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Introduction

Dimensionality reduction

Problem:
The sample data sets lie in a differential manifold of low dimension embedded in a
space of a higher dimension.

Interest:
Working in low dimension is always easier and has many computational advantages.
We try to obtain and use neighborhood information of each point that describe the
geometry of our data.

We achieve both goals defining Spectral Embeddings or Diffusion Maps.

Clustering

Clustering is one of the most widely used techniques for data analysis.

We can also apply Spectral Embeddings or Diffusion Maps with clustering objectives.
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Classical Methods

PCA

Objective: Simplify the data structure transforming the original features into others,
named principal components, applying linear combinations of those features
retaining variance.

This method only rotate the coordenates, changing the data axis in the maximum
variance direction.

The principal components are decorrelated.
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Classical Methods II

PCA: Advantages

PCA studies the features relation, finding feature groups that are highly correlated.

It is an useful technique for feature selection, for outlier detection or for clustering.

It works properly when our features present a high correlation because few factors
would explain a high part of the total variability.

PCA: Disadvantages

PCA does not take into account the vector’s classes, so it does not look at the
classes’ separability.

PCA makes a linear data transformation.

PCA is not able, for example, to reduce properly a spiral because it does not take
into account the geometry of the data.
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Classical Methods II

A spiral in dimension 1 with PCA
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Spectral Embedding Algorithm

1 Constructing the adjacency graph and choosing its weights.

G = (S = {xi},E), where (i , j) ∈ E if xi and xj are near,

Wij = w(xi , xj) = e
−||xi−xj ||

2

ε , the most comun option for weights.

2 Computing eigenmaps:
Laplacian Graph L.
Compute eigenvalues and eigenfunctions of I − L.
Obtain the first k eigenvectors v1, . . . , vk of L, corresponding to the major eigenvalues
λ1 > · · · > λk .
We reject the trivial solution f0 = 1, associated to λ0 = 1.
Let V ∈ RN×k be the matrix with the selected eigenvectors in columns.
To obtain the embedding:
for i = 1 to N

Compute yi ∈ Rk as the i-th row of V .

v1 vk
↓ ↓

 ← y1

← yn
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Laplacian Graphs

Laplacian Graphs

Laplacian Graphs are the main tool for Spectral Embedding.

The Laplacian is an operator that describes the connections in our graph, so it
describes the geometry of our data.

We assume that our graph G is an undirected weighted graph whose weighted
matrix W has positive entries (wij = wji > 0).

Classification

Unnormalized Laplacian Graph

Lun = D −W

where D is the diagonal degree matrix with dii =
∑N

j=1 wij .

Normalized Laplacian Graph
Symmetric Laplacian

Lsym = D−
1
2 LunD

− 1
2 = I − D−

1
2 WD−

1
2 .

Random Walk Laplacian

Lrw = D−1Lun = I − D−1W .
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Embedding Justification

Why the first eigenvalues?

In mathematics, the highest eigenvalues are closely related with the geometry of the
manifold.

And why this embedding?

In our proyection, we search for the construction of an embedding function that preserves
the local information.
We assure this fact searching for the optimal embedding, the one that minimizes
distances between closed nodes: J(Y ) = 1

2

∑
i,j(yi − yj)

2wij > 0.
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Diffusion Maps

Motivation

The Spectral Embeddings don’t have a clear justification about why they work.

Objective

We want to define a new representation of the data preserving some quantities of interest
such as local mutual distances.

Initial Data // Graph // Random Walk // Diffusion Distance

��
Clustering Diffusion Mapsoo Spectral Theoryoo

Figure: Steps for Diffusion Maps.
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1. Initial Data: construction of a graph

Initial data

Ω = {x1, . . . , xn}.

Constructing a graph

Nodes: xi .

Weights: Wij = w(xi , xj).

Usually, we fix them following a Gaussian Kernel: w(xi , xj) = e
−||xi−xj ||

2

ε .
W must always be:

Symmetric.
Pointwise positive.

G = (Ω,W ) represents the local geometry of the graph.
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2. A random walk from the data

A Markov Random Walk

Thanks to the properties of W we can define a Markov random walk on the graph.

In this probabilistic formulation, the transition probability comes defined by:

Pij = p(xi , xj) =
w(xi , xj)

d(xi )
,

where d(xi ) =
∑n

k=1 w(xi , xk) is the degree of the graph.

We can consider larger neighborhoods with the powers of P, so
P t
ij = pt(xi , xj) ≡ the probability transition from xi to xj in t time steps.
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3. Diffusion Distance

Main Goal

Define a distance metric on the original set that reflects the connectivity of the data.

Diffusion distance

Two points are close if they are connected by many short paths in the graph.

The square of the diffusion distance in t time steps is defined by

D2
t (x , z) = ||pt(x , ·)− pt(z , ·)||2L2( 1

φ0
)

=
∑
y∈Ω

(pt(x , y)− pt(z , y))2

φ0(y)
,

where φ0 is the stationary distribution of the Markov process, defined as

φ0(x) =
d(x)∑
z∈Ω d(z)

and 1
φ0

penalizes discrepancies on domains of low density more than on those of
high density.

Ángela Fernández Pascual (UAM) Diffusion Maps March 28, 2011 13 / 22



4. Spectral Theory

Dimensionality Reduction

We use the spectral theory to simplify the diffusion distance calculation.

