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The arrow of time

The past and the future are distinguishable
m In thermodynamics

In an isolated system the thermodynamic entropy is an
increasing quantity (unless all processes in the system are
reversible, in which case it is constant)

m In cosmology:

The universe expands towards the future /contracts towards
the past (initial singularity: The big bang)

m In causality:

A cause precedes its effect.

The arrow of time in time series

How does the arrow of time arise?

m The basic laws of physics are time-reversible
m Newton’s equations in classical mechanics

m Schrodinger’s equation in quantum mechanics

m Macroscopic / mesoscopic equations describe
irreversible behavior
m Diffusion equation
m Hydrodynamic equations
QUESTION: How can irreversibility arise (at the meso and

macroscopic level) from time-reversible laws describing the
evolution of the system at the microscopic level?
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Possible answers

oo

m Boltzmann: For the purpose of macro and mesoscopic
descriptions, it is sufficient to replace the exact many-particle
distribution function by a form that satisfies irreversible
equations. The differences between the exact and the approximate
form would be apparent only if the observation time is very long
(in systems of realistic size, the Poincar¢ recurrences would take
longer than the age of the universe) or if the initial state is highly
correlated, which is a very improbable situation.

m Prigogine: The basic laws of physics need to be modified and
should include sources of irreversibility at the fundamental level.
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The arrow of time 1n time series

Problem:

m We are given N ordered values X, X, , ..., Xy froma time
series.

m The direction of time 1s unknown.
m Which of the orderings

X Xy 5 X35 oeey X » Xy

), ST, TR, KT, €9, ¢

is the correct chronological order?
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Temporal symmetry of stochastic processes

oo
m A stochastic process {X;; tLJZ} is stationary if
P(Xi, X Xy oo s Xi) = P(Xp i1 Xt X hp0 o o0 Xiir)

[P 132

m A stationary stochastic process {X,; tLIZ} 1s temporally
symmetric if

P(X,, X,, X

153 32

LX) =P(X,, X, X

-t -t32

ooy X )

m [f the stationary process {X,; tLlZ} 1s temporally
symmetric, then

P(X, X5, ..., Xp) =P(Xp, Xp g -0 X))
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Q o

m Stationary Gaussian processes are temporally symmetric

m The joint distributions of Gaussian processes are fully
determined by the covariance matrix

Cov(X,, X,)
m The covariance matrix is symmetric
Cov(X,, X;) =Cov(X,, X;)
m By stationarity
Cov(X,, X;) = Cov(X;, X;) = Cov(Xyq, Xii1)
= Cov(X, X,) [choose T =-t;-t;]
Therefore: P(X,, X, X, ....X,) = P(X,, X, X y)

(5] 132 -t1°
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Markov processes

e S

m A stationary process {X;; tLZ} is first order Markov if
P(X{ X1 Xeos - ) =P(X{| X))  UtHZ

m [f {X; tLZ} is a stationary Markov process
{X ¢ tLZ} 1s also a stationary Markov process

m Therefore, an equivalent definition 1s
P(X{ Xir1> Xipos --) =PX{| Xyyy)  UtHZ

m Using Markov property + Chapman-Kolmogorov eqn.

P x,z)P Z
NUNTN X, A.x\.w u\v = -_vhNN NT%#.;NT%.A ? v X, X, A u.w\v F+r'=71
Py (2)
The arrow of time in time series 9

Temporal symmetry of Markov processes

A stationary Markov process is temporally symmetric iff

vamﬁ-_uvmﬁ Avﬂuv\v — vamv_uvmﬁ Av\uxv

Examples:
m Temporally symmetric and not Gaussian [|a| < 1/3]

wxz? (X,y) = Px(X)Px(y) AH 1+3 mANwMOO-C ANHVMQV-CW
m Temporally asymmetric [Non-Gaussian AR(1)]

X=X, +W, {W,; tOZ} Non-Gaussian white noise
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Figure 2.5. Temporally symmetric data, i .
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Source: P.S. Rao, “Non-Gaussian Markov time series” (1988)
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) Figure 2.9, Forward conditional mean of symmetric data. ) Figure 2.11. Forward 3:%90‘..9_ mean of asymmetric data. ,
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T s
: :
:
{W, tLZ} white noise

m A linear AR(1) process is temporally symmetric iff
{W; tLZ} 1s Gaussian.

