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Feature Selection and Extraction Methods (I)

Increasing size and dimensionality of real-world datasets.

Linear Feature Selection and Extraction Methods

Fast and simple.

Do not handle nonlinear relationships in the data.

Principal Component Analysis (PCA).

Canonical Correlation Analysis (CCA).

Fisher Discriminant Analysis (FDA).

...
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Feature Selection and Extraction Methods (II)

Kernelized Feature Selection and Extraction Methods
Capture nonlinear dependences in the data.
Maps the data from an original space to a feature space F
via a (nonlinear) mapping Φ : Rd −→ F .
The dot-product in the feature space F is defined by a
Mercer kernel K : Rd × Rd −→ R.
Reformulation of traditional linear methods using only
dot-products of training samples⇒ nonlinear method in
the input space.

Kernel Principal Component Analysis (KPCA).
Kernel Canonical Correlation Analysis (KCCA).
Kernel Fisher Discriminant Analysis (KFDA).
...
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Kernel Fisher Discriminant Analysis (KFDA) (I)

Notation

X1 = {x1
1 , . . . , x

1
l1
} and X2 = {x2

1 , . . . , x
2
l2
} samples from two

different classes (xi ∈ Rd ).

X = X1 ∪ X2.

y ∈ {−1,1}l be the target vector.

Mapping function to the kernel space: Φ : Rd −→ F .

Mercer Kernel: K (x , y) =< Φ(x),Φ(y) >.
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Kernel Fisher Discriminant Analysis (KFDA) (II)

Mapping the data nonlinearly into the feature space F and
computing Fisher’s linear discriminant there.

KFDA Objective Function

max
w∈F

J(w) = max
w∈F

wT SΦ
B w

wT SΦ
W w

F Mean Vector
mΦ

i = 1
li

∑li
j=1 Φ(x i

j )

F Between Scatter Matrix
SΦ

B = (mΦ
1 −mΦ

2 )(mΦ
1 −mΦ

2 )T

F Within Scatter Matrix
SΦ

W =
∑

i=1,2
∑

x∈χi
(Φ(x)−mΦ

i )(Φ(x)−mΦ
i )T
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Kernel Fisher Discriminant Analysis (KFDA) (III)

Φ(x) is not known in general.
Finding a solution in F ⇒ reformulate it in terms of only dot
products of the input patterns.

KFDA Objective Function

max
α

J(α) = maxα
αT Mα

αT Nα

Reproducing Kernels
w =

∑l
i=1 αi Φ (xi )

Kernelized Between Scatter Matrix
M = (M1 −M2)(M1 −M2)T

(Mi )j = 1
li

∑li
k=1 K (xj , x i

k )

Kernelized Within Scatter Matrix
N =

∑
j=1,2 Kj (I − 1lj )K T

j
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Kernel Fisher Discriminant Analysis (KFDA) (IV)

Kernel Fisher Coefficients (α∗KFD)

α∗KFD ≡ the leading eigenvector of N−1M.

α∗KFD = N−1(M2 −M1).

Ill-posed problem: N matrix not positive.

Some kind of regularization in needed (‖α‖2, ‖w‖2, ...).

Used regularization: Nµ = N + µN I.

I. Rodriguez-Lujan, R. Huerta, C. Santa Cruz On the Equivalence of KFDA and KQPFS



Introduction KFDA KQPFS Equivalence of KFDA and KQPFS Complexity Experiments Conclusions

Kernel Fisher Discriminant Analysis (KFDA) (V)
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Quadratic Programming Feature Selection (QPFS)

Select those features which provide a good tradeoff
between relevance maximization and redundancy
minimization for the classification task.

QPFS Objective Function

min
x

1
2xT Qx − F T x

s.t. xi ≥ 0 ∀i = 1 . . .M
‖x‖1 = 1.

Q: similarity among variables (redundancy).
F: how correlated each feature is with the target class
(relevance).
Components of solution vector x∗: weight of each feature.
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Kernel QPFS (KQPFS) (I)

For some kernels, it is not possible to give a weight to each
feature in the kernel space due to its potential infinite
dimension.
QPFS objective function can be adapted to find an optimal
direction w to project the data into the kernel space F .
KQPFS represents a feature extraction method.

KQPFS Objective Function

min
w

1
2wT QΦw −

(
F Φ
)T w
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Kernel QPFS (KQPFS) (II)

Similarity Measures
QPFS: Correlation and Mutual Information.

The mapping function Φ is usually implicit.

The dimension of the kernel space F may be infinite.

Basis set in the kernel space is needed.

KQPFS: Covariance⇒ KQPFS formulation does not
require an explicit basis in the kernel space.
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Kernel QPFS (KQPFS) (III)

KQPFS Redundacy-Relevance Matrices

QΦ =
∑
x∈X

(
Φ(x)−mΦ

)(
Φ(x)−mΦ

)T

F Φ =
∑
x∈X

(yx −my )
(

Φ(x)−mΦ
)

mΦ =
1
l

∑
x∈X

Φ(x)

my =
1
l

l∑
i=1

yi .
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Kernel QPFS (KQPFS) (IV)

Theory of Reproducing Kernels: w =
∑l

i=1 αiΦ (xi).
QK = K (I − 1l) K .
FK = K (I − 1l) y .