D2
t (x , z) =

n−1∑
j=1

λ2t
j (ψj(x)− ψj(z))2,

where λj are the eigenvalues and ψj are the eigenvectors of P.

ψ0 = 1 is the trivial solution.

Eigenvalue decay

Approximation to diffusion distance:

D2
t (x , z) ∼

d(t)∑
j=1

λ2t
j (ψj(x)− ψj(z))2.

where d(t) = max{l : |λt
l | > δ|λt

1|}
with δ, the precision.
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5. Diffusion Maps

Definition

The approximation of D2
t can be interpreted as the Euclidean Distance in Rd(t) if we

define an embedding as:

Ψt =

 λt
1ψ1(x)

...
λt
d(t)ψd(t)(x)

 .

The diffusion distance between two points of the original set coincide with the
euclidean distance between the embedded points.

D2
t (x , z) ∼

d(t)∑
j=1

λ2t
j (ψj(x)− ψj(z))2 = ||Ψt(x)−Ψt(z)||2.
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6. Clustering

Clustering in euclidean spaces

We have the data embedded in an Eucliden space of lower dimension.

We could apply k-means algorithm over this new set, obtaining k clusters
C1, · · · ,Ck .

The clusters in the original space Ω are A1, · · · ,Ak such that

Ai = {xj |Ψt(xj) ∈ Ci}.

Ángela Fernández Pascual (UAM) Diffusion Maps March 28, 2011 16 / 22



Summary: Diffusion Maps Algorithm

1 Ω = {x1, · · · , xn} our data set.

2 Construct G = (Ω,W ) where Wij = K(xi , xj)
a symetric, positive kernel.

3 Define the transition probability

Pij = p(xi , xj) =
K(xi ,xj )

d(xi )
.

4 Obtain eigenvalues {λl}l>0 and eigenfunctions
{ψl}l>0 of P such that{

1 = λ0 > |λ1| > · · ·
Pψl = λlψl .

5 The threshold d(t) = max{l : |λt
l | > δ|λt

1|}.
6 Diffusion Map:

Ψt =

 λt
1ψ1(x)

...
λt
d(t)ψd(t)(x)

 .

7 Clustering over the embedding (if desired).

Initial Data and Graph

��
Random Walk

��
Spectral Theory

��
Diffusion Maps

��
Clustering
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Anisotropic Diffusion: the Relevance of the Density

Relevance of the Density

Context: Points are sampled from a probability density on a submanifold of Rn.

Problem: The sample distribution is often not related to the geometry of the
manifold.

Goal: To recover the manifold structure regardless of the distribution of the data.

Anisotropic Diffusion

To define α ∈ R that specifies the influence of the density in the transition of the
diffusion process: α = 0 means maximal influence, α = 1 means there isn’t influence.

To construct the diffusion family: we normalize twice the kernel matrix.

1 Fix α and Kσ(x , y) = e−
||x−y||2

σ .
2 qσ(xi ) =

∑n
j=1 Kσ(xi , xj ) is the density function.

3 First normalization: K
(α)
σ (x , y) = Kσ(x,y)

qσ(x)αqσ(y)α
.

4 The new degree is d
(α)
σ (xi ) =

∑n
j=1

Kσ(xi ,xj )

qσ(xi )
αqσ(xj )

α .

5 The final probability matrix is given by pσ,α(x , y) = K
(α)
σ (x,y)

d
(α)
σ (x)

.
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Anisotropic Diffusion II

The Markov chain in continuous time is usually defined by an infinitesimal generator
instead of by the probability matrix that we have just seen.

Theorem

Let

Lσ,α =
I − P

σ

be the infinitesimal generaton of the Markov chain. Then, for a fixed K we have:

lim
σ→0

Lσ,αf =
∆(fq1−α)

q1−α − ∆(q1−α)

q1−α f ,

where ∆ is the Laplace Beltrami operator.

When α = 1,
lim
σ→0

Lσ,αf = ∆f .

When α = 0 and the density of q is uniform in the submanifold, also occur that

lim
σ→0

Lσ,αf = ∆f .
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Out-of-sample method: Nyström Formula

Motivation

The previous algorithm only works for train samples. If we have some new data points to cluster,

we must repeat the whole algorithm to classify them.

Idea

To extend the algorithm in a way such that they admit out-of-sample points without repeat the

algorithm with the full dataset.

The Nyström Formula

It is a general method of kernel eigenfunctions learning that is based on the prediction of
the eigenvector value and the eigenvalue convergence.

φn
i (x) =

√
n

`i

n∑
j=1

vn
ji K

n(x, xj) i = 1, · · · , k

where

φni eigenfunctions desired.

Kn(xi , xj ), sample kernel function (determines the weights of the graph).

`i y vn
ji autovalores y autofunciones de Kn(x, xj ).
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Some embedding examples in a real problem

Framework

Original data: dimension = 4. They represent the cloudiness of the main 4 hours in
a day of solar radiation.

Embedding: dimension = 2.

Depending on the parameters (α, σ of the Gaussian Kernel, . . . ) we can obtain a
different data representation on the embedding.
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Conclusions

Diffusion Maps versus Spectral Clustering

Diffusion Maps present some advantages opposite to Spectral Embeddings:

1 They are a more general technique.

2 They have a solid theory behind, as they are based on Markov processes and a new
metric, the Diffusion Distance.

3 They are more versatile as they allow us to take into account more steps in the
diffusion processes and also to evaluate the relevance of the density.
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