 86.65 79.37 72.11 82.52 77.77 78.25 78.52
32 81.63 72.30 63.15 76.93 70.83 71.57 71.79
48 83.00 74.23 65.61 78.46 72.69 73.62 73.91
64 82.63 73.85 65.24 78.30 72.41 73.50 74.07

ALL 76.13

Table X. Average Area Reduction (%) Achieved for Unsigned

M 6 12 18 24 33 48 64 ALL
N OURS vs. SLICE
6 −8.01 −3.44 0.59 3.17 5.57 9.35 12.05

12 −21.68 8.46 10.13 12.50 13.78 15.10 17.46
18 −22.78 5.41 24.42 24.02 24.97 26.42 27.97
24 −26.00 2.71 21.48 22.70 23.61 24.76 26.71
32 −33.49 −2.58 15.80 19.04 23.15 24.99 27.17
48 −28.79 0.49 16.07 21.20 25.35 31.95 34.59
64 −30.84 −1.16 18.63 21.15 25.48 32.61 35.35

ALL 9.5
OURS vs. MULT

6 92.21 87.27 82.49 88.75 85.65 86.19 86.47
12 86.27 78.10 70.34 81.24 76.14 76.91 77.18
18 80.36 69.42 58.45 73.69 66.68 67.85 68.14
24 87.10 80.14 72.93 83.25 78.76 79.33 79.56
32 82.39 73.36 62.97 77.69 71.81 72.68 72.97
48 83.23 74.78 64.40 79.00 73.37 74.28 74.59
64 82.79 74.26 65.77 78.64 72.90 73.99 74.56

ALL 77.33

The experimentation embraces a total of 1,274 fck × N × M scenarios tested for each
type of operand (signed and unsigned). For signed multipliers, there are 84 cases where
OURS is the only feasible implementation for a given frequency and 56 cases where
MULT is the only candidate. This never happens to SLICE implementations, since
they are the slowest for all experiments. OURS has the smallest area for 647 cases,
MULT for 56 cases, and SLICE for 245 cases corresponding to small-size multipliers.
Considering unsigned multipliers, there are 148 cases where OURS is the only option
and 18 cases where MULT is the only candidate. OURS has the smallest area for
784 cases, MULT for 18 cases, and SLICE for 184 cases corresponding to small-size
multipliers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

Self-Reconfigurable Constant Multiplier for FPGAs 14:15

Fig. 8. Power measurement experimental setup.

The overall area results for signed multipliers are condensed in Table IX. It display
the average reduction in comparison to SLICE and MULT when our approach is used.
For each combination of N×M, the mean of the area reduction achieved for all frequen-
cies tested is shown. To calculate this mean, only results corresponding to frequencies
which are reached for both compared designs are used. The numbers yield that our
approach outperforms the other implementations substantially for bitwidths equal to
or bigger than 12 bits. For the signed case, the mean area reduction when compared to
SLICE ranges from −41.12% to 34.11%, with a mean for all sizes of 3.92%. However,
if only multipliers with bitwidths equal to or bigger than 12 are considered, it can be
observed that OURS outperforms SLICE for most cases, and the overall area reduc-
tion rises to 14.9. For bitwidths from 18 bits, the mean area improvement is 21.6%.
The area improvement with respect to MULT is more significant, and it ranges from
55.95% to 91.42%, with an overall mean of 76.32%. That means that the number of
multipier units that could be implemented in one device goes from 2× to 11× when us-
ing OURS instead of MULT. These improvements are slightly greater for the unsigned
case, as shown in Table X.

4.2. Power Consumption Results

In the previous section, the area-time properties of the proposed multiplier were pre-
sented, so in order to complete the characterization of the multiplier, in this section,
power consumption is analyzed.

The proposed design (OURS) is compared to standard multipliers implemented us-
ing Xilinx Coregen. The comparison only includes slice-based multipliers (SLICES),
since MULT blocks have a reduced power consumption. The power consumption is ob-
tained though experimental measurements using a Digilent Spartan 3 Board with a
Xilinx Spartan 3 XC3S200-FT256 FPGA device. This board is not specifically designed
to perform power measurements; therefore, some modifications were made in order to
measure the internal core power consumption; thus, IO power was not measured. The
on-board 1.2-volts regulator was removed and substituted by a circuit that includes
an external regulator and a serial shunt. A calibration procedure of the shunt resistor
and the measurement probes was performed. The voltage across the shunt resistor was
measured with a Tektronix TDS3052C oscilloscope and with a Fluke 45 multimeter,
having a relative error in the measures of less than 1.5%.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

14:16 J. Hormigo et al.