m A Gaussian Markov process follows a linear AR(1) with

Gaussian white noise.
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Linear AR(1) processes

o <1; {Wg tlZ} white noise
W, UOX,, Uk>0 [independence]
m A linear AR(1) process is temporally symmetric iff
{W; tZ} 1s Gaussian.

m A Gaussian Markov process satisfies the Stochastic
Difference Equation of a linear AR(1) with Gaussian
white noise.
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Gaussian AR(1) processes

oo

m Forward representation
X= 00X +W, {W; tlZ} Gaussian white noise
g <1; W,OX,,Uk>0 [independence]

B[X,[X.1] =¢X,,
m Time-reversed representation
X.= 0X.,+W, {W,; tOZ} Gaussian white noise
@ <1; W,OX,, Ok >0 [independence]
mﬂvﬁ _vmiL =0 Xy
There is no arrow of time
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m Forward representation
X = X _;t W, {W,; tOZ} Non-Gaussian white noise
@<1;020 W, OX,, Ok>0
B[X[Xe1] = ¢ Xy,
m Time-reversed residuals
<>§ =X.-0X.; {W; tOZ} Non-Gaussian white noise
E[W, X,;;] =0 BUT W, is not independent of X,
E[X_, [X,] = f(X)); fis non-linear
There is an arrow of time
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Properties of the time reversed linear AR(1)

oo

Xi= X+ W, g <1;0£0;  {W,; tOZ} white noise

dw\ﬂ =X(-@X;; [time-reversed residuals]

(i) {X,} and {W,} are Gaussian iff {W,} is Gaussian.
(ii) W, is independent of X,,, (k>0) iff {W,} is Gaussian.
(iii) {W,} is white noise iff {W,} Gaussian.

(1v) E[X, X ] = 0 X, iff {W,} is Gaussian
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Non-Gaussian linear AR(1)

s

- -

]

Xi= X+ W, g <1;0£0;  {W, tOZ} white noise

d»\» =X -@X;; [time-reversed residuals]

If {W,} is non-Gaussian

(I) The optimal predictor E [X,|X,,,] in the time-reversed direction
is non-linear.

The optimal prediction error in the time-reversed direction is
smaller than the optimal error in the forward direction.

m:vmﬂ E _”vmﬂ _vmﬁiu_vﬁ < m_HAvmﬂ m_”vmﬂ _vmrLVNH_
(I1) <><H and X,,, (k>0) become dependent quantities.
(III) The time-reversed residual {W,} is more Gaussian than {W,}.
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Detecting the direction of time 9

.

i

. .

G

m  If {W} is non-Gaussian the optimal predictor E [X,|X,,,] in the time-
reversed direction is non-linear [Rao + Johnson 1992]

1 1

Xamy WPy ﬁ 1 ;

»XM|H+F F N N
4 2

Elx/|x,]=

Boh:lw

Elx,|x,,]=2x,, )
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Detecting the direction of time (I)

i

m  The optimal prediction error in the time-reversed direction is smaller
than the optimal error in the forward direction.

m:vﬁ- E Umﬂ _NiLvﬁ < m:vmﬂ mﬁvﬁ _NH-LVNH_

1 1 1
MNMI_|M gﬁm 11
»NM = H H ﬂu MWN D |Mum
— X, t— W.p.—
277 4 P>
X,=2X,,,modl |M [deterministic chaotic map]
1 1
Elx,x,.] =X Elx,x,,]=2x,, mod1-

£l - elx x, )= £l(x, - £lx %, ]F] =0

mu
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Detecting the direction of time (II)

R o T . -

m  If {W} is non-Gaussian <><ﬁ and X,,, (k>0) become dependent quantities
[Peters, Janzig, Gretton, Scholkopf, 2009]

Algorithm 1 Detecting true Time Direction

1: Input: a= (z1,...,: L) b=1(Zn;s0521)
2: model,=armafit(a)

: res, = model, . residuals

4 modelimmmatit(h * Gaussianity test: Jarque-Bera
5: resp = modely.residuals

Independence test: HSIC
Hilbert-Schmidt Independence Criterion

6: if res, normally distributed then
7:  output =*I do not know (Gaussian process)
8 break
9: end if

10: if (res,,a) independent then
11:  if (resy. b) dependent then

12: output ="(zy,...,1,) correct time direction” wa\u% OO/\_”.\, AN: vu %A§I~ v”_

