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Support Vector Machines

Standard, robust method for classification.

Extensions for regression and novelty detection.

Very fast algorithms available (PEGASOS, LIBLINEAR) for the linear case.

For the non-linear case, a dual optimization problem is solved.

SVM optimization problem
minx

1
2 xT Kx − x · p

s.t


0 ≤ x ≤ C
x · y = ∆

Very simple problem: quadratic objective and linear constraints.

Standard, well understood algorithms from optimization theory available: Inner
Point methods, Projected Newton, etc.

However...
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Problems

Methods with fast convergence require using
Hessian or inverse of Hessian information.

Hessian K size of the dataset and
non-sparse, K−1 costly to compute (O(N3)).

Prohibitive for medium-sized problems.

minx
1
2 xT Kx − x · p

s.t


0 ≤ x ≤ C
x · y = ∆

Sequential Minimal Optimization

State of the art algorithm, implemented in LIBSVM.

At each iteration, update only the two “most violating” entries of x .

Large number of iterations, but each of them at linear cost.

Only 2 rows of K are used at each iteration: allows for K larger than memory.
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The SMO algorithm

1 x ← 0, compute ∇f (x).
2 Find aprox. “best” updating direction d with 2 non-zero entries (O(2N)).
3 Compute optimal stepsize δ (O(1)).
4 Update x ′ = x + δd (O(2)).
5 Update gradient ∇f (x) (O(2N)).
6 Back to 2 until convergence.

Step 2 can be (roughly) done by looking for the largest entries of ∇f (x) taking
restrictions into account, and selecting the two best ones.
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The big picture

?
Complexity
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The more complex the
worse?

Could intermediate
complexity algorithms
provide better results?
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Projected Gradient

IP is costly because it requires full Hessian information.

SMO is very simple because it only uses 2 entries of the gradient.

Natural intermediate algorithm: projected gradient.

1 x ← 0, compute ∇f (x).
2 Compute optimal stepsize δ (O(N2)).
3 Update and project back: x ′ = [x + δd ]P (O(N)).
4 Update gradient ∇f (x) (O(N2)).
5 Back to 2 until convergence.

Steps 2 and 4 involve a cost O(NM), M number of non-zero components in d .

Moral: sparsity in the updating direction is desirable. PG non-sparse.
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The big picture revisited
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Hypothesis: improvements should
lie in the “low-complexity” area.
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We should...

... avoid using the full Hessian.

... generate sparse updating directions d .

... find a balance between sparsity and usefulness of d .

Two algorithms proposed

Cycle-Breaking −→ Momentum SMO
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Cycle-Breaking

“Zigzagging“ is common in SMO.

A sequence of updating directions d1, d2, . . . , dM appears repeatedly during the
run of the algorithm −→ Cycles.

If after doing updates along d1, d2, . . . , dM , SMO selects d1 again for update, it
might well happen that afterwards we will have again d2, . . . , dM .

CB

Keep track of the τ last updating directions in
a queue.

If current updating direction is present in the
queue, suppose a cycle is going on.

Update following the direction of the cycle v
(sum of previous updates).

Sparsity is guaranteed through τ .

Cost of a cycle-breaking update: O(N × τ2).
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Cycle-Breaking results
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Momentum SMO

Neural Networks: a momentum term helps to capture the ”general direction“ of
movement.

Classic momentum: dt = (1− λt )st + λt mt , st SMO update, mt = xt − xt−1.

mt non-sparse for t large.

Limited momentum: only τ past updates, mt =
Pt−1

r=t−τ (1− λt )δt st .

X

Update as xt+1 = xt + δ((1− λt )st + λt mt ).

Both the tradeoff parameter λt and the
updating step δt computed in closed form.

Optimization along a 2D halfspace.

By storing calculations from τ previous
iterations, cost ≈ O(5N) per iteration.
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Momentum SMO results
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Methods comparison
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Why the methods behave better in some datasets? −→ Structure of the kernel space

Large C −→ ”unbounded problem“ −→ fewer hits with boundaries.

Intermediate σ −→ less SV −→ smaller effective dimension.
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Drawbacks

The savings are not large enough to overthrow standard SMO.

These methods seem to work poorly for large datasets.

Adult dataset
Web dataset
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Currently working on

Adding shrinking techniques to the method −→ reduce the effective
dimensionality of the problem.

For quadratic functions (like SVM) momentum with specific choices of δ, λ can
be shown to be equivalent to the Conjugate Gradient method. Might be
applicable here.

I will appreciate any suggestions / feedback.
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Thanks for your attention

Escuela Politécnica Superior - Universidad Autónoma de Madrid
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