



 $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{N}-1}, \mathrm{X}_{\mathrm{N}}$
$\mathrm{X}_{\mathrm{N}}, \mathrm{X}_{\mathrm{N}-1}, \mathrm{X}_{\mathrm{N}-2}, \ldots, \mathrm{X}_{2}, \mathrm{X}_{1}$攵 งวยเว
We are given N ordered values $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$ from a time :Шәq0.Id The arrow of time in time series

|  $\left({ }^{7} \mathrm{X}^{\sqrt{6}} \mathrm{X}\right) \wedge 0 \supset$ <br> х!ңеш әәив!џелоэ әч Кұ рәи!ишәәәр <br>  |
| :---: |
| SəSSə30.Id UEISSnED |


Temporal symmetry of stochastic processes

| 0I <br>  <br>  <br>  <br>  <br>  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


Markov processes

Linear AR(1) processes

| $\mathrm{X}_{\mathrm{t}}=\phi \mathrm{X}_{\mathrm{t}-1}+\mathrm{W}_{\mathrm{t}} \quad$ |
| :--- |
| $\|\phi\|<1 ; \quad\left\{\mathrm{W}_{\mathrm{t}} ; \mathrm{t} \in \mathrm{Z}\right\}$ white noise |
| $\quad \mathrm{W}_{\mathrm{t}} \perp \mathrm{X}_{\mathrm{t}-\mathrm{k}} \quad \forall \mathrm{k}>0 \quad$ [independence] |

- A linear AR(1) process is temporally symmetric iff
$\left\{\mathrm{W}_{\mathrm{t}} ; \mathrm{t} \in \mathrm{Z}\right\}$ is Gaussian.
- Gaussian Markov process satisfies the Stochastic
Difference Equation of a linear AR(1) with Gaussian
white noise.
- A linear $A R(1)$ process is temporally symmetric iff
$\left\{W_{t} ; t \in Z\right\}$ is Gaussian.
Gaussian white noise.
A Gaussian Markov process follows a linear AR(1) with

Linear AR(1) processes






|  |  |
| :---: | :---: |

Detecting the direction of time (II)











Gaussianization of the time-reversed residuals


O
The arrow of time in time series

$\phi$ dәәмs 'pəx!y л dәәу
${ }^{7} \mathbf{M}+{ }^{\mathbf{I - 1}} \mathbf{X} \boldsymbol{\phi}={ }^{\mathbf{7}} \mathbf{X}$




Irreversibility in machine learning: why do we learn, rathe
than unlearn, as more examples become available.

## Irreversibility in physical systems.

Detection of leading indicators.

Compression of time-reversed signals should be more
the direction of time in medical time series.

Detection of the time direction in empirical time series.
$\qquad$ Applications

 14] S. Shimizu, P. O. Hoyer, A. Hyv arinen, and A. Kerminen. A linear non-Gau
discovery. The Journal of Machine Learning Research, 7:2003-2030, 2006. [ели

 embeddings and metrics on probability measures. Journal of Machine Learning Search, 11:1517-1562, 2010 .
[12] A. Smola, A. Gretton, L. Song, and B. Sch"olkopf. A hilbert space embedding for distributions. In ALT '07: [11] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Sch"olkopf, and G. R. G. Lanckriet. Hilbert space


Transactions on Singal Processing, 40(4):845-856, apr 1992.


 [6] Q. Cheng. On time-reversibility of linear processes. Biometrika, 86(2):483-486, 1999.
[7] Howell Tong and Zhiqiang Zhang. On time-reversibility of multivariate linear processe [5] G. Weiss. Time-reversibility of linear stochastic processes. Journal of Applied Probability, 12(4):831-836, 1975.

 problem. In Advances in Neural Information Processing Systems 19, pages 513-520. MIT Press, 2007.
[2] J. Peters, D. Janzing, A. Gretton, and B. Schölkopf. Detecting the direction of causal time series. In ICML '09:
Proceedings of the 26th Annual International Conference on Machine Learning, pages 801-808. ACM, 2009.

sәэиә.ләәу
Кчdе.ıоо!!ч!̣

