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LS-SVMs primal

Characteristics

Simplification of standard SVMs via equality constraints.

Common formulation for classification (−→y ∈ {+1,−1}N ) and regression
(−→y ∈ RN ).

φ feature map of given Mercer kernel k(
−→xi ,
−→xj ) = φ(

−→xi ) · φ(
−→xj ).

Lagrangian coefficients αi introduced to dualize.

Primal

min
−→w ,b,

−→
ξ

1
2‖
−→w ‖2 + C

2
PN

i=1 ξ2
i

s.t . −→w · φ
`−→xi
´

+ b = yi − ξi , ∀i = 1, ..., N (1)

Lagrangian

L
“−→w , b,

−→
ξ ,−→α

”
=

1
2
‖−→w ‖2 +

C
2

NX
i=1

ξ2
i −

NX
i=1

αi
ˆ−→w · φ `−→xi

´
+ b − yi + ξi

˜
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LS-SVMs dual

Characteristics

Dual obtained by setting Lagrangian’s derivatives to 0.

Reduces to a KKT system of equations with K̃ij = k(
−→xi ,
−→xj ) + δij/C.

Derivatives

∂L
∂
−→w

=
−→w −

NX
i=1

αiφ
`−→xi
´

= 0 ⇒ −→w =
NX

i=1

αiφ
`−→xi
´
,

∂L
∂b

= −
NX

i=1

αi = 0 ⇒
NX

i=1

αi = 0,

∂L
∂ξ

= Cξi − αi = 0 ⇒ αi = Cξi .

Dual Formulation "
0
−→
1 T

−→
1 K̃

#»
b
−→α

–
=

»
0
−→y

–
(2)
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Some observations

Final decision function of test point −→x given by f (−→x ) = sign(
−→w · φ(

−→x ) + b)
(classification) or f (−→x ) =

−→w · φ(
−→x ) + b (regression).

φ(·) usually unknown, so change −→w · φ(
−→x ) byP

i αiφ(
−→xi ) · φ(

−→x ) =
P

i αi k(
−→xi ,
−→x ).

Thus, test time proportional to number of points with αi 6= 0 (SVs).

But αi = Cξi , so αi = 0 only when ξi = 0.

That means when −→xi lies exactly on its support hyperplane (classification) or
when yi is exactly the output estimation for −→xi (regression).

Very unlikely to happen, so in practice all patterns are SVs.

Is there any way to reduce the number of SVs without degrading the model?
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Previous approaches (1)

Pruning after training, then retraining

Patterns with smallest |αi | 1(Performance can drop quickly).

Correctly classified patterns and furthest from boundary 2(Performance can drop
quickly).

Basing on the SMO algorithm while solving dual 3(Only homogeneous LS-SVM).

Single pattern that introduces smallest error when omitted 4(Very costly
computationally).

1
J.A.K. Suykens, L. Lukas, J. Vandewalle. Sparse Approximation using Least Squares Support Vector

Machines. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCASS’2000), pp.

757–760, 2000.
2

Y. Li, C. Lin, W. Zhang. Improved Sparse Least–Squares Support Vector Machine Classiffiers,

Neurocomputing 69 (13–15), pp. 1655–1658, 2006.
3

X. Zeng, X.W. Chen. SMO-based Pruning Methods for Sparse Least Squares Support Vector Machines. IEEE

Transactions on Neural Networks 16 (6), pp. 1541–1546, 2005.
4

B.J. De Kruif, T.J.A. De Vries. Pruning Error Minimization in Least–Squares Support Vector Machines. IEEE

Transactions on Neural Networks 14 (3), pp. 696–702, 2003.
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Previous approaches (2)

Enforcing before training

Hierarchical model with L1-norm minimization 5(Resulting problem difficult to
solve).

Searching for linearly independent subset of patterns 6(Not always good results).

Fixing the size of the final model 7(Feature map only approximated).