13:  end if

14: else if (res,,a) dependent then __\__H__%:H_
15:  if (resy, b) independent then

16: output =“(z,,...,x1) correct time direction”

7:  else if (res;.b) dependent then

18: output =“I do not know (bad fit)”

19:  end if
20: end if
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Detecting the direction of time (III)

u ﬁwﬁ is more Gaussian than {W }

m  Cumulant / product-cumulant generating function

E[exp{am}] = exp Mwmp il Elexplaw, +bx, }=exp MM_s_w . x..]
losfu|=espl S il elowlar +ox, Jerol S5k [ x. |
n=l1 8 n=l m=1 ’** g

m  Cumulant / product-cumulant moments

K, i)=c. ok, ) @@TT&JQW n>0

KX =0 @K, 7] §§L-sf£§ n+m>0
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Detecting the direction of time (I1I)

D
K |=c ok W] K, . x.]=c,. @K, [7]
n t n n i B nm to t+1 nm n+m tp

Qdd cumulants Even cumulants , Product cumulants
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Detecting the direction of time (III)

m A random variable is Gaussian iff K, =0 [n>2

= W, is more Gaussian than W,
@<t = K] <xw]

; n >2

m Two variables are independent iff
K.=0n>0 m>0ntm>2

s (W,,X,,) are independent only iff K T\i =0 Un>2
NAE: T\N ” MWIL = QE: Aﬂvh\is _Hw\w\w “_n
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Gaussianization of the time-reversed residuals

oo
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Figure 2: Density functions for the noise (top row) and the time-reversed residuals in an AR(1)
model with ¢ = 0.2 (middle row) and ¢ = T\w —1)/2 (bottom row).
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The golden ratio in AR(1)

m  The Gaussianization of the time-reversed residuals in Non-Gaussian AR(1)
is strongest when the autocorrelation in the time-series is the golden ratio
J5 -1
p=t " =206180
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Distance to a Gaussian

oo

m  Magnitude of the fourth cumulant (excess of kurtosis)

m  Kullback-Leibler divergence

Let p(2), g(z) be two pdf’s on R NQ\? : Qv = ._.&N p(z)log Emmw
q(z

m  Maximum Mean Discrepancy (MMD)
m  Letp, gbetwopdf’son R

m  Let F be the unit ball in a universal reproducing kernel Hilbert space HH
two pdf’s on R

\ggb?wu@fﬂvHmﬁ@\_u(ﬂﬁmn_”\ANv”_Imm_n\.ANv”_vH\\@ I\&Qi

U,=E, TAN, Q_w U, =E, T«AN Q_w mappings of p,q onto H
: _Hﬁ_i : norm operator in H
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Tests for the arrow of time 1n linear processes

m Fit AR(1) to {X,, X,, ..., Xy} [original order (0)]
X, =@X, W = W' =X -¢X,,
m Fit AR(1) to {Xy, Xy.p5---» X; | [inverted order (i)]
X, HAN;N\E +E\=~. = E\M =X, I@N«:i
Which is the correct chronological order?

m Measure of independence (HSIC)
The order in which {W_°, X} / «,ﬁ\:w X, } are independent
m Measures of Gaussianity:
The order (x = 0/ i) in which {W_"} has the largest
* 4th Cumulant
« MMD to a Gaussian
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oo

= (Z)

X

P Xq+ W,

Keep r fixed, sweep @

Wi

Experiments on simulated AR(1) data (I)

.

Z,~N(0,1)

Accuracy
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0.5
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=+ 4th Cumulant

| - -

T T T T
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15
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Accuracy
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Experiments on simulated AR(1) data (II)
X= X+ W, W, = (Z) Z,~N(0,1)
Keep @fixed, sweep r
AR(1) ¢=02 AR(1) ¢=104 AR(D) ¢=(VE—1)/2

— MMD
HSIC
oo ath o

umulant

15
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Applications

oo

Detection of the time direction in empirical time series.

Diagnostics based on changes in the behavior under reversal of
the direction of time in medical time series.

Compression of time-reversed signals should be more
effective.

Detection of causality.
Detection of leading indicators.
Irreversibility in physical systems.

Irreversibility in machine learning: why do we learn, rather
than unlearn, as more examples become available.
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Thank you!

Please, ask questions!
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