KQPFS Objective Function

min
α

G(α) = min
α

1
2α

T QKα− F T
K α

Kernel QPFS Coefficients

∇αG(α) = 0⇒ QK · α = FK .

matrix QK is always singular.
Again, some kind of regularization in needed (‖α‖2, ‖w‖2, ...).
Used regularization: Qµ = QK + µQ I.
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Kernel QPFS (KQPFS) (V)

Regularized KQPFS Objective Function

Gµ(α) = 1
2α

T (QK + µQI)α− F T
K α

Regularized Kernel QPFS Coefficients (α∗KQPFS)

α∗KQPFS = (QK + µQI)−1 FK

α∗KQPFS: minimizes the covariance among features in the
kernel space + maximizes the covariance of each feature
in the kernel space with the target class.
α∗KQPFS only depends on the kernel matrix K and the class
labels y .
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Kernel Fisher Discriminant Analysis as Quadratic
Programming Problem (I)

Proposition Mika et al.
KFD is equivalent to the quadratic programming problem:

minα αT Nα + CP (α) (1)
s.t. αT (M1 −M2) = 2

Regularization: Nµ = N + µN I

C = µN .
P(α) = ‖α‖2.
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Kernel Fisher Discriminant Analysis as Quadratic
Programming Problem (II)

Proposition Mika et al.
For given C ∈ R, any optimal solution α to the optimization problem (1) is
also optimal for

minα,b,ξ ‖ξ‖2 + µN‖α‖2

s.t. Kα +
−→
1 b = y + ξ

−→
1T

i ξ = 0 for i = 1, 2

and vice versa

Proposition

Given µN ∈ R and let µN = µQ, any optimal solution (α∗,b∗, ξ∗)
to the optimization problem (2) is also optimal for the
Regularized KQPFS and vice versa.
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Proof (I)

It is straightforward to show that the following proof is also
valid for other regularization functions.

min
α,b,ξ

‖ξ‖2 + µN‖α‖2 (2)

s.t. Kα+
−→
1 b = y + ξ (3)

−→
1T

i ξ = 0 for i = 1, 2 (4)

1 Working out ξ in (3):

ξ (α, b) = Kα+
−→
1 b − y

2 Optimization problem (2):

min
α,b

{αT KKα− lb2 − 2yT Kα+

+yT y + µN‖α‖2}

s.t.
−→
1T

i ξ(α, b) = 0 for i = 1, 2

3 b depends on α as (4):

b(α) = − 1
l 1l Kα+ 1l y
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Proof(II)

It is straightforward to show that the following proof is also
valid for other regularization functions.

min
α,b,ξ

‖ξ‖2 + µN‖α‖2 (5)

s.t. Kα+
−→
1 b = y + ξ (6)

−→
1T

i ξ = 0 for i = 1, 2 (7)

4 Substituting b(α) we have an
optimization problem with no
constraints:

minα {αT K (I − 1l ) Kα (8)

−2yT (I − 1l ) Kα+

+
µN

2
‖α‖2 + D}

5 Minimum value of Equation (8) is the
same as those of the regularized
KQPFS when µN = µQ .

Gµ(α) = 1
2α

T (QK + µQ I)α− F T
K α
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Complexity

Standard KFDA

O(l3) + 2l(l21 + l22 ) + 5l2 + l21 + l22 + 7l

Depends on the prior distributions of classes.

KQPFS

O(l3) + 2l3 + 4l2

Independent of the prior distributions of classes.

When is KQPFS faster than KFDA?

(l21 + l22 )(2l + 1) + 5l2 + 7l � 2l3 + 4l2

Prior distributions of the class labels are highly
unbalanced.
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Empirical Equivalence

Thirteen artificial and real world datasets were considered
from the Rätsch benchmark repository.
Optimal parameter values are known (Rätsch benchmark
repository).

Width of the Gaussian kernel σ: K (x , y) = e
‖x−y‖2

σ .
Regularization parameter µN .
µQ = µN .

For every training set
cos

(
α∗KFD , α

∗
KQPFS

)
= 1 =⇒ cos

(
w∗KFD , w∗KQPFS

)
= 1
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Computational Cost
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Figure: Abalone. Training time in seconds for the KFD and KQPFS
algorithms.
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Conclusions

Reformulation of the Quadratic Programming Feature
Selection (QPFS) method in a kernel space (KQPFS).
Proof of the equivalence between KQPFS direction and
KFD direction.

New interpretation of the KFD vector: direction which
minimizes the covariance among features and maximizes
the covariance of each feature with the target class in the
kernel space.
New solution for KFD disregarding the explicitly
dependence on the kernelized between and within scatter
matrices.
More efficient computation of the Kernel Fisher direction
when the classes are highly unbalanced.
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Thank you!
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