5
K. Pelckmans, J.A.K. Suykens, B. De Moor. Building Sparse Representations and Structure Determination on

LS–SVM Substrates. Neurocomputing 64, pp. 137–159, 2005.
6

J. Valyon, G. Horvath. A Sparse Least Squares Support Vector Machine Classiffier. Proceedings of the IEEE

International Joint Conference on Neural Networks (IJCNN’04), pp. 543–548, 2004.
7

K. De Brabanter, J. De Brabanter, J.A.K. Suykens, B. De Moor. Optimal Fixed–Size Kernel Models for Large

Data Sets. Computational Statistics and Data Analysis 54(6), pp. 1484–1504, 2010.
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L0-norm

Basic facts

Defined as limit of p-norms when p → 0:

‖−→v ‖0 = lim
p→0

 X
i

|vi |p
! 1

p

Alternatively, ‖−→v ‖0 = | {vi : vi 6= 0} |.
It counts number of non-zero elements, so minimizing it implies sparseness.

In our context, we can think of minimizing
‚‚−→w ‚‚0 or

‚‚−→α ‚‚0.

The former corresponds to using minimal number of features for prediction, the
latter to using minimal number of patterns.

Problems: nonconvex, NP-hard to optimize 8.

Solutions: approximations 9, iterative procedures.

8
E. Amaldi, V. Kann. On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear

Systems. Theoretical Computer Science 209 (1–2), pp. 237–260, 1998.
9

J. Weston, A. Elisseeff, B. Schölkopf, M. Tipping. Use of the Zero Norm with Linear Models and Kernel

Methods. Journal of Machine Learning Research 3, pp. 1439–1461, 2003.
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An iterative approach for LS-SVMs (1)

Primal problem

min
−→v t ,bt ,

−→
ξ t

1
2
PN

i=1 λt
i (v

t
i )

2 + C
2
PN

i=1(ξ
t
i )

2

s.t .
P

j v t
j k
`−→xi ,
−→xj
´

+ bt = yi − ξt
i , ∀i = 1, ..., N. (3)

Observations

Implicit vector −→w t =
P

j v t
j φ(
−→xj ) still underlying in constraints.

Regularization not on ‖−→w t‖2, but on the weighted L2-norm of coefficients v t
i .

These v t
i are no longer Lagrangian coefficients.

Weights of regularization given by λt
i .

Solution of (3) gives −→v t+1, bt+1.

Under probabilistic framework, can be shown that limt→∞
−→v t =

−→v ∗ and that
limt→∞

P
i λt

i (v
t
i )

2 = ‖−→v ∗‖0, provided we update λt+1
i = 1

(v t+1
i )2

10.

10
K. Huang, D. Zheng, J. Sun, Y. Hotta, K. Fujimoto, S. Naoi. Sparse Learning for Support Vector Classiffication.

Pattern Recognition Letters 31 (13), pp. 1944–1951, 2010.
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An iterative approach for LS-SVMs (2)

Algorithm (IS-LSSVM)

1 Compute the LS-SVM solution −→α for given sample, kernel and C using (2).

2 Set t ← 0,
−→
λ 0 ← α and −→v 0 ← −→∞.

3 Solve problem (3) to give −→v t+1 and bt+1.
4 Update λt+1

i ← 1
(v t+1

i )2 , i = 1, . . . , N.

5 Set t ← t + 1 and go back to 3 until convergence.
6 Return model (v t , bt ).

Remarks

(3) can be solved either in primal or in dual (more on this later).

Convergence criterion based on similarity between −→v t and −→v t+1, when
1
N ‖
−→v t −−→v t+1‖2 ≤ ε.

Final result dependent on choice of
−→
λ 0: only local optimum attained.
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Solution of the problem

In the primal

Writing (3) in matrix notation and substituting ξt yields
min−→v t ,bt

1
2 (
−→v t )T diag(

−→
λ t )
−→v t + C

2 (
−→y − K−→v t − bt−→1 )T (

−→y − K−→v t − bt−→1 )

Differentiating w.r.t. −→v t , bt and equalling to 0 produces system"
N

−→
1 T K

K T−→1 K T K + diag(
−→
λ t )

C

#»
bt
−→v t

–
=

" −→y T−→1
K T−→y

#
(4)

In the dual

Differentiating Lagrangian and equalling to 0 produces another system"
0

−→
1 T

−→
1 K T diag(

−→
λ t )−1K + I

C

#"
bt
−→
β t

#
=

»
0
−→y

–
(5)

Same as (2), but with kernel switched tobk `Xi , Xj
´

=
X

m

k (Xi , Xm) k
`
Xj , Xm

´
λm

+
δij

C

Primal variable recovered with −→v t = diag(
−→
λ t )−1Kβt .
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Experimental framework

Datasets

Well-known datasets for classification (Ripley, Fourclass) and regression
(Motorcycle, Fossil).