Table XI. Power Consumption Results:
OURS vs. SLICES

Size OURS1 SLICES2 Power reduction
(mW) (mW) (%)

18 × 18 46.6 45.4 2.6
24 × 24 73.4 72.3 1.5
32 × 32 119.1 114.0 4.3
1 Fully pipelined
2 Level of pipelining recommended by vendor

Figure 8 shows the block diagram of the experimental setup that is based on con-
necting the circuit under test (block 1) to an on-chip test vector generator (block 2). The
circuit under test is a signed integer multiplier with registered inputs and outputs.
The test vector generator is composed of a digital clock manager (DCM), a linear feed-
back shift register (LFSR) that generates pseudorandom data, and a parity function
that limits the number of FPGA outputs to one. This experimental setup minimizes
the use of inputs and outputs and their influence on the design [Oliver and Boemo
2011; Wilton et al. 2004].

The board has an external oscillator of 50 MHz, but the DCM output was fixed to
100 MHz for all the experiments. The multiplier input is changed every clock cycle, and
the constant is changed every 1,024 clock cycles. The proposed multipliers (OURS) are
fully pipelined to meet the clock frequency, while the Coregen multipliers (SLICES)
have five pipeline stages, as recommended by the Coregen tool.

The power consumption of the DCM, the LFSR, and the parity generator was mea-
sured separately and then subtracted from the total measured power. Table XI shows
the power consumption of the circuits under test.

The results yield that the power consumption of the proposed multiplier is in the
range of the multipliers provided by Xilinx.

5. CONCLUSIONS

The use of standard optimized constant multipliers is not suitable for applications
where constants change. This situation forces the use of generic multipliers. This ar-
ticle presents as an alternative idea a constant multiplier able to reconfigure itself
in runtime to change the constant value with no restriction. Thus, this design could
substitute generic multipliers in such cases. The configuration time of the proposed ar-
chitecture is shorter than the partial reconfiguration times required by FPGA devices.
It does not use any storage for programming data, and its size is easily parameter-
izable. Compared to generic multipliers based on slices, it clearly outperforms those
implementations in terms of area and speed and poses similar power consumption fea-
tures. Compared to embedded blocks, our approach is faster in most cases (especially
for unsigned operands), and it allows for implementing many more multiplier units in
the same device.

We regard the application of the proposed reconfigurable constant multiplier to
floating-point arithmetic as an interesting future research line. A floating-point multi-
plier is composed of a fixed-point multiplier with added hardware blocks to deal with
the exponents of the multiplicands as well as with the normalization and rounding of
the final results. Thus, the multiplier proposed in this article could replace the fixed-
point multiplier in the floating-point architecture, being only necessary to provide the
value of the constant in a floating-point format where there is information of both
mantissa and exponent. The mantissa value would be used as the constant value to
program the fixed-point architecture proposed in this article, and the exponent would
be stored to be added to the exponent of the variable input.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

�

�

�

�

�

�

�

�

Self-Reconfigurable Constant Multiplier for FPGAs 14:17

Also, another research line is the assessment of this new architecture in modern
FPGA devices based on LUTs with more than four inputs.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers of previous versions of this work.

REFERENCES

Bosı́, B., Bois, G., and Savaria, Y. 1999. Reconfigurable pipelined 2-D convolvers for fast digital signal pro-
cessing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7, 3, 299–308.

Bouganis, C.-S., Park, S.-B., Constantinides, G. A., and Cheung, P. Y. K. 2009. Synthesis and optimization of
2D filter designs for heterogeneous FPGAs. ACM Trans. Reconfigurable Technol. Syst. 1, 24:1–24:28.

Caffarena, G., López, J., Leyva, G., Carreras, and Nieto-Taladriz, O. 2009. Architectural synthesis of fixed-
point DSP datapaths using FPGAs. Int. J. Reconfigurable Comput. 1–14.