All bidimensional for plotting purposes.

Setting

RBF kernel used for all experiments.

Stopping criterion with ε = 10−4.

Hyperparameters C and σ for both ISLS-SVM and LS-SVM tuned with CSA
(broad search) + simplex (fine search).

CSA uses 10-fold CV as score function.

Implemented in LS-SVM Matlab Toolbox (future version 2.0).
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Ripley dataset: ISLS-SVM

11 SVs out of 250 patterns.

Smooth decision border.
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Ripley dataset: LS-SVM

All 250 patterns are SVs.

Similar decision function, a bit fitter to the data.
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Fourclass dataset: ISLS-SVM

40 SVs out of 862 patterns, spread close to decision border.

Easy problem (no error), but highly nonlinear.
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Fourclass dataset: LS-SVM

All 862 patterns are SVs.

Also perfect performance and very similar decision function.
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Motorcycle dataset: ISLS-SVM

5 SVs out of 133 patterns.

Difficult problem and highly nonlinear.
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Motorcycle dataset: LS-SVM

All 133 patterns are SVs.

Fitter to data at end, more oscillating at beginning.



Introduction Sparse LS-SVMs Experiments Discussion

Fossil dataset: ISLS-SVM

6 SVs out of 106 patterns.

Highly nonlinear problem.
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Fossil dataset: LS-SVM

All 106 patterns are SVs.

More oscillating at beginning.
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Summary

Pros

Straightforward algorithm to find sparse LS-SVM models.

Small number of iterations (10-20 for most cases).

Final models an order of magnitude (10-30x) sparser than LS-SVMs.

Performance only degrades slightly.

Applicable to other formulations e.g. Multiclass LS-SVMs.

Cons

Only local minimum attained, basing on initial weights given by LS-SVM.

Assumed model W =
P

i viφ(Xi ).

Computationally costly (each iteration is O(N3)).

Occasional numerical instabilities.
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(Possible) solutions (I)

Numerical instabilities

Solving (4) instead of (5).

System looks more robust since λ and C are in the same term.

Local minimum

Apparently no solution, since finding global minimum is NP-hard.

Computational cost

O(N3) cost cause every system solved with operator \.
Too costly for medium or large-scale problems.

Possible to reduce to O(N2) using the SMO algorithm in the dual 11.

This also allows for caching kernel matrix, so large-scale can be issued.

11
J. López, J.A.K. Suykens. First and Second Order SMO Algorithms for Large Scale LS–SVM Training. Internal

Report 09–179, ESAT–SISTA, K.U. Leuven, 2009.
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(Possible) solutions (II)

Assumption on −→w

Is it possible to remove assumption on −→w in (3)?
min

−→w t ,bt ,
−→
ξ t

1
2
PnF

i=1 λt
i (w

t
i )

2 + C
2
PN

i=1(ξ
t
i )

2

s.t . −→w t · φ(
−→xi ) + bt = yi − ξt

i , ∀i = 1, ..., N.

Solving in the primal we get"
N

−→
1 T Φ

ΦT−→1 ΦT Φ + diag(
−→
λ t )

C

#»
bt
−→w t

–
=

" −→y T−→1
ΦT−→y

#
Same as (4), but with matrix ΦT = (φ(X1) . . . φ(XN)).

Intractable cause Φ usually unknown, unless we have an estimate bΦ.

Solving in the dual we get"
0

−→
1 T

−→
1 Φ diag(

−→
λ t )−1ΦT + I

C

#"
bt
−→
β t

#
=

»
0
−→y

–
Same as (5), but with matrix ΦT diag(

−→
λ t )−1Φ instead of K .

Intractable cause ΦΦT = K , but Φ diag(
−→
λ t )−1ΦT usually unknown, unless we

have an estimate bΦ.



Introduction Sparse LS-SVMs Experiments Discussion

Farewell

Thank you for your attention!


	Introduction
	Sparse LS-SVMs
	Experiments
	Discussion