Chapman, K. 1996. Constant coefficient multipliers for the “xc4000e”. Tech. rep. XAPP 054, Xilinx Corpora-
tion, San Jose, CA.

Chen, J. and Chang, C.-H. 2009. High-level synthesis algorithm for the design of reconfigurable constant
multiplier. IEEE Trans. Comput.-Aid. Des. Integ. Circuits Syst. 28, 12, 1844–1856.

Compton, K., Li, Z., Cooley, J., Knol, S., and Hauck, S. 2002. Configuration relocation and defragmentation
for run-time reconfigurable computing. IEEE Trans. VLSI Syst. 10, 3, 209–220.

Dandalis, A. and Prasanna, V. 2005. Configuration compression for FPGA-based embedded systems. IEEE
Trans. VLSI Syst. 13, 12, 1394–1398.

Demirsoy, S., Kale, I., and Dempster, A. 2007. Reconfigurable multiplier blocks: Structures, algorithm and
applications. Circuits, Syst. Signal Process. 26, 6, 793–827.

Gustafsson, O. 2007. Lower bounds for constant multiplication problems. IEEE Trans. Circuits Syst. II
54, 11, 974–978.

Gustafsson, O., Dempster, A. G., Johansson, K., Macleod, M. D., and Wanhammar, L. 2006. Simplified design
of constant coefficient multipliers. Circuits, Syst. Signal Process. 25, 2, 225–251.

Huang, X., Liang, C., and Ma, J. 2008. System architecture and implementation of MIMO sphere decoders
on FPGA. IEEE Trans. VLSI Syst. 16, 2, 188–197.

Kalra, R. and Lysecky, R. 2010. Configuration locking and schedulability estimation for reduced reconfigu-
ration overheads of reconfigurable systems. IEEE Trans. VLSI Syst. 18, 4, 671–674.

Mahesh, R. and Vinod, A. 2010. New reconfigurable architectures for implementing FIR filters with low
complexity. IEEE Trans. Comput.-Aid. Design Integr. Circuits Syst. 29, 2, 275–288.

Meher, P. 2010. Novel input coding technique for high-precision LUT-based multiplication for DSP applica-
tions. In Proceedings of the 18th IEEE/IFIPVLSI System on Chip Conference (VLSI-SoC). 201–206.

Nguyen, H. and Chattejee, A. 2000. Number-splitting with shift-and-add decomposition for power and hard-
ware optimization in linear DSP synthesis. IEEE Trans. VLSI Syst. 8, 4, 419–424.

Oliver, J. and Boemo, E. 2011. Power estimations vs. power measurements in Cyclone III devices. In Pro-
ceedings of the Southern Conference on Programmable Logic. 87–90.

Park, J., Jeong, W., Mahmoodi-Meimand, H., Wang, Y., Choo, H., and Roy, K. 2004. Computation sharing
programmable FIR filter for low-power and high-performance applications. IEEE J. Solid-State Circuits
39, 2, 348–357.

Shoufan, A., Wink, T., Molter, H., Huss, S., and Kohnert, E. 2010. A novel cryptoprocessor architecture for
the McEliece public-key cryptosystem. IEEE Trans. Comput. 59, 11, 1533–1546.

Turner, R. and Woods, R. 2004. Highly efficient, limited range multipliers for LUT-based FPGA architec-
tures. IEEE Trans. VLSI Syst. 12, 10, 1113–1118.

Wilton, S., Ang, S., and Luk, W. 2004. The impact of pipelining on energy per operation in field-
programmable gate arrays. In Field-Programmable Logic and Application. Lecture Notes in Computer
Science, Vol. 3203. Springer-Verlag, Berlin, 719–728.

Wirthlin, M. 2004. Constant coefficient multiplication using look-up tables. J. VLSI Signal Process. Syst.
36, 1, 7–15.

Xu, F., Chang, C.-H., and Jong, C.-C. 2008. A new approach to versatile subexpressions sharing in multiple
constant multiplications. IEEE Trans. Circuits Syst. 55, 2, 559–571.

Received November 2012; revised April 2013; accepted May 2013

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 3, Article 14, Publication date: October 2013